Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity

  • Received: 01 December 2015 Accepted: 29 June 2018 Published: 01 August 2016
  • MSC : Primary: 49K15, 92B05; Secondary: 93C95.

  • We consider cancer chemotherapy as an optimal control problem with the aim to minimize a combination of the tumor volume and side effects over an a priori specified therapy horizon when the tumor consists of a heterogeneous agglomeration of many subpopulations. The mathematical model, which accounts for different growth and apoptosis rates in the presence of cell densities, is a finite-dimensional approximation of a model originally formulated by Lorz et al. [18,19] and Greene et al. [10,11] with a continuum of possible traits. In spite of an arbitrarily high dimension, for this problem singular controls (which correspond to time-varying administration schedules at less than maximum doses) can be computed explicitly in feedback form. Interestingly, these controls have the property to keep the entire tumor population constant. Numerical computations and simulations that explore the optimality of bang-bang and singular controls are given. These point to the optimality of protocols that combine a full dose therapy segment with a period of lower dose drug administration.

    Citation: Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity[J]. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040

    Related Papers:

    [1] Ghassen Haddad, Amira Kebir, Nadia Raissi, Amira Bouhali, Slimane Ben Miled . Optimal control model of tumor treatment in the context of cancer stem cell. Mathematical Biosciences and Engineering, 2022, 19(5): 4627-4642. doi: 10.3934/mbe.2022214
    [2] Urszula Ledzewicz, Heinz Schättler . Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95
    [3] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [4] K. Renee Fister, Jennifer Hughes Donnelly . Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences and Engineering, 2005, 2(3): 499-510. doi: 10.3934/mbe.2005.2.499
    [5] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [6] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
    [7] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [8] Laurenz Göllmann, Helmut Maurer . Optimal control problems with time delays: Two case studies in biomedicine. Mathematical Biosciences and Engineering, 2018, 15(5): 1137-1154. doi: 10.3934/mbe.2018051
    [9] Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561
    [10] Mina Youssef, Caterina Scoglio . Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227
  • We consider cancer chemotherapy as an optimal control problem with the aim to minimize a combination of the tumor volume and side effects over an a priori specified therapy horizon when the tumor consists of a heterogeneous agglomeration of many subpopulations. The mathematical model, which accounts for different growth and apoptosis rates in the presence of cell densities, is a finite-dimensional approximation of a model originally formulated by Lorz et al. [18,19] and Greene et al. [10,11] with a continuum of possible traits. In spite of an arbitrarily high dimension, for this problem singular controls (which correspond to time-varying administration schedules at less than maximum doses) can be computed explicitly in feedback form. Interestingly, these controls have the property to keep the entire tumor population constant. Numerical computations and simulations that explore the optimality of bang-bang and singular controls are given. These point to the optimality of protocols that combine a full dose therapy segment with a period of lower dose drug administration.


    [1] Future Oncology, 7 (2011), 385-394.
    [2] Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003.
    [3] American Institute of Mathematical Sciences, 2007.
    [4] Bull. of Math. Biology, 65 (2003), 407-424.
    [5] Cancer Research, 69 (2009), 4894-4903.
    [6] Nature, 459 (2009), 508-509.
    [7] Cancer and Metastasis Review, 20 (2001), 63-68.
    [8] Mathematical Biosciences, 65 (1983), 291-307.
    [9] Cancer Research, 66 (2006), 1033-1039.
    [10] Bull. Math. Biol., 76 (2014), 627-653.
    [11] Cancer Research, 73 (2013), 7168-7175.
    [12] in Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., (2010), 267-276.
    [13] Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
    [14] SIAM J. Contr. Optim., 46 (2007), 1052-1079.
    [15] Control and Cybernetics, 38 (2009), 1501-1523.
    [16] Proc. of the 46th IEEE Conference on Decision and Control, 2007, 3768-3773.
    [17] IEEE Transactions on Automatic Control, 54 (2009), 528-536.
    [18] ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.
    [19] Bull. Math. Biol., 77 (2015), 1-22.
    [20] Cancer Treatment Reports, 61 (1977), 1307-1317.
    [21] Cancer Treatment Reports, 70 (1986), 41-61.
    [22] Nature Reviews|Clinical Oncology, 7 (2010), 455-465.
    [23] Macmillan, New York, 1964.
    [24] Springer, New York, 2012
    [25] Springer, 2015.
  • This article has been cited by:

    1. Jessica Cunningham, Frank Thuijsman, Ralf Peeters, Yannick Viossat, Joel Brown, Robert Gatenby, Kateřina Staňková, Paul K. Newton, Optimal control to reach eco-evolutionary stability in metastatic castrate-resistant prostate cancer, 2020, 15, 1932-6203, e0243386, 10.1371/journal.pone.0243386
    2. Abdelhafid Zenati, Messaoud Chakir, Mohamed Tadjine, Global stability analysis and optimal control therapy of blood cell production process (hematopoiesis) in acute myeloid leukemia, 2018, 458, 00225193, 15, 10.1016/j.jtbi.2018.09.001
    3. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014
    4. Angela M. Jarrett, Danial Faghihi, David A. Hormuth, Ernesto A. B. F. Lima, John Virostko, George Biros, Debra Patt, Thomas E. Yankeelov, Optimal Control Theory for Personalized Therapeutic Regimens in Oncology: Background, History, Challenges, and Opportunities, 2020, 9, 2077-0383, 1314, 10.3390/jcm9051314
    5. Najma Ahmed, Dumitru Vieru, F.D. Zaman, Memory effects on the proliferative function in the cycle-specific of chemotherapy, 2021, 16, 0973-5348, 14, 10.1051/mmnp/2021009
    6. Abdelhafid Zenati, Messaoud Chakir, Mohamed Tadjine, Study of cohabitation and interconnection effects on normal and leukaemic stem cells dynamics in acute myeloid leukaemia, 2018, 12, 1751-8857, 279, 10.1049/iet-syb.2018.5026
    7. Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola, Prospect for application of mathematical models in combination cancer treatments, 2021, 23, 23529148, 100534, 10.1016/j.imu.2021.100534
    8. Weiwei Zhang, Xinzhu Meng, Yulin Dong, Periodic Solution and Ergodic Stationary Distribution of Stochastic SIRI Epidemic Systems with Nonlinear Perturbations, 2019, 32, 1009-6124, 1104, 10.1007/s11424-018-7348-9
    9. Shuo Wang, 2019, Optimal Control for Cancer Chemotherapy under Tumor Heterogeneity, 978-1-7281-1398-2, 5936, 10.1109/CDC40024.2019.9029552
    10. Paola Lecca, Control Theory and Cancer Chemotherapy: How They Interact, 2021, 8, 2296-4185, 10.3389/fbioe.2020.621269
    11. Shuo Wang, 2020, Optimal Distribution Control via Liouville Approach, 978-1-7281-7447-1, 5641, 10.1109/CDC42340.2020.9304382
    12. Sophie Bekisz, Liesbet Geris, Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications, 2020, 46, 18777503, 101198, 10.1016/j.jocs.2020.101198
    13. Abdelhafid Zenati, Massaoud Chakir, Mohamed Tadjine, Mouloud Denai, Analysis of leukaemic cells dynamics with multi‐stage maturation process using a new non‐linear positive model with distributed time‐delay, 2019, 13, 1751-8652, 3052, 10.1049/iet-cta.2019.0331
    14. Daniela Iacoviello, 2019, Chapter 9, 978-3-030-23072-2, 131, 10.1007/978-3-030-23073-9_9
    15. Mark Gluzman, Jacob G. Scott, Alexander Vladimirsky, Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory, 2020, 287, 0962-8452, 20192454, 10.1098/rspb.2019.2454
    16. Glancis Luzeena Raja Arul, Merih D. Toruner, Robert A. Gatenby, Ryan M. Carr, Ecoevolutionary biology of pancreatic ductal adenocarcinoma, 2022, 22, 14243903, 730, 10.1016/j.pan.2022.06.005
    17. Pierluigi Colli, Hector Gomez, Guillermo Lorenzo, Gabriela Marinoschi, Alessandro Reali, Elisabetta Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, 2021, 31, 0218-2025, 1419, 10.1142/S0218202521500299
    18. Ehsan Sadeghi Ghasemabad, Mahdi Mirhadi, Zahra Goorkani Zarandi, Ahmad Mahdian Parrany, Adaptive fuzzy control of drug delivery in cancer treatment using combination of chemotherapy and antiangiogenic therapy, 2023, 0954-4119, 095441192311539, 10.1177/09544119231153904
    19. Pamela Kim N. Salonga, Victoria May P. Mendoza, Renier G. Mendoza, Vicente Y. Belizario, A mathematical model of the dynamics of lymphatic filariasis in Caraga Region, the Philippines, 2021, 8, 2054-5703, 201965, 10.1098/rsos.201965
    20. Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021
    21. Rachel Leander, Greg Owanga, David Nelson, Yeqian Liu, A Mathematical Model of Stroma-Supported Allometric Tumor Growth, 2024, 86, 0092-8240, 10.1007/s11538-024-01265-5
    22. Seyed Morteza Hamzeh Pahnehkolaei, Shuo Wang, 2023, Optimal Cell Distribution Control for Cancer Chemotherapy, 979-8-3503-0488-6, 493, 10.1109/ICSC58660.2023.10449697
    23. Zeinab Joorsara, Seyed Mohammad Hosseini, Sakine Esmaili, Optimal control in reducing side effects during and after chemotherapy of solid tumors, 2024, 0170-4214, 10.1002/mma.10049
    24. Hannah G. Anderson, Gregory P. Takacs, Jeffrey K. Harrison, Libin Rong, Tracy L. Stepien, Optimal control of combination immunotherapy for a virtual murine cohort in a glioblastoma-immune dynamics model, 2024, 00225193, 111951, 10.1016/j.jtbi.2024.111951
    25. Olesia-Oksana Vilchynska, Yaroslav Sokolovskyi, Andrii Mokrytskyi, MATHEMATICAL MODELLING OF THE IMPACT OF CHEMOTHERAPY ON THE STATE OF A CANCEROUS TUMOR BASED ON FRACTIONAL CALCULUS, 2024, 6, 27076784, 172, 10.23939/cds2024.02.172
    26. Sotirios G. Liliopoulos, George S. Stavrakakis, Konstantinos S. Dimas, Linear and Non-Linear Optimal Control Methods to Determine the Best Chemotherapy Schedule for Most Effectively Inhibiting Tumor Growth, 2025, 13, 2227-9059, 315, 10.3390/biomedicines13020315
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2658) PDF downloads(1054) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog