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Abstract. We consider cancer chemotherapy as an optimal control problem

with the aim to minimize a combination of the tumor volume and side effects

over an a priori specified therapy horizon when the tumor consists of a het-
erogeneous agglomeration of many subpopulations. The mathematical model,

which accounts for different growth and apoptosis rates in the presence of cell
densities, is a finite-dimensional approximation of a model originally formu-

lated by Lorz et al. [18, 19] and Greene et al. [10, 11] with a continuum of

possible traits. In spite of an arbitrarily high dimension, for this problem sin-
gular controls (which correspond to time-varying administration schedules at

less than maximum doses) can be computed explicitly in feedback form. Inter-

estingly, these controls have the property to keep the entire tumor population
constant. Numerical computations and simulations that explore the optimality

of bang-bang and singular controls are given. These point to the optimality of

protocols that combine a full dose therapy segment with a period of lower dose
drug administration.

1. Introduction. The main obstacle to a successful chemotherapy treatment for
cancer has been and still is tumor heterogeneity. Cancer cells typically are geneti-
cally unstable and, coupled with high proliferation rates, this leads to significantly
higher mutation rates than in healthy cells [7, 8]. As a result, a tumor often consists
of an agglomeration of diverse subpopulations of cells with widely varying pheno-
types and chemotherapeutic sensitivities. The Norton-Simon hypothesis [20, 21]
postulates that tumors typically consist of faster growing cells that are sensitive
to chemotherapy and slower growing populations of cells that have lower sensitivi-
ties or are resistant to the chemotherapeutic agent. Possible explanations for this
feature lie in the fact that resistance is achieved through pathways that use up
more energy which thus cannot be used for proliferation [6] and evolutionary mech-
anisms then lead to a dominance of sensitive cells, simply since cells that duplicate
fast will outperform those that replicate at slower rates. At the same time, cells
that proliferate fast are also more vulnerable to a cytotoxic attack since they have
higher growth fractions in synthesis and mitosis. If there exist subpopulations for
which the activation mechanisms of certain drugs (targeted or not) do not work,
this eventually will lead to a failure of therapy. Intuitively, in the presence of drug
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resistant strains, as the cytotoxic agent kills off the sensitive cells, the resistant cell
population becomes increasingly more dominant. In fact, it is even conceivable that
the killing of all the faster growing sensitive cells enables the resistant population to
thrive (which may take years to materialize) while this subpopulation was in some
sense controlled previously through evolutionary mechanisms by the faster growing
sensitive populations. Similar ideas are also behind efforts to come up with adap-
tive therapies [5]. It is important to note that such behavior is a basic systems-type
mechanism that is equally present for traditional cancer drugs that widely attack
all strongly proliferating cells and for targeted therapies. The latter clearly have
the advantage of much lower side effects, but they do not offer a means to deal
with this fundamental issue of having possibly a tiny fraction of intrinsically resis-
tant cells that in time then becomes dominant. It is an intriguing idea to maintain
some level of the evolutionary fitter sensitive population and try to control in this
way the more dangerous resistant population. Obviously, both from an ethical and
practical point of view, there are severe obstacles to such an approach in praxis, but
it seems worthwhile to analyze what mathematical models would conclude about
such strategies.

Lorz et al. [18, 19] have formulated a mathematical model for phenotypic hetero-
geneity and drug resistance in solid tumors that allows for a continuum of possible
traits. This model then was expanded upon by Greene, Lavi, Gottesman and Levy
[10, 11] as a means to explain the roles played by increasing cell densities and muta-
tions in the emergence of specific traits that become dominant. We briefly describe
this model in Section 2 and then in Section 3 formulate therapy as an optimal con-
trol problem. In the modeling we include multiple chemotherapeutic agents in order
to allow for combinations of drugs that act on different pathways and thus may be
effective for separate tumor subpopulations. Mathematically, as an optimal control
problem, the dependence of the model on a continuum of traits x gives the problem
a distributed aspect and the resulting optimization problem becomes non-standard
and of great complexity. For this reason it makes sense to start its analysis by
considering finite-dimensional approximations in a simpler framework. In Section
4 we formulate and analyze such a high-dimensional approximations for the case of
a single chemotherapeutic agent. The approximating model is a nonlinear system
with weak interactions only linked through the total size of the tumor and thus it
becomes more amenable to analysis. Indeed, in spite of the high dimension of the
system, singular controls are given by feedback functions and an explicit formula
will be derived. We then conclude in Section 5 with some numerical computations
that illustrate the overall system behavior for some locally optimal and singular
solutions.

2. An infinite-dimensional model for tumor heterogeneity. As a starting
point, we briefly describe the mathematical model for tumor heterogeneity from
[10]. In this model, a continuum of possible traits (phenotypes) x, x ∈ [0, 1], is con-
sidered. The underlying philosophy is that both the replication rates r and natural
death rates µ of cells may depend on the trait x. More importantly, chemothera-
peutic sensitivities with respect to a particular agent will vary with some cell-types
being more resistant than others. Thus these terms become functions of x, r = r(x)
and µ = µ(x). If one makes the linear log-kill hypothesis on the action of a drug con-
centration c = c(t) with ϕ = ϕ(x) the cytotoxic killing parameter under treatment,
then a basic trait dependent model of exponential growth takes the form
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∂n

∂t
(t, x) = (r(x)− ϕ(x)c(t)− µ(x))n(t, x) (1)

where n(t, x) denotes the population density of cells with trait x at time t. More
realistically, the rates for cell division and apoptosis not only depend on the trait
x, but also on the cell density [9] which is closely related to the total tumor mass
N = N(t) of cancer cells at time t,

N(t) =

∫ 1

0

n(t, x)dx. (2)

Thus, in [10] the following equation is considered

∂n

∂t
(t, x) = {f(N(t)) (r(x)− ϕ(x)c(t))− g(N(t))µ(x)}n(t, x) (3)

with f = f(N) and g = g(N) positive functions that depend on the total tumor size
N . Based on biological considerations it is assumed that the function f is strictly
decreasing with total tumor size N and that the function g is strictly increasing.
Such conditions simply reflect the facts that with increasing tumor volumes repli-
cation rates decrease and death rates increase. Also, most cytotoxic agents merely
prevent further cell divisions and for this reason the drug-related cytotoxic term
here is interpreted as lowering the replication rate r.

Equation (3) can mathematically be simplified by rescaling time. Defining τ(t) =∫ t

0
f(N(s))ds and setting G(N) = g(N)/f(N), it follows that

∂n

∂τ
(τ, x) = {r(x)− ϕ(x)c̃(τ)−G(N(τ))µ(x)}n(τ, x) (4)

where c̃(τ) = c(t(τ)). This modeling change introduces a logistic structure similar
to the form (a−bN)N . Under the above assumptions on f and g, the scaling factor
G is strictly increasing and once this term offsets the balance between growth and
apoptosis, the population stabilizes. It is not difficult to introduce mutations into
the model as well (see [10, 25]), but here we only consider this simpler density-
dependent equation.

3. Tumor heterogeneity as an optimal control problem. In this section,
we formulate an optimal control problem for the dynamics (4) that encompasses
combinations of various drugs and their pharmacometrics.

It is common practice in chemotherapy to give not just one drug, but a cocktail
of therapeutic agents that have different activation mechanisms, i.e., act on differ-
ent pathways. Naturally, resistance of cells is not absolute, but drug specific and
while certain sub-populations of cells may not react to a particular drug, they may
be sensitive to another. We therefore consider a multi-input formulation with m
controls ui which we write as a column vector u = (u1, . . . , um)T . These controls
represent the dose rates of the particular agents and are connected with the respec-
tive concentrations through pharmacokinetic models. These are generally described
by low-dimensional linear differential equations with the dimension corresponding
to the number of compartments used in the modeling. Here, for simplicity, we just
incorporate a 1-compartment model of exponential growth and decay,

ċi(t) = −kici(t) + ui, (5)

but this form could easily be made more general. Pharmacodynamics, i.e., the
effectiveness of the drug, is modelled through the expressions for the killing terms in
the dynamics. In the formulation in Section 2 we made the linear log-kill hypothesis
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on the action of a drug concentration ci with ϕ = ϕ(x) a trait dependent cytotoxic
killing parameter under treatment. Alternatively, Michaelis-Menten terms of the
form

ϕi(x)
ci(t)

Ci,50 + ci(t)

could be used. This equation describes saturation effects with Ci,50 denoting the
concentrations for which half the maximum possible effect ϕi(x) is realized. The
linear model (5) generally is adequate if the concentrations are kept well below sat-
uration levels and here we retain this simpler structure. The important aspect is
that the sensitivities of the various sub-populations are modelled through a coeffi-
cient that depends on the respective trait x. Denoting the time scale with the more
common notation t, the dynamics thus takes the form

∂n

∂t
(t, x) =

{
r(x)−

m∑
i=1

ϕi(x)ci(t)−G(N(t))µ(x)

}
n(t, x), (6)

ċi(t) = −kici(t) + ui. (7)

In an optimal control problem, the aim then becomes to choose the controls u in
a way to minimize some performance criterion imposed on the dynamics. Here we
use a functional of the form

J = J(u) = αN(T ) +

∫ T

0

(βN(t) + γu(t)) dt (8)

where α, β are positive constants and γ is a row vector of positive weights. The
objective consists of a weighted average of the total tumor population αN(T ) at

the end of a fixed therapy interval [0, T ], an integral term β
∫ T

0
N(t) that measures

the tumor size during the therapy interval, and a penalty term
∫ T

0
γu(t) that limits

the toxicity of treatment. The latter serves as an indirect measure of side effects.
As it is typical in optimal control formulations, the coefficients α, β and γ rep-

resent variables of choice and generally need to be fine tuned to achieve a system
performance that would be considered adequate with respect to other aspects pos-

sibly not included in the modeling. For example, the integral term
∫ T

0
N(t)dt is

included to prevent that all the efforts are put on minimizing the tumor volume
at the end of treatment which may lead to unacceptably high intermediate values.

Similarly, including the total drug dosages
∫ T

0
ui(t)dt as penalty terms in the ob-

jective is just one way of limiting side effects of treatment. Alternatively, one could
assume that the total amount of drugs to be given is specified a priori based on
a medical assessment of their toxicity and then the question becomes how to best
administer the specified amounts of drugs. For example, this is the point of view
taken in the papers [4, 14] where anti-angiogenic therapies were considered. In such
an approach these limits are added to the model as isoperimetric constraints of the
form ∫ T

0

ui(t)dt ≤ Ai, i = 1, . . . ,m. (9)

Mathematically this increases the dimension of the state space as m equations
need to be added to account for the use of the drugs over time. From a practical
perspective, even if the amount of drugs is specified a priori, it is of importance to
see how the solutions change if the amounts Ai are varied and thus, if possible, these
problems are solved depending on these values. The penalty approach we pursue
here is in some sense complementary, but fully compatible with the hard limit
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approach. By including the total drug dosages as penalty terms, the results for
different values of the weights γ will also tell us what tumor volumes are realizable
with what amounts of drugs. Indeed, mathematically the two problem formulations
lead to almost identical systems describing the optimality conditions and similar
posteriori considerations should take place in interpreting the results. From the
point of view of solving the underlying problem, these are simply two different ways
of approaching it. We only note that there would be significant differences if the
penalty term were not taken linearly as L1-term. In our view, formulations that use,
for example, quadratic objective functionals in the controls distort the underlying
biology since they do not represent the total drug dosages.

We thus arrive at the following optimal control problem:

(Th): Minimize the functional (8) over all Lebesgue measurable functions u =
(u1, . . . , um)T , ui : [0, T ]→ [0, umax

i ] subject to the dynamics (6)-(7).

As optimization problem, the dependence of the model on the traits x brings in
a distributed aspect that makes this a highly non-standard problem. The natural
choice in line with the mathematical structure would be to consider x-dependent
controls, but these do not represent the medical problem. It is simply not possible
to administer an agent and tell it to act on x ∈ [0, 12 ], but not on x ∈ ( 1

2 , 1].
The different effects that drugs have on the various sub-populations are modeled
as pharmacodynamics, but drugs are administered as one unit in time and cannot
be split over the sub-populations. Indeed, the problem very much resembles the
recently introduced concept of ensemble control [16, 17] where the aim is to control
an ensemble of systems (here described by the various traits x) by means of one
control.

4. Finite-dimensional approximations. The complexity of the optimal control
problem (Th) is such that it is not even clear which form necessary conditions for
optimality take. It is therefore prudent to start with simpler problem formulations
that approximate this model. In this paper, we only consider a single-input formu-
lation. We also drop the pharmacokinetic model, i.e., we are identifying the dose
rates of the agents with their concentrations. This might appear drastic as obvi-
ously concentrations vary continuously while dose rates can be abruptly changed
and, as we shall see below, discontinuities do arise in this formulation that are not
physically real for the concentrations. However, once we know the solution to this
simplified model, then the incorporation of a linear pharmacokinetic model (5) into
the system is rather standard and we shall comment more on this below.

We consider finite-dimensional approximations to the problem with n distinct
traits and a single control u = u(t). We denote the state by N = (N1, . . . , Nn)T

and write

N̄(t) =
1

n

n∑
i=1

Ni(t) = eN(t), where e =
1

n
(1, . . . , 1) ,

for the average. We then express G as a function of N̄ . The optimal control problem
(Th) is then approximated by the following problem:

(TA): For α and β row vectors of positive weights and γ > 0, minimize the
objective

J = J(u) = αN(T ) +

∫ T

0

(βN(t) + γu(t)) dt (10)
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over all Lebesgue measurable functions u : [0, T ] → [0, umax] subject to the
dynamics

Ṅi(t) =
{
ri − ϕiu(t)−G(N̄(t))µi

}
Ni(t), i = 1, . . . , n. (11)

We are interested in the case when n is large. Generally, high-dimensional optimal
control problems are difficult to analyze, even numerically, but the problem consid-
ered here has simplifying features that enable analytic approaches. If we write the
dynamics (11) in matrix form, we get

Ṅ(t) =
(
R− Cu(t)−G(N̄(t))M

)
N(t) (12)

where

R = diag(r1, . . . , rn), C = diag(ϕ1, . . . , ϕn), M = diag(µ1, . . . , µn),

all are diagonal matrices. This has several simplifying features (for example, the
matrices commute) that allow us to make analytical computations.

4.1. Necessary conditions for optimality. First-order necessary conditions for
optimality are given by the Pontryagin maximum principle [23] (for some more
recent references on optimal control, see [2, 3, 24]). Since there are no terminal
constraints in our problem formulation, abnormal extremals do not arise and these
conditions take the following form: if (N∗, u∗) is an optimal controlled trajectory
for the problem (TA) defined over the interval [0, T ], then there exists a multiplier
λ = (λ1, . . . , λn) : [0, T ]→ (Rn)

∗
(which we write as a row vector) that satisfies the

adjoint equation

λ̇ = −β − λ
(
R− Cu∗ −G(N̄∗)M

)
+G′(N̄∗)(λMN∗)e (13)

with terminal condition
λ(T ) = α (14)

such that the optimal control u∗ minimizes the Hamiltonian function H defined as

H = H(λ,N, u) = βN + γu+ λ
(
R− Cu−G(N̄)M

)
N, (15)

in u over the control set [0, umax]. (We use primes to denote the derivatives of the
function G.)

Any controlled trajectory (N, u) for which there exists a multiplier λ such that
these conditions are satisfied is called an extremal and the triple (N, u, λ) is called
an an extremal lift.

Since the Hamiltonian H is linear in the control u, the minimization property
implies that

u∗(t) =

{
0 if Φ(t) > 0,

umax if Φ(t) < 0,
(16)

where Φ is the switching function for the problem defined as

Φ(t) = γ − λ(t)CN(t). (17)

Whenever the switching function does not vanish, optimal controls are given by
either full dose treatment or no treatment. However, optimal controls may take
values in the interior of the control set if Φ vanishes identically over some open time
interval. Such controls are called singular while controls that only take values in
the boundary points of the control interval are called bang-bang controls. Whenever
Φ(τ) = 0 and Φ̇(τ) 6= 0, the optimal control switches between umax and 0 depending

on the sign of Φ̇(τ) which gives the switching function its name. If the switching
function vanishes over an open interval I, then also all of its derivatives vanish on I
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and typically, (i.e., with the exception of highly degenerate cases), singular controls
can be determined from these formulas. Overall, optimal controls then need to be
synthesized from these candidates and often are given by combinations of bang and
singular controls with the precise concatenation structure to be determined through
an analysis of the properties of the switching functions.

Singular controls generally correspond to smooth time-varying administration
schedules at less than maximum allowed values. As such, they are physically real
and have clear interpretations both as dose rates and concentrations. Bang-bang
controls, on the other hands, and also concatenations between bang and singular
controls, are generally discontinuous and as such are only realistic on the level of
dose rates. The effects that the addition of a linear pharmacokinetic model has on
the structure of optimal controls has been investigated in several papers (e.g., see
[13]). If optimal controls are bang-bang, this property is preserved on the level of
the dose rates and if the objective functionals are properly calibrated, the switching
times are close to each other. For example, this is illustrated for a cell-cycle specific
model for cancer chemotherapy in section 2.3 in [25], pgs. 113f. For concatenations
between bang and singular controls the situation is more involved mathematically
since these connections are now realized optimally through chattering controls [15].
But there always exist excellent simple sub-optimal approximations for the model
with PK that are obtained from the model without PK [12]. For this reason, the
analysis of the model without a pharmacokinetic model as we are pursuing it here,
generally with some standard modifications gives the optimal solutions for the full
model as well.

4.2. Singular controls. We compute the singular control. In differentiating the
switching function, it is well-known that the control can appear for the first time
only in an even numbered derivative and thus we need to compute the first two
derivatives. Since R, C and M are diagonal matrices, all of these matrices commute
with each other and this simplifies the formulas. Using the adjoint equation we get
that

Φ̇(t) = −λ̇(t)CN(t)− λ(t)CṄ(t)

= βCN(t) + λ(t)
(
R− Cu∗(t)−G(N̄(t))M

)
CN(t)

−G′(N̄(t))(λ(t)MN(t))(eCN(t))

−λ(t)C
(
R− Cu∗(t)−G(N̄(t))M

)
N(t)

= βCN(t)−G′(N̄(t))(λ(t)MN(t))(eCN(t)). (18)

Differentiating one more time yields

Φ̈(t) = βCṄ(t)−G′′(N̄(t))(λ(t)MN(t))(eCN(t))eṄ(t)

−G′(N̄(t))(λ̇(t)MN(t) + λ(t)MṄ(t))eCN(t)

−G′(N̄(t))(λ(t)MN(t))eCṄ(t)

= βC
(
R− Cu∗(t)−G(N̄(t))M

)
N(t)

−G′′(N̄(t))(λ(t)MN)(eCN(t))e
(
R− Cu∗(t)−G(N̄(t))M

)
N(t)

+G′(N̄(t))
{
β + λ(t)

(
R− Cu∗ −G(N̄(t))M

)
−G′(N̄(t))(λ(t)MN(t))e

}
MN(t)eCN(t)

−G′(N̄(t))λ(t)M
(
R− Cu∗(t)−G(N̄(t))M

)
N(t)(eCN(t))
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−G′(N̄(t))(λ(t)MN(t))eC
(
R− Cu∗(t)−G(N̄(t))M

)
N(t).

This expression is linear in u∗(t) and can be written in the form

Φ̈(t) = θ(t) + χ(t)u∗(t) (19)

with the functions θ and χ given by

θ(t) = βCRN(t)−G(N̄(t))βCMN(t) (20)

−G′′(N̄(t))(λ(t)MN)(eCN(t))e(R−G(N̄(t))M)N(t)

+G′(N̄(t))(βMN(t))(eCN(t))

−(G′(N̄(t)))2(λ(t)MN)(eMN(t))(eCN(t))

−G′(N̄(t))(λ(t)MN(t))eC
(
R−G(N̄(t)M)

)
N(t)

and

χ(t) = −βC2N(t) +G′(N̄(t))(λ(t)MN(t))(eC2N(t))

+G′′(N̄(t))(λ(t)MN(t))(eCN(t))2. (21)

These formulas simplify significantly if we assume that the weights β at N in the
Lagrangian are all equal, i.e., that the aim is to minimize the total tumor mass. We
henceforth assume that

β = β̄e. (22)

With this specification, the first derivative of the switching function reduces to

Φ̇(t) = (eCN(t))
{
β̄ −G′(N̄(t))(λ(t)MN(t))

}
. (23)

In particular, if the control u∗ is singular over an open interval I, then this expression
must vanish and, since eCN(t) is positive, we have that

G′(N̄(t))λ(t)MN(t) ≡ β̄. (24)

Using this relation and (22), it then follows that

(G′(N̄(t)))2(λ(t)MN)(eMN(t))(eCN(t)) = G′(N̄(t))(βMN(t))(eCN(t))

and

G′(N̄(t))(λ(t)MN)eC(R−G(N̄(t))M)N(t) = βC(R−G(N̄(t)M))N(t).

Substituting these relations into equation (20) gives us that

θ(t) = −G′′(N̄(t))(λ(t)MN)(eCN(t))e
{
R−G(N̄(t)M)

}
N(t). (25)

The coefficient χ at u∗ in equation (19) is simplified in the same manner and we
obtain that

χ(t) = G′′(N̄(t))(λ(t)MN)(eCN(t))2. (26)

It is a necessary condition for minimality of a singular control, the Legendre-
Clebsch condition (e.g., see [2, 24]), that

∂

∂u

d2

dt2
∂H

∂u
(t) ≤ 0 for all t ∈ I. (27)

If this expression is non-zero, we say the singular control is of order 1 and if it
is negative, we say the strengthened Legendre-Clebsch condition for minimality is
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satisfied. Note that this expression is the function χ(t). Using (24) we therefore
have that

∂

∂u

d2

dt2
∂H

∂u
(t) = G′′(N̄(t))(λ(t)MN)(eCN(t))2

= β̄
G′′(N̄(t))

G′(N̄(t))
(eCN(t))2. (28)

By our assumptionsG is strictly increasing and it therefore follows that the strength-
ened Legendre-Clebsch condition is satisfied (i.e., this quantity is negative) where
the function G is strictly concave and it is violated where G is strictly convex.
Summarizing, we have the following result:

Theorem 4.1. If a control u is singular on an open interval I, then the control is of
order 1 and the strengthened Legendre-Clebsch condition for minimality is satisfied
where G is strictly concave and it is violated where G is strictly convex. The singular
control is given as a feedback function by the formula

using(t) =
e
(
R−G(N̄)(t)M

)
N(t)

eCN(t)
. (29)

It only remains to verify the formula for the singular control. It follows from
Φ̈(t) ≡ 0 on I that the singular control is given by

using(t) = − θ(t)
χ(t)

=
G′′(N̄(t))(λ(t)MN)(eCN(t))e

{
R−G(N̄(t)M)

}
N(t)

G′′(N̄(t))(λ(t)MN)(eCN(t))2

=
e
{
R−G(N̄(t)M)

}
N(t)

eCN(t)

verifying (29).

Corollary 1. If the optimal control u∗ is singular over an open interval I, then the
total population of tumor cells remains constant on I.

Proof. Let T =
∑n

i=1Ni(t) denote the total tumor size. Then, along a singular
control, we have that

Ṫ (t) = neṄ(t) = ne
(
R− Cusing(t)−G(N̄(t))M

)
N(t)

= neRN(t)−
e
(
R−G(N̄)(t)M

)
N(t)

eCN(t)
n(eCN(t))− neG(N̄(t))MN(t)

= neRN(t)− ne
(
R−G(N̄)(t)M

)
N(t)− neG(N̄(t))MN(t) = 0.

5. Numerical computations and illustrations of the system behavior. In
this section, we give some numerical results and simulations. The parameter values
and functions that we used in our computations are not based on medical data, but
merely reflect some qualitative biological properties. The functional forms for r and
ϕ are taken from [10]. We mostly keep the dynamics fixed across the runs and only
vary the weights in the objective to illustrate their effect on the solutions and the
system’s response.

In the notation of the problem from Section 2, we use decreasing replication rates
r [10],

r(x) =
2

1.1 + 2x5
, (30)
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but keep the death rate constant, µ ≡ 0.50 . This is merely done to better focus on
the effects that different replication rates have. For the cytotoxic killing parameter
we use the two functions

ϕ1(x) =
1

1 + x2
and ϕ1.5(x) =

1.5

1 + x2
(31)

that only differ in the constant and follow the same functional expression as used in
[10]. Thus the chemotherapeutic sensitivities decay with increasing value x, all sub-
populations are sensitive to the drug, but with differing rates. As reparameterization
function we have chosen the strictly increasing and concave function

G(τ) = ln(1 + τ). (32)

Hence singular controls satisfy the strengthened Legendre-Clebsch condition every-
where.

The weights in the objective are chosen according to (22) with n = 21, but in
our simulations we vary ᾱ and β̄ to see the effects they have on the controls. The
states Ni, i = 1, . . . , 21 are evenly spaced over the interval and correspond to the
values xi = 0.05i. The upper limit on the control is set to umax = 1 and the final
time T is fixed and chosen as T = 10. In all the calculations we choose the initial
distribution of cells over the traits uniform with value n(0, x) ≡ 200

21 .
For the numerical computations we adopt the standard shooting method to com-

pute extremals: starting with an initial guess for λ(0), the dynamics and adjoint
equation are integrated forward in time while the control is chosen in accordance
with the sign of the corresponding switching function Φ(t) = β − λCN(t) using
equation (16). Using small perturbations for each element of λ(0), numerically
the matrix of sensitivities of the endpoint of the multiplier, λ(T ), with respect to

its initial point, λ(0), is computed and then λ(0) − 0.01
(∂λ(T )

∂λ(0)

)−1
(λ(T ) − α) is

implemented as the new guess for the initial condition of λ. This procedure is it-
erated until a desired error in the transversality condition on the multiplier at the
end-point is achieved, ‖λ(T ) − α‖ < ε. These computations are able to generate
extremal controlled trajectories that correspond to bang-bang controls, but gen-
erally (like any other direct numerical procedures) do not locate possible singular
controls. Figures 1-3 below show three examples of locally optimal bang-bang con-
trols with one switching that have been computed in this way with the cytotoxic
killing parameter chosen as the function ϕ1.5(x). (We only remark that for an op-
timal control problem over a fixed horizon without terminal constraints like (TA),
there exist second-order tests to verify whether an extremal controlled trajectory
corresponding to a bang-bang control provides a strong local minimum (e.g., see
the theory developed in Chapters 5 and 6 in [24]). This is the case if all bang-bang
switchings are transversal folds and algorithmic procedures to verify these condi-
tions are developed in [24, Sect. 6.2], especially Theorem 6.1.3. These conditions
are satisfied for all the numerical examples given in this paper.)

The weights used in Fig. 1 (especially, β̄ = 80) put a high penalty on the total
tumor size throughout the treatment interval and this causes the control to be at
full dose almost over the entire period. But even with full dose control, as shown
in the middle segment, some of the traits barely decrease and once the control
is turned off, these populations strongly increase. Since the control is turned off
towards the end of the therapy interval, the total volume at the end has increased
and the distribution has shifted towards a more centric one. Note that, although
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Figure 1. An extremal “on-off” bang-bang control with one
switching (top, left), corresponding evolution of the total popu-

lation T =
∑21

i=1Ni(t) (top, right), evolution of the traits Ni(t)
for i = 1, . . . , 21 (middle) and a comparison of the initial density
n(0, x) ≡ 200

21 and the terminal density n(T = 10, x) shown as red

curve (bottom) for the weights ᾱ = 10, β̄ = 80 and γ = 500.
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Figure 2. An extremal “off-on” bang-bang control with one
switching (top, left), corresponding evolution of the total popu-

lation T =
∑21

i=1Ni(t) (top, right), evolution of the traits Ni(t)
for i = 1, . . . , 21 (middle) and a comparison of the initial density
n(0, x) ≡ 200

21 and the terminal density n(T = 10, x) shown as red

curve (bottom) for the weights ᾱ = 50, β̄ = 1 and γ = 200.
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Figure 3. An extremal “off-on” bang-bang control with one
switching (top, left), corresponding evolution of the total popu-

lation T =
∑21

i=1Ni(t) (top, right), evolution of the traits Ni(t)
for i = 1, . . . , 21 (middle) and a comparison of the initial density
n(0, x) ≡ 200

21 and the terminal density n(T = 10, x) shown as red

curve (bottom) for the weights ᾱ = 500, β̄ = 1 and γ = 200.
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the subpopulations with highest x values have the lowest drug sensitivities, here
these are still the ones to be depleted the most. The reason lies in the fact that
these are also the slowest growing populations and their sensitivity to the drug is
still high enough to eradicate these subpopulations. The net balance is worst for
x near 0.4 and these populations are the ones that actually grow. For a constant
control u ≡ 1 and a prolonged time period, this would become the dominant (and
in this case) growing ‘resistant’ trait. Similar features are also seen in Figs. 2
and 3. The difference is that now the weight β̄ for the tumor during the therapy
horizon has been made small compared to the weight ᾱ at the end-point and so
minimization of the objective shifts drug administration to the end of the therapy
interval. Comparing the cell densities at the final time, it also is evident that for
such data the tumor grows vigorously in the absence of treatment.

Although the largest total amount of drugs is given in the example in Fig. 1,
the density at the end-point shows the worst behavior with the total tumor volume
higher than at the initial point. Such a feature points to singular controls, which
automatically limit the total tumor volume, as the possibly better alternative. Fig-
ures 4 and 5 compare a numerically computed bang-bang extremal solution with one
switching with a control that has a singular segment. For these runs the cytotoxic
killing parameter was chosen as the function ϕ1(x) and the weights are equal, ᾱ = 1,
β̄ = 1 and γ = 100. In Figure 5 the control is shown that starts with a singular
segment for time σ = 5 and then switches to a full dose segment for the rest of the
interval. This trajectory is not an extremal (we did not enforce the transversality
condition at the end point), but it has a significantly better value for the objective,
J(u) = 92, than the numerically computed extremal controlled trajectory shown in
Fig. 4 which only gives J(u) = 678. The reason is that, by not giving drugs for
more than half of the therapy horizon, the tumor volume is allowed to increase too
high. The singular control, although the control values are only around 0.3 to 0.4,
manage to limit the growth of the fastest growing tumor subpopulation to about
15, while this value exceeds 50 for the no drug segment of the control in Fig. 4. If
we optimize over the switching time σ, we obtain a switching time of σ = 9.96, i.e.,
the control is singular almost over the full period, but for this case the terminal
density looks inferior. The calibration of the weights in the objective functional (8)
so that optimal solutions will conform to the manifold real aims of therapy can be
a tedious matter.

6. Conclusion. In this paper, we formulated an optimal control problem for cancer
chemotherapy that aims to minimize a combination of the tumor volume and side
effects over an a priori specified therapy horizon when the tumor consists of a large
number of subpopulations with possibly different chemotherapeutic sensitivities. If
we use a continuum of traits, the complexity of the optimization problem is high and
for this reason in this paper we considered a finite-dimensional approximation with
a large dimension. From a mathematical side, in spite of an arbitrary dimension
of the state space, singular controls, which correspond to administration of the
agents at generally lower and time varying dose rates, can be computed explicitly
as feedback controls. Our simulations have shown that these strategies offer a
decisive advantage in controlling the full tumor population if the values for the
singular control are small. Our numerical results strongly point to the optimality of
singular controls for the problem as the values for the objective tend to be smaller
than for the computed bang-bang extremals, in some cases significantly. However,
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Figure 4. An extremal “off-on” bang-bang control with one
switching (top, left), corresponding evolution of the total popu-

lation T =
∑21

i=1Ni(t) (top, right), evolution of the traits Ni(t)
for i = 1, . . . , 21 (middle) and a comparison of the initial density
n(0, x) ≡ 200

21 and the terminal density n(T = 10, x) shown as red

curve (bottom) for the weights ᾱ = 1, β̄ = 1 and γ = 100.
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Figure 5. A protocol which initially follows a singular control
until time σ = 5 and then switches to a full dose control for the
rest of the therapy interval for the weights ᾱ = 1, β̄ = 1 and
γ = 100. Shown are the control (top, left), corresponding evolution

of the total population T =
∑21

i=1Ni(t) (top, right), evolution of
the traits Ni(t) for i = 1, . . . , 21 (middle) and a comparison of the
initial density n(0, x) ≡ 200

21 and the terminal density n(T = 10, x)
shown as red curve (bottom).
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a complete solution of even the approximating problem still requires to analyze
concatenations between bang and singular controls and this still needs to be carried
out. The optimality of singular controls, and the generally lower time-varying doses
they represent, would offer some insights into how to approach tumor heterogeneity
and have some qualitative implications on the administration of chemotherapy in
practice as it would suggest that, possibly after some initial strong induction therapy
that reduces the tumor volume, it might then be a better strategy to treat the
tumor using lower doses, possibly a.k.a. metronomic chemotherapy [1, 22]. This
might control the total tumor population more evenly and prevent the dominance
of possibly resistant strains.
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