Research article Special Issues

A Lyapunov-Sylvester numerical method for solving a reverse osmosis model

  • Received: 15 December 2023 Revised: 30 April 2024 Accepted: 09 May 2024 Published: 21 May 2024
  • Clean water is a necessity for many organisms, especially human life. Due to many factors, there is a significant shortage of potable water. This has led to efforts involving recovering water from wastewater or the sea through different technologies. Recently, the desalination of seawater via the reverse osmosis system has shown to be a promising method for drinking water treatment and recovery. Such a technique relies on mathematical models based on many parameters, resulting in special PDEs to model the reverse osmosis system. This paper develops a numerical method to solve a reverse osmosis model. The governing PDE is converted into a Sylvester equation that is proved to be uniquely solvable, stable, consistent, and convergent. The numerical scheme developed is validated with experimental data from the literature, and some numerical simulations.

    Citation: Saloua Helali, Anouar Ben Mabrouk, Mohamed Rashad, Nizar Bel Hadj Ali, Munirah A. Ȧlanazi, Marwah A. Alsharif, Elham M. Al-Ali, Lubna A. Alharbi, Manahil S. Mustafa. A Lyapunov-Sylvester numerical method for solving a reverse osmosis model[J]. AIMS Mathematics, 2024, 9(7): 17531-17554. doi: 10.3934/math.2024852

    Related Papers:

  • Clean water is a necessity for many organisms, especially human life. Due to many factors, there is a significant shortage of potable water. This has led to efforts involving recovering water from wastewater or the sea through different technologies. Recently, the desalination of seawater via the reverse osmosis system has shown to be a promising method for drinking water treatment and recovery. Such a technique relies on mathematical models based on many parameters, resulting in special PDEs to model the reverse osmosis system. This paper develops a numerical method to solve a reverse osmosis model. The governing PDE is converted into a Sylvester equation that is proved to be uniquely solvable, stable, consistent, and convergent. The numerical scheme developed is validated with experimental data from the literature, and some numerical simulations.



    加载中


    [1] H. Abdallah, M. S. Shalaby, M. A. Saad, A. M. Shaban, Supporting Polyvinylchloride Polymeric Blend Membrane with Coated Woven Fabric, J. Membr. Sci. Res., 4 (2018), 174–180. http://doi.org/10.22079/JMSR.2018.81167.1176 doi: 10.22079/JMSR.2018.81167.1176
    [2] B. Absar, O. Belhamiti, Modeling and computer simulation of a reverse osmosis desalination plant-case study of Bousfer plant-Algeria, Desalin. Water Treat., 51 (2013), 5942–5953. http://doi.org/10.1080/19443994.2013.770192 doi: 10.1080/19443994.2013.770192
    [3] B. Absar, S. E. M. L. Kadi, O. Belhamiti, Reverse osmosis modeling with the orthogonal collocation on finite element method, Desalin. Water Treat., 21 (2010), 23–32. https://doi.org/10.5004/DWT.2010.1162 doi: 10.5004/DWT.2010.1162
    [4] H. Ali Merina, O. Belhamiti, Simulation Study of Nonlinear Reverse Osmosis Desalination System Using Third and Fourth Chebyshev Wavelet Methods, MATCH Commun. Math. Comput. Chem., 75 (2016), 629–652.
    [5] D. Ariono, M. Purwasasmit, I. G. Wenten, Brine Effluents: Characteristics, Environmental Impacts, and Their Handling, J. Eng. Technol. Sci., 48 (2016), 367–387. https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.1 doi: 10.5614/j.eng.technol.sci.2016.48.4.1
    [6] O. Belhamiti, B. Absar, A Numerical Study of Fractional Order Reverse Osmosis Desalination Model using Legendre Wavelet Approximation, Iran. J. Math. Chem., 8 (2017), 345–364. http://doi.org/10.22052/ijmc.2017.86494.1289 doi: 10.22052/ijmc.2017.86494.1289
    [7] A. Ben Mabrouk, M. Ayadi, Lyapunov type operators for numerical solutions of PDEs, Appl. Math. Comput., 204 (2008), 395–407. http://doi.org/10.1016/j.amc.2008.06.061 doi: 10.1016/j.amc.2008.06.061
    [8] A. Bezia, A. Ben Mabrouk, K. Betina, Lyapunov-sylvesters operators for $(2+1)$-Boussinesq equation, Electron. J. Differ. Equations, 268 (2016), 1–19.
    [9] A. Bezia, A. Ben Mabrouk, Finite difference method for (2+1)-Kuramoto-Sivashinsky equation, J. Part. Diff. Eq., 31 (2018), 193–213. http://doi.org/10.4208/jpde.v31.n3.1 doi: 10.4208/jpde.v31.n3.1
    [10] C. Chen, H. Qin, A Mathematical Modeling of the Reverse Osmosis Concentration Process of a Glucose Solution, Processes, 7 (2019), 271. http://doi.org/10.3390/pr7050271 doi: 10.3390/pr7050271
    [11] R. Chteoui, A. Ben Mabrouk, A Generalized Lyapunov-Sylvester Computational Method for Numerical Solutions of NLS Equation with Singular Potential, Anal. Theory Appl., 33 (2017), 333–354.
    [12] R. Chteoui, A. F. Aljohani, A. Ben Mabrouk, Lyapunov–Sylvester computational method for numerical solutions of a mixed cubic-superlinear Schrödinger system, Eng. Comput., 38 (2022), 1081–1094. http://doi.org/10.1007/s00366-020-01264-9 doi: 10.1007/s00366-020-01264-9
    [13] B. Djebedjian, H. Gad, I. Khaled, M. A. Rayan, Optimization of Reverse Osmosis Desalination System Using Genetic Algorithms Technique, Twelfth International Water Technology Conference, 2008, 1047–1067
    [14] A. Djordjevich, S. Savović, A. Janićijević, Explicit Finite-Difference Solution of Two-Dimensional Solute Transport with Periodic Flow in Homogenous Porous Media, J. Hydrol. Hydromech., 65 (2017), 426–432.
    [15] M. Elnour, N. Meskin, K. M. Khan, R. Jain, S. Zaidi, H. Siddiqui, Full-Scale Seawater Reverse Osmosis Desalination Plant Simulator, IFAC-PapersOnLine, 53 (2020), 16561–16568. http://doi.org/10.1016/j.ifacol.2020.12.780 doi: 10.1016/j.ifacol.2020.12.780
    [16] A. M. Farooque, S. Al-Jeshi, M. O. Saeed, A. Alreweli, Inefficacy of Osmotic Backwash Induced by Sodium Chloride Salt Solution in Controlling SWRO Membrane Fouling, Appl. Water Sci., 4 (2014), 407–424. http://doi.org/10.1007/s13201-014-0158-x doi: 10.1007/s13201-014-0158-x
    [17] K. P. Fattah, A. K. Al-Tamimi, W. Hamweyah, F. Iqbal, Evaluation of Sustainable Concrete Produced with Desalinated Reject Brine, Int. J. Sustain. Built Environ., 6 (2017), 183–190. http://doi.org/10.1016/j.ijsbe.2017.02.004 doi: 10.1016/j.ijsbe.2017.02.004
    [18] G. R. Fulford, P. Broadbridge, Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter, Cambridge: Cambridge University Press, 2002.
    [19] R. M. Garud, S. V. Kore, V. S. Kore, G. S. Kulkarni, A Short Review on Process and Applications of Reverse Osmosis, Univ. J. Environ. Res. Technol., 1 (2011), 233–238.
    [20] Z. Hadadian, S. Zahmatkesh, M. Ansari, A. Haghighi, E. Moghimipour, Mathematical and experimental modeling of reverse osmosis (RO) process, Korean J. Chem. Eng., 38 (2021), 366–379. http://doi.org/10.1007/s11814-020-0697-9 doi: 10.1007/s11814-020-0697-9
    [21] M. Hamou Maamar, O. Belhamiti, New $(0, 2)$ Jacobi multi-wavelets adaptive method for numerical simulation of gas separations using hollow fiber membranes, Commun. Appl. Nonlinear Anal., 22 (2015), 61–81.
    [22] A. Jameson, Solution of equation $AX+XB = C$ by inversion of an $M\times M$ or $N\times N$ matrix, SIAM J. Appl. Math., 16 (1968), 1020–1023.
    [23] L. Kohaupt, Solution of the matrix eigenvalue problem $VA+AV^* = \mu V$ with applications to the study of free linear dynamical systems, J. Comput. Appl. Math., 213 (2008), 142–165. http://doi.org/10.1016/j.cam.2007.01.001 doi: 10.1016/j.cam.2007.01.001
    [24] J. Kucera, Reverse Osmosis. Industrial Applications and Processes, Salem: Scrivener Publishing, 2010.
    [25] T. W. Lion, R. J. Allen, Osmosis in a minimal model system, J. Chem. Phys., 137 (2012), 244911. http://doi.org/10.1063/1.4770271 doi: 10.1063/1.4770271
    [26] O. P. Maure, Aspek Matematis dan Aspek Pendidikan pada Suatu Model Pemurnian Air dalam Sistem Osmosis Terbalik, 2019. Available from: https://repository.usd.ac.id/35192.
    [27] O. P. Maure, S. Mungkasi, Application of Numerical Integration in Solving a Reverse Osmosis Model, AIP Conf. Proc., 2202 (2019), 020043. http://doi.org/10.1063/1.5141656 doi: 10.1063/1.5141656
    [28] O. P. Maure, S. Mungkasi, On Modelling of Water Distillation in a Reverse Osmosis Process, Proceedings of the 2nd International Conference of Science and Technology for the Internet of Things, ICSTI 2019, 2019. http://doi.org/10.4108/eai.20-9-2019.2292098
    [29] S. Noeiaghdam, D. Sidorov, A. Zamyshlyaeva, A. Tynda, A. Dreglea, A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method, Mathematics, 9 (2020), 48. http://doi.org/10.3390/math9010048 doi: 10.3390/math9010048
    [30] L. Sadek, T. H. Alaoui, Numerical methods for solving large-scale systems of differential equations, Ricerche. Mat., 72 (2023), 785–802. http://doi.org/10.1007/s11587-021-00585-1 doi: 10.1007/s11587-021-00585-1
    [31] E. M. Sadek, A. H. Bentbib, L. Sadek, H. T. Alaoui, Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations, J. Appl. Math. Comput., 62 (2020), 157–177. http://doi.org/10.1007/s12190-019-01278-7 doi: 10.1007/s12190-019-01278-7
    [32] L. Sadek, H. T. Alaoui, The extended block Arnoldi method for solving generalized differential Sylvester equations, J. Math. Model., 8 (2020), 189–206.
    [33] L. Sadek, H. T. Alaoui, Application of MGA and EGA algorithms on large-scale linear systems of ordinary differential equations, J. Comput. Sci., 62 (2022), 101719. http://doi.org/10.1016/j.jocs.2022.101719 doi: 10.1016/j.jocs.2022.101719
    [34] L. Sadek, E. M. Sadek, T. H. Alaoui, On Some Numerical Methods for Solving Large Differential Nonsymmetric Stein Matrix Equations, Math. Comput. Appl., 27 (2022), 69. http://doi.org/10.3390/mca27040069 doi: 10.3390/mca27040069
    [35] L. Sadek, H. T. Alaoui, The extended nonsymmetric block Lanczos methods for solving large-scale differential Lyapunov equations, Math. Model. Comput., 8 (2021), 526–536. http://doi.org/10.23939/mmc2021.03.526 doi: 10.23939/mmc2021.03.526
    [36] L. Sadek, A Cotangent Fractional Derivative with the Application, Fractal Fract., 7 (2023), 444. http://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444
    [37] L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dyn. Control, 11 (2023), 1276–1284. http://doi.org/10.1007/s40435-022-01061-w doi: 10.1007/s40435-022-01061-w
    [38] L. Sadek, A. S. Bataineh, O. R. Isik, H. T. Alaoui, I. Hashim, A numerical approach based on Bernstein collocation method: Application to differential Lyapunov and Sylvester matrix equations, Math. Comput. Simul., 212 (2023), 475–488. http://doi.org/10.1016/j.matcom.2023.05.011 doi: 10.1016/j.matcom.2023.05.011
    [39] L. Sadek, Fractional BDF Methods for Solving Fractional Differential Matrix Equations, Int. J. Appl. Comput. Math, 8 (2022), 238. http://doi.org/10.1007/s40819-022-01455-6 doi: 10.1007/s40819-022-01455-6
    [40] L. Sadek, Controllability and observability for fractal linear dynamical systems, J. Vib. Control, 29 (2023), 4730–4740. http://doi.org/10.1177/10775463221123354 doi: 10.1177/10775463221123354
    [41] R. F. Spellman, Reverse Osmosis. A Guide for the Nonengineering Professional, Boca Raton: CRC Press, 2015. http://doi.org/10.1201/b18732
    [42] E. W. Tow, D. M. Warsinger, A. M. Trueworthy, J. Swaminathan, G. P. Thiel, S. M. Zubair, et al., Comparison of Fouling Propensity Between Reverse Osmosis, Forward Osmosis, and Membrane Distillation, J. Membrane Sci., 556 (2018), 352–364. http://doi.org/10.1016/j.memsci.2018.03.065 doi: 10.1016/j.memsci.2018.03.065
    [43] M. E. Williams, A Review of Reverse Osmosis Theory, 2003. Available from: http://www.wescinc.com/RO$_-$Theory.pdf.
    [44] S. J. Wimalawansa, Purification of Contaminated Water with Reverse Osmosis: Effective Solution of Providing Clean Water for Human Needs in Developing Countries, Int. J. Emerging Technol. Adv. Eng., 3 (2013), 75–89.
    [45] BYJU'S, Reverse osmosis. Available from: //byjus.com/chemistry/reverse-osmosis.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(630) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog