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Abstract: Clean water is a necessity for many organisms, especially human life. Due to many factors,
there is a significant shortage of potable water. This has led to efforts involving recovering water
from wastewater or the sea through different technologies. Recently, the desalination of seawater via
the reverse osmosis system has shown to be a promising method for drinking water treatment and
recovery. Such a technique relies on mathematical models based on many parameters, resulting in
special PDEs to model the reverse osmosis system. This paper develops a numerical method to solve
a reverse osmosis model. The governing PDE is converted into a Sylvester equation that is proved to
be uniquely solvable, stable, consistent, and convergent. The numerical scheme developed is validated
with experimental data from the literature, and some numerical simulations.
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1. Introduction

Water scarcity is a pressing global challenge that has prompted innovative solutions to ensure a
sustainable and reliable freshwater supply. As the world’s population continues to grow and traditional
water sources face increasing stress due to climate change, population density, and industrialization,
the need for alternative water resources is imperative. One such solution at the forefront of addressing
this issue is water desalination. Water desalination is the process of removing salt and other impurities
from seawater or brackish water to make it suitable for human consumption, agriculture, and industrial
purposes.

Reverse osmosis (RO) is currently the most advanced technique for desalinating brackish water and
seawater, due to its excellent versatility, ease of use, and high efficiency. In particular, the RO process
is distinguished by its ability to handle a variety of plant designs and capacities, as well as its high salt
rejection rate of 99% and recovery rate of up to 40%.

The process of osmosis occurs by applying pulsating pressure through the feed water that
penetrates the fine pores of semi-permeable membranes. In practice, the reverse osmosis
semi-permeable membranes are competitive, especially for seawater desalination. Recently, with the
need to recycle many materials and wastes, reverse osmosis process has been implemented in
municipal wastewater treatment.

Such a technique relies on mathematical models based on advection-diffusion PDEs to model the
reverse osmosis system. Recall, that the concentration distribution process is always known as a
time-dependent function depending on two-dimensional space variables, leading to a parabolic partial
differential equation known as the advection-diffusion equation. The advection process describes heat
transfer resulting from flow, while the diffusion phenomenon is due to the propagation of heat as a
wave from higher-temperature water to lower-temperature water.

In the literature, many numerical methods have been applied to approximate solutions of the
advection-diffusion or the reverse osmosis, such as one-dimensional discrete models based on
Riemann sum numerical integration methods combined with the stretching transformations
( [18, 26–28]), or fractional differential equations combined with wavelets ( [2–4, 6, 21]). Hadadian et
al. [20] developed a mathematical simulation model for the RO process based on the mass, material,
and energy balances considering the concentration polarization. Chen and Qin [10] developed a
mathematical model to separate glucose from water through a reverse osmosis membrane. They
optimized the model parameters, including the hydraulic permeability constant, reflection coefficient,
and solute transport coefficient. Elnour et al. [15] developed an algorithm for designing RO systems.
The algorithm is validated using operational data from a local plant and was found to be capable of
simulating the actual plant operation with an average error of less than 5% for the majority of the
system variables. Maure and Mungkasi [28] studied a mathematical equation in a reverse osmosis
system of salt water at a given position and time. They converted the partial differential equation into
ordinary differential equations with a transformation method. Noeiaghdam et al. [29] presented a
novel mathematical method to find the optimal solution for the RO process. They applied the single
exponential and double exponential decay to find the approximate solution of the RO.

In the present paper, numerical methods are developed to approximate the solutions of the
continuous problem governing a reverse osmosis model by replacing the spacial partial derivatives
with 2-dimensional finite-difference approximators to transform the continuous boundary-value
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problem into a linear algebraic system. The resulting method is analyzed for error, stability,
solvability, and convergence. The method is shown to be more performant relative to tridiagonal
systems. It transforms the continuous problem to the so-called Lyapunov-Sylvester equation of the
form AX + XB = C. Thus, the problem then involves the study of the linear operator L(X) = AX + XB
defined on an appropriate matrix space, for fixed matrices A, B, and C depending on the discretization
method and the problem parameters. The authors refer to the most recent work due to [23] for the
inversion of such operators.

To check the approximate solution, we always adapt a small space step-size, or equivalently, a large
discrete system, which hurts the increase in the algorithms’ time of finding the solution. In this case,
many methods such as Krylov’s are applied to reduce the time of reckoning. In [30], for example, two
ways have been investigated based on Krylov’s method for solving a large-scale system of differential
equations, by applying in one way an exponential projection technique, and in the other by dropping
the original large-size system to a small-size one. In [31], a close problem and technique to the present
paper are used related, especially, to the Sylvester matrix. More precisely, large-scale differential
Sylvester matrix equations characterized by low-rank right-hand sides are investigated via an extended
global Arnoldi process. The authors first approximated the exponential matrix in the exact solution via
a global extended Krylov method, and secondly, they applied an extended Arnoldi algorithm to get a
low-rank approximation of the Sylvester equation solution.

In the same direction, the authors in [32, 33] investigated a large-scale generalized Sylvester
equation by projecting the initial problem onto a block Krylov subspace to get a small-scale problem,
which is then solved via an orthogonality Galerkin condition and Rosenbrock or the so-called
backward differential formula method. The same authors applied both a modified global Arnoldi
algorithm and an extended global Arnoldi algorithm for solving a large-scale Sylvester system of
ordinary differential equations. The basic idea also involves a projection technique on the extended
global Krylov or global Krylov subspaces. The main property of the systems investigated is the
possibility of a non-invertible corresponding matrix, which requires the projection of a matrix
exponential function to get solvable low-dimensional systems.

Again using Krylov’s method in one of its variants, a numerical approach was developed in [34] to
solve a large differential Stein matrix equation in a nonsymmetric case. The authors used an extended
block Arnoldi algorithm and a backward differentiation formula. In [35], a Lyapunov differential
equation was studied by applying an extended nonsymmetric block Lanczos method, which allows for
the transformation of the original large-scale problem into a small-scale system using the extended
block Krylov subspace projection and the extended nonsymmetric block Lanczos algorithm. Next,
backward differentiation formula is applied to solve the low-dimensional Lyapunov equation. We
conclude from these studies that the strange structures in dynamical systems need compatible tools to
be well investigated, such as fractional derivatives, which, although being old concepts, have recently
seen renewed interest in many fields.

Many problems and models involving PDEs are re-considered in the fractional calculus framework,
where more adequate solutions to real-world problems in nature are provided accordingly. In [36], an
exponential-cotangent derivative was involved in the well-known Riemann-Liouville approach to study
the solutions of some fractional differential equations using the Laplace transform. The theoretical
findings are applied to an SIR-type model. In [37], the problem of stability was investigated for a class
of conformable linear systems in an infinite-dimensional form. α-exponential stability, asymptotic
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stability, and uniform stability variants have been studied via conformable fractional derivatives and
semigroup theory. Sadek et al, [38] studied a Lyapunov-Sylvester type differential equation using the
Bernstein polynomials collocation method. As in the present paper, this technique allowed for the
transformation of the original problem to a linear system of algebraic equations, which is then solved
by using an iterative method.

In [39], a fascinating link between the frameworks of fractional calculus and the
Lyapunov-Sylvester equation was given. The authors considered a class of fractional differential
matrix equations and applied some fractional backward differentiation formulas techniques to
numerically approximate the solutions of the original problem. An important problem when
investigating PDEs concerns the controllability of the provided scheme or solution, and especially the
observation of strange behaviors such as eventual chaotic or fractal behavior. In this way, in [40], the
authors proposed a control technique for a non-homogeneous continuous-time fractal dynamical
system derived from the Lyapunov equation.

The paper is organized as follows. In Section 2, some basic ideas from [23] on the invertibility of
operators of the form L(X) = AX + XB are recalled. In Section 3, the discrete scheme is introduced.
The continuous model describing the reverse osmosis process is converted into a discrete algebraic
system involving the Lyapunov-Sylvester equation in a discrete form. The solvability of the discrete
problem obtained in Section 3 is investigated in Section 4. Section 5 is devoted to the convergence,
consistency, and stability of the method. Section 6 is concerned with the experimental results and their
discussion. Section 7 is an appendix devoted to some preliminary results, some comments on existing
models, and some mathematical proofs. Section 8 is a conclusion.

2. On the Lyapunov-Sylvester operator

The resolution of the so-called Lyapunov equation

AX + XAT = C, (2.1)

where A and C are given matrices and X is an unknown one, is often of interest, and has been the
object of some studies until the 60’s [22]. However, these studies have been characterized by
restrictive aspects. For example, in [22], a Kronecker product-based method was developed to resolve
Eq (2.1). The method consisted of a recursive scheme using the well-known Caylay result, and it
gives explicit solutions in 2 and 3-dimensional cases. Such cases are not complicated and a
verification or a computation can be proved with simpler and more direct methods than the one
in [22]. The equation has been re-considered by many authors due to its relation and application in
PDEs, the theory of stability, and dynamical systems. Kohaupt has focused on general forms of the
cited equation. The author in [23] considered the matrix eigenvalue problem

AX + XB = µX. (2.2)

A large study of this problem has been provided, and special cases, such as B = AT , B = A∗, A,
and B diagonalizable, etc., have been discussed. The main result of [23] is presented in the following
theorem.
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Theorem 2.1. [23] Let A ∈ Cn×n and B ∈ Cm×m both be diagonalizable. Let αi be the eigenvalues of A
and ui be the associated right eigenvectors for i = 1, ..., n. Let βi be the eigenvalues of B and vi be the
associated left eigenvectors for i = 1, ...,m, i.e.,

Aui = αiui, i = 1, ..., n, and viB = βivi, i = 1, ...,m.

Then,
λi j = αi + β j, i = 1, ..., n, ; j = 1, ...,m,

are the mn eigenvalues of (2.2) and

W i, j = uiv j, i = 1, ..., n, ; j = 1, ...,m,

are the associated eigenmatrices.

3. The mathematical model and its discretization

Osmosis is essentially a natural process that occurs when water molecules migrate from a solution
with low solute concentration (low osmotic pressure) to a solution with high solute concentration (high
osmotic pressure) via a semipermeable membrane (Figure 1(a)). The osmosis process is said to be at
an equilibrium condition when the chemical potentials across the membrane are equal (Figure 1(b)).
The flow of water molecules can be halted or reversed by applying external pressure to the solution
(the feed solution) that has a higher concentration. If the applied pressure differential is greater than the
osmotic pressure difference across the membrane, water molecules are compelled to flow against the
direction of the natural osmosis phenomenon. Reverse osmosis is the process occurring in this case, s
illustrated by Figure 1(c). The symbol P designates the process or external pressure, while the symbol
π is the osmotic pressure.

Figure 1. Schematic of (a) osmosis, (b) osmotic equilibrium, and (c) reverse osmosis process.

The feed water stream separates into two streams in a continuous RO process, as represented in
Figure 2. Water molecules that have passed through the membrane constitute the first stream.
Permeate or product water is the name of this low-solute stream. A smaller number of water
molecules and the rejected solutes are the constituents of the second stream. This stream is known as
brine, concentrate, or reject because it contains more solutes than feed. The feed channel is
characterized by three parameters: feed flow rate Fd, concentration Cd, and pressure Pd

( [24, 25, 41–45]).
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Figure 2. Schematic of a continuous RO system.

The permeate channel and the feed channel are located on opposite sides of the membrane. The feed
channel is filled with feed solution at one end, while the rejected solution emerges at the other. The
fluid flow in the feed channel is parallel to the x-coordinate, while in the permeate channel, it is parallel
to the y-coordinate. Therefore, a two-dimensional advection-diffusion equation will be investigated as
a governing model for the reverse osmosis phenomenon, which is expressed by the following time-
dependent 2D-model, 

∂C
∂t

+ y
∂C
∂x

= α∆C , (t, x, y) ∈ (0,∞) ×Ω,

C(t, 0, y) = C(t, x,∞) = Cd , (t, x, y) ∈ (0,∞) ×Ω,

−D
∂C
∂y

(t, x, 0) = qC(t, x, 0) , (t, x) ∈ (0,∞) ×Ω1,

C(0, x, y) = Cd , (x, y) ∈ Ω,

(3.1)

where (x, y) is the pair of R2-space variables, and C = C(t, x, y) is the concentration of salt solution in

a semipermeable membrane at point (x, y) and the instant t. The quantity
∂C
∂t

is the time derivative of

C(t, x, y),
∂C
∂x

is the derivative of C(t, x, y) relative to the first space variable x, and ∆C =
∂2C
∂y2 +

∂2C
∂x2 is

the Laplacian of C(t, x, y) resulting from the Laplace operator applied to it. The real number parameter
q represents the water flow rates in semipermeable distribution, D is the salt diffusivity in water, δ is
the distance from the semipermeable boundary to the center of the channel, cd is the concentration
away from semipermeable membranes, ν0 is the horizontal velocity measured at a distance δ from the

semipermeable boundary, α =
Dδ
ν0

. The time-dependent two-dimensional advection-diffusion equation

describes the concentration of a salt solution. The schematic illustration given in Figure 3 below
explains the phenomenon, where v(y) is the speed of the fluid flowing through the duct, parallel to
the x-axis. The domain Ω = Ω1 × Ω2 is a rectangular strip as in Figure 3. Here, we recall that
the components Ω1 and Ω2 are in general different, (for example, Ω1 = [0, Lx] and Ω2 = [0, Ly]).
Numerically, we may take two different steps hx = Lx

N in x and hy =
Ly

N in y with the same number
of discretization points N, or we may also take two different sizes Nx and Ny leading to hx = Lx

Nx
in

x and hy =
Ly

Ny
in y. However, it is well known in numerical analysis that these facts do not have a

great effect on the approximations. For this, we restrict ourselves to an ‘artificial’ square region for the
discretization as well as the numerical developments.

From a physical or natural interpretation point of view, we take a semi-infinite region in the R2
+

quadrant. At t = 0, the system is assumed to be still at rest, which means that the concentration of
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salts is still the same as the seawater to be filtered, which in turn leads to a natural initial condition
C(0, x, y) = C0. The notation or condition x = ∞ means that we are ‘very’ far from the
semi-permeable membrane at y = 0, and the ‘artificial’ condition y = ∞ means that we are ‘very’ far
from the membrane. In our case, we assume that the concentration away from the membrane is the
same as that before flowing in the filter. In the discrete and numeric validation, we symbolize this as

x = ∞ ⇐⇒ x = Lx and y = ∞ ⇐⇒ y = Ly.

Figure 3. The advection-diffusion phenomenon near a semi-permeable membrane.

The numerical method is based on a simple classical 2-dimensional finite difference scheme, where
the differential operators are estimated as follows. Let N ∈ N and s satisfying Ns = L1 − L0 be a space
step. For the reasons raised above, without loss of generality, we take in our numerical solutions L0 = 0
and L1 = L. Next, consider the net space

Ωs =
{
(x j, ym) ; x j = L0 + js , ym = L0 + ms , 0 ≤ j,m ≤ N

}
.

Let u =
(
u j,m

)
be a mesh function defined on Ωs. Next, we introduce the operators

∇+
x u j,m =

u j+1,m − u j,m

s
and ∇−x u j,m =

u j,m − u j−1,m

s
,

and
∇+

y u j,m =
u j,m+1 − u j,m

s
and ∇−y u j,m =

u j,m − u j,m−1

s
.

The first-order derivatives in x and y are approximated by

∂u
∂x
'

1
2

(
∇+

x u j,m + ∇−x u j,m

)
, and

∂u
∂y
'

1
2

(
∇+

y u j,m + ∇−y u j,m

)
,

respectively, while the second-order operators in x and y are

∆x = ∇+
x∇
−
x = ∇−x∇

+
x and ∆y = ∇+

y∇
−
y = ∇−y∇

+
y ,
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and, finally, the Laplace operator is
∆ = ∆x + ∆y.

Let l = ∆ t be the time step and tn = t0 + nl, n ∈ N be the discrete time grid. For ( j,m) ∈ I =

{0, 1, . . . ,N}2 and n ≥ 0, Cn
j,m will be the net function C(tn, x j, ym) (also used to designate the numerical

solution). The following discrete approximations will be applied for the time derivatives,

∂C
∂t
'

1
2
∇tCn

j,m =
Cn+1

j,m −Cn−1
j,m

2l
.

Our numerical scheme is based on a calibrating method which consists of a barycenter ponderations
according to the time for the final space derivative to be applied in the approximation model. Precisely,
we set

Ĉn
j,m = µCn+1

j,m + (1 − 2µ)Cn
j,m + µCn−1

j,m ,

where the weight parameter µ ∈ [0, 1].
The calibration method is usually used to allow for the best numerical approximation of the real

solution. As this solution is, in fact, unknown, we did not know a priori which time position is the closer
to it. The variation of the weights allows us to investigate this problem. See for example [7–9, 11, 12]

As a result, the approximate solution Cn
j,m is defined as a solution to the discrete problem

∇tCn
j,m + ym

(
∇+

x Ĉn
j,m + ∇−x Ĉn

j,m

)
= 2α∆Ĉn

j,m , 0 ≤ j,m ≤ N, n ≥ 0,
C0

j,m = Cn
0,m = Cn

j,N = Cd , 0 ≤ j,m ≤ N, n ≥ 0,
−D

(
∇+

y Cn
j,0 + ∇−y Cn

j,0

)
= 2qCn

j,0 , 0 ≤ j ≤ N, n ≥ 0.
(3.2)

For the rest of the paper, for n ≥ 0, denote by Cn =
(
Cn

j,m

)
0≤ j,m≤N

the matrix with coefficients Cn
j,m.

4. Solvability of the numerical model

The first result in this paper concerns the solvability of the system (3.2) above, and is stated as
follows.

Theorem 4.1. System (3.2) is uniquely solvable.

Proof. Denote

β =
2qh
D
, σ =

2αl
s2 , σm =

lym

s
, λ = µσ, and η = (1 − 2µ)σ.

From system (3.2), it is obtained that

Cn+1
j,m −Cn−1

j,m = σm

[
µ(Cn+1

j−1,m −Cn+1
j+1,m) + (1 − 2µ)(Cn

j−1,m −Cn
j+1,m) + µ(Cn−1

j−1,m −Cn−1
j+1,m)

]
+σ

[
µ(Cn+1

j−1,m − 4Cn+1
j,m + Cn+1

j+1,m + Cn+1
j,m−1 + Cn+1

j,m+1)
+(1 − 2µ)(Cn

j−1,m − 4Cn
j,m + Cn

j+1,m + Cn
j,m−1 + Cn

j,m+1)
+µ(Cn−1

j−1,m − 4Cn−1
j,m + Cn−1

j+1,m + Cn−1
j,m−1 + Cn−1

j,m+1)
]
.

Now, denote
αm = µ(σ + σm), βm = µ(σ − σm),
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and, similarly,
am = (1 − 2µ)(σ + σm), bm = (1 − 2µ)(σ − σm),

and regrouping the terms in n + 1, n, and n − 1, we obtain

Cn+1
j,m = αmCn+1

j−1,m − 2λCn+1
j,m + βmCn+1

j+1,m

+λ
[
Cn+1

j,m−1 − 2Cn+1
j,m + Cn+1

j,m+1

]
+amCn

j−1,m − 2ηCn
j,m + bmCn

j+1,m

+η
[
Cn

j,m−1 − 2Cn
j,m + Cn

j,m+1

]
αmCn−1

j−1,m − 2λCn−1
j,m + βmCn−1

j+1,m

+λ
[
Cn−1

j,m−1 − 2Cn−1
j,m + Cn−1

j,m+1

]
+ Cn−1

j,m .

(4.1)

Otherwise, we may write this system as the inner product of vectors as

Cn+1
j,m =

[
αm − 2λ βm

][
Cn+1

j−1,m Cn+1
j,m Cn+1

j+1,m

]T

+λ
[
Cn+1

j,m−1 Cn+1
j,m Cn+1

j,m+1

][
1 − 2 1

]T

+
[
am − 2η bm

][
Cn

j−1,m Cn
j,m Cn

j+1,m

]T

+η
[
Cn

j,m−1 Cn
j,m Cn

j,m+1

][
1 − 2 1

]T

+
[
αm − 2λ βm

][
Cn−1

j−1,m Cn−1
j,m Cn−1

j+1,m

]T

+λ
[
Cn−1

j,m−1 Cn−1
j,m Cn−1

j,m+1

][
1 − 2 1

]T
+ Cn−1

j,m ,

(4.2)

where the upper script [.]T designates the transpose. Next, let Am, Bm, and R be the tridiagonal matrices
of size (N + 1,N + 1) whom coefficients are, respectively,

Am( j − 1, j) = αm, Am( j, j) = −2λ, Am( j + 1, j) = βm,

Bm( j − 1, j) = am, Bm( j, j) = −2η, Bm( j + 1, j) = βm,

and
R( j, j) = −2, R( j − 1, j) = R( j + 1, j) = 1.

System (4.2) above may be transformed into a Lyapunov-Sylvester form as

(I − Am)Cn+1 − λCn+1R = BmCn + ηCnR + (I + Am)Cn−1 + λCn−1R, (4.3)

where I = IN+1 is the identity matrix of size N +1. Now, if we denote for two matrices A, B ∈ MN+1(C),
the Lyapunov-Sylvester operator

LA,B(X) = AX + XB, ∀ X ∈ MN+1(C),

we obtain a dynamic Lyapunov-Sylvester equation of the form

LI−Am,−λR(Cn+1) = LBm,ηR(Cn) +LI+Am,λR(Cn−1). (4.4)

Notice that the matrices (I −Am) and λR have different eigenvalues (see Appendix 7.1, Lemma 7.1).
As a consequence, due to Theorem 2.1 (see also [23]), the linear Lyapunov-Sylvester operatorLI−Am,−λR

is invertible. So, the result follows.
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5. Analysis of the consistency, stability, and convergence

5.1. Consistency of the numerical model

To show the consistency of the numerical scheme, we use the local truncation error due to (3.2).
The result is given in the following lemma.

Lemma 5.1. The numerical scheme is consistent at the order (l2 + s2).

Proof. To show this lemma, we will compute the principal part due to the truncation error applied to
(3.2). To do this, we start by evaluating the necessary elements of the discrete scheme. So, by assuming
that C is sufficiently regular, standard computations yield that

Cn+1
j+1,m =

[
C +

∂C
∂x

s +
∂2C
∂x2

s2

2
+
∂3C
∂x3

s3

6

]
+
[∂C
∂t

+
∂2C
∂x∂t

s +
∂3C
∂x2∂t

s2

2
+

∂4C
∂x3∂t

s3

6

]
l

+
[∂2C
∂t2 +

∂3C
∂x∂t2 s +

∂4C
∂x2∂t2

s2

2
+

∂5C
∂x3∂t2

s3

6

] l2

2

+
[∂3C
∂t3 +

∂4C
∂x∂t3 s +

∂5C
∂x2∂t3

s2

2
+

∂6C
∂x3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.1)

Similarly, we have

Cn+1
j−1,m =

[
C −

∂C
∂x

s +
∂2C
∂x2

s2

2
−
∂3C
∂x3

s3

6

]
+
[∂C
∂t
−
∂2C
∂x∂t

s +
∂3C
∂x2∂t

s2

2
−

∂4C
∂x3∂t

s3

6

]
l

+
[∂2C
∂t2 −

∂3C
∂x∂t2 s +

∂4C
∂x2∂t2

s2

2
−

∂5C
∂x3∂t2

s3

6

] l2

2

+
[∂3C
∂t3 −

∂4C
∂x∂t3 s +

∂5C
∂x2∂t3

s2

2
−

∂6C
∂x3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.2)

By canceling the terms in s (taking s = 0), we obtain

Cn+1
j,m = C +

∂C
∂t

l +
∂2C
∂t2

l2

2
+
∂3C
∂t3

l3

6
+ o(l2 + s2). (5.3)
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Now, by replacing x with y in Eqs (5.1) and (5.2) above, we deduce that

Cn+1
j,m+1 =

[
C +

∂C
∂y

s +
∂2C
∂y2

s2

2
+
∂3C
∂y3

s3

6

]
+
[∂C
∂t

+
∂2C
∂y∂t

s +
∂3C
∂y2∂t

s2

2
+

∂4C
∂y3∂t

s3

6

]
l

+
[∂2C
∂t2 +

∂3C
∂y∂t2 s +

∂4C
∂y2∂t2

s2

2
+

∂5C
∂y3∂t2

s3

6

] l2

2

+
[∂3C
∂t3 +

∂4C
∂y∂t3 s +

∂5C
∂y2∂t3

s2

2
+

∂6C
∂y3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.4)

Similarly, we have

Cn+1
j,m−1 =

[
C −

∂C
∂y

s +
∂2C
∂y2

s2

2
−
∂3C
∂y3

s3

6

]
+
[∂C
∂t
−
∂2C
∂y∂t

s +
∂3C
∂y2∂t

s2

2
−

∂4C
∂y3∂t

s3

6

]
l

+
[∂2C
∂t2 −

∂3C
∂y∂t2 s +

∂4C
∂y2∂t2

s2

2
−

∂5C
∂y3∂t2

s3

6

] l2

2

+
[∂3C
∂t3 −

∂4C
∂y∂t3 s +

∂5C
∂y2∂t3

s2

2
−

∂6C
∂y3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.5)

Now, by canceling l (taking l = 0) in all the equations above, we get



Cn
j+1,m = C +

∂C
∂x

s +
∂2C
∂x2

s2

2
+
∂3C
∂x3

s3

6
+ o(l2 + s2),

Cn
j−1,m = C −

∂C
∂x

s +
∂2C
∂x2

s2

2
−
∂3C
∂x3

s3

6
+ o(l2 + s2),

Cn
j,m+1 = C +

∂C
∂y

s +
∂2C
∂y2

s2

2
+
∂3C
∂y3

s3

6
+ o(l2 + s2),

Cn
j,m−1 = C −

∂C
∂y

s +
∂2C
∂y2

s2

2
−
∂3C
∂y3

s3

6
+ o(l2 + s2).

(5.6)
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Now, as previously, by replacing l with −l in the equations above, we get

Cn−1
j+1,m =

[
C +

∂C
∂x

s +
∂2C
∂x2

s2

2
+
∂3C
∂x3

s3

6

]
−
[∂C
∂t

+
∂2C
∂x∂t

s +
∂3C
∂x2∂t

s2

2
+

∂4C
∂x3∂t

s3

6

]
l

+
[∂2C
∂t2 +

∂3C
∂x∂t2 s +

∂4C
∂x2∂t2

s2

2
+

∂5C
∂x3∂t2

s3

6

] l2

2

−
[∂3C
∂t3 +

∂4C
∂x∂t3 s +

∂5C
∂x2∂t3

s2

2
+

∂6C
∂x3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.7)

In the same way, we get

Cn−1
j−1,m =

[
C −

∂C
∂x

s +
∂2C
∂x2

s2

2
−
∂3C
∂x3

s3

6

]
−
[∂C
∂t
−
∂2C
∂x∂t

s +
∂3C
∂x2∂t

s2

2
−

∂4C
∂x3∂t

s3

6

]
l

+
[∂2C
∂t2 −

∂3C
∂x∂t2 s +

∂4C
∂x2∂t2

s2

2
−

∂5C
∂x3∂t2

s3

6

] l2

2

−
[∂3C
∂t3 −

∂4C
∂x∂t3 s +

∂5C
∂x2∂t3

s2

2
−

∂6C
∂x3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.8)

Similarly, by canceling s in the last equation, we get

Cn−1
j,m = C −

∂C
∂t

l +
∂2C
∂t2

l2

2
−
∂3C
∂t3

l3

6
+ o(l2 + s2). (5.9)

Now, by interchanging the role of j and m in (5.7), we obtain

Cn−1
j,m+1 =

[
C +

∂C
∂y

s +
∂2C
∂y2

s2

2
+
∂3C
∂y3

s3

6

]
−
[∂C
∂t

+
∂2C
∂y∂t

s +
∂3C
∂y2∂t

s2

2
+

∂4C
∂y3∂t

s3

6

]
l

+
[∂2C
∂t2 +

∂3C
∂y∂t2 s +

∂4C
∂y2∂t2

s2

2
+

∂5C
∂y3∂t2

s3

6

] l2

2

−
[∂3C
∂t3 +

∂4C
∂y∂t3 s +

∂5C
∂y2∂t3

s2

2
+

∂6C
∂y3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.10)
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Now, by replacing l with −l in (5.10), we obtain

Cn−1
j,m−1 =

[
C −

∂C
∂y

s +
∂2C
∂y2

s2

2
−
∂3C
∂y3

s3

6

]
−
[∂C
∂t
−
∂2C
∂y∂t

s +
∂3C
∂y2∂t

s2

2
−

∂4C
∂y3∂t

s3

6

]
l

+
[∂2C
∂t2 −

∂3C
∂y∂t2 s +

∂4C
∂y2∂t2

s2

2
−

∂5C
∂y3∂t2

s3

6

] l2

2

−
[∂3C
∂t3 −

∂4C
∂y∂t3 s +

∂5C
∂y2∂t3

s2

2
−

∂6C
∂y3∂t3

s3

6

] l3

6
+ o(l2 + s2).

(5.11)

All the equations above permit us to deduce the following principal part of the truncation error as

L(x, y, t) =
[
2ym

∂3C
∂x3 − α(

∂4C
∂x4 +

∂4C
∂y4 )

] s2

12

+
[1
3
∂3C
∂t3 + 2µym

∂3C
∂x∂t2 − α(

∂4C
∂x2∂t2 +

∂4C
∂y2∂t2 )

] l2

2
+ o(l2 + s2),

which tends to 0 as (l, s) tends to 0. This means that the method is consistent.

5.2. Stability of the numerical model

To examine the stability of the numerical method, we will apply the Von-Neumann technique by
investigating the impact of the scheme on an isolated Fourier mode.

Denote Cn
j,m as the solution of the numerical scheme, and Čn

j,m as the numerical value obtained
subject to computer round-off errors. Next, denote

Sn
j,m = Cn

j,m − Čn
j,m = enlψei jsϕxeimsϕy = XnY jZm,

where ψ = ψ1 + iψ2 is a complex number, ϕx and ϕy are real, and i2 = −1. By applying the Von-
Neumann criterion for stability, we shall show that

|X| ≤ 1. (5.12)

Indeed, from (3.2) or its developed form (4.1), after canceling Xn−1Y j−1Zm−1, and regrouping the
terms in X2 and X, it holds that

X2
[
Z
(
βmY2 − (1 + 2λ)Y + αm

)
+ λY(Z − 1)2

]
+X

[
Z
(
βmY2 − 2λY + αm

)
+ λY(Z − 1)2

]
+Z

(
βmY2 + (1 − 2λ)Y + αm

)
+ λY(Z − 1)2 = 0.

(5.13)

Now, notice that
(Z − 1)2 = 4Z sin2(

sϕy

2
).
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Equation (5.13) may be written in a simplified form

A(Y,Z)X2 + B(Y,Z)X + C(Y,Z) = 0, (5.14)

where 
A(Y,Z) = βmY2 + (1 − 2λ(2 − cos(sϕy)))Y + αm,

B(Y,Z) = βmY2 − 2λ(2 − cos(sϕy))Y + αm,

C(Y,Z) = βmY2 + (1 − 2λ cos(sϕy))Y + αm.

(5.15)

To establish the Von-Neumann criterion for stability, it suffices to show that

|X| = |eiψ| ≤
|B(Y,Z)|
|A(Y,Z)|

≤ 1. (5.16)

Let us now examine the difference |B(Y,Z)|2 − |A(Y,Z)|2. Careful computations yield that

|B(Y,Z)|2 − |A(Y,Z)|2 = (3µ − 1)(µ − 1)
[
2(σ2 − σ2

m) cos(2sϕx)
− 8σ2(2 − cos(sϕy)) cos(sϕx)
+ 2σ2 + 2σ2

m + 4σ2(2 − cos(sϕy))2
]

+ 8µσ(2 − cos(sϕx) − cos(sϕy)) − 1.

(5.17)

For 0 ≤ µ <
1
3

, from (5.17), we get

|B(Y,Z)|2 − |A(Y,Z)|2 ≤ 64(3µ − 1)(µ − 1)σ2 + 16σ − 1.

By denoting

σ0 =

√
1 + (3µ − 1)(µ − 1) − 1

8(3µ − 1)(µ − 1)
,

we obtain
σ ≤ σ0 =⇒ |B(Y,Z)|2 − |A(Y,Z)|2 ≤ 0.

The left-hand term reads
l
s2 ≤

σ0

2α
. (5.18)

Next, for
1
3
< µ < 1, from (5.17), we get

|B(Y,Z)|2 − |A(Y,Z)|2 ≤ −20(3µ − 1)(µ − 1)σ2 + 16σ − 1.

By denoting

σ1 =
4 −

√
16 − 5(3µ − 1)(µ − 1)

10(3µ − 1)(µ − 1)
,

we obtain
σ ≤ σ1 =⇒ |B(Y,Z)|2 − |A(Y,Z)|2 ≤ 0,

which, similar to the previous case, gives
l
s2 ≤

σ1

2α
. (5.19)
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Finally, for µ ∈ {
1
3
, 1}, Eq (5.17) yields that

|B(Y,Z)|2 − |A(Y,Z)|2 ≤ 16σ − 1.

This leads to
l
s2 ≤

1
32α

. (5.20)

Thus, the stability follows as a result of (5.18), (5.19), and (5.20).

5.3. Convergence of the numerical model

To show the convergence of the numerical scheme, here we apply the Fourier mode concept
combined with the Vonn-Neuman criterion to establish a control on the time and space steps. Indeed,
denote

σ̂ = min
(
σ0, σ1,

1
16

)
.

The intersection of (5.18), (5.19), and (5.20) gives

l
s2 ≤

σ̂

2α
. (5.21)

Taking l = sη+2 for some η > 0 small enough (which is always possible), we get

s ≤
(
σ̂

2α

)1/η

⇐⇒ l ≤
(
σ̂

2α

)(2+η)/η

.

Thus, convergence holds.

6. Numerical results and simulations

In this section, we will test the mathematical model above for salt rejection, and mainly for inorganic
salts such as NaCl or Na2SO4. We take the parameter values h = 10−3, D = 10−9, ν0 = 10−3,
and q = 10−3. The numerical tests and simulations are conducted using MATLAB R2018a on a
Dell Latitude 5530, Windows 10 64-bit Operating System, x64-based processor, 12th Gen Intel(R)
Core(TM) i7-1255U 1.70 GHz, and 16.0 GB RAM.

In existing models based on the advection-diffusion equation, many constraints always applied,
such as the dependence of the liquid (as well as the concentration of salts) flux speed on the
perpendicular direction of the membrane (the x-axis here), and thus the concentration acceleration in
the same direction. In this case, the model obtained (reviewed next in Appendix 7.2) may be
converted via the well-known stretching or self-similar transformations into an ODE, which may be
solved even for exact solutions.

The idea may be explained according to the speed of the liquid, the proportions of the different
pollutants, such as salts, and due to many factors related to the filtration/osmosis system (the nature or
the homogeneity of the membrane, and so on), which affects the result(s) of the osmosis. This task
resembles the water in valleys and rivers, as it brings with it many types of pollutants and materials.

AIMS Mathematics Volume 9, Issue 7, 17531–17554.



17546

Relative to the speed of feed water and according to the quantity, the percentages, and the quality of
materials in the seawater, several sediments are formed on both sides of the membrane. Over time,
these sediments cause the stream itself to narrow. Thus, we are faced with a phenomenon of
interconnected parameters and dimensions, where the parameters, factors, and dimensions, that are
initially neglected, excluded, and considered ineffective, come back to influence the model and the
entire phenomenon.

Figure 4 illustrates the variation of the concentration C of the salt on the semi-permeable boundary
with the distance x along the plate. Notice easily that this curve joins well with existing works, such
as [18] or its variants [26–28].

We notice from Figure 4 that, when relaxing the parameter t, and thus getting a stationary solution
C(t, x, y) = C(x, y), we come back to the classical equilibrium discussed in [18]. In this case, at the
boundary of the membrane y = 0, the phenomenon of the precipitation of the salts may persist, even
being small, but as time passes, we notice effectively that this small amount of salts may have an
impact on the whole process. Moreover, model (7.1) may lead to ambiguities relative to the boundary
conditions assumed to be satisfied there, such as C(0, y) = C(x,∞) = C0, which cannot be fulfilled via
solution (7.4). In such a case, simple computations permit us to get C(x, y) ∼ C0y, whenever x → 0
or y → ∞. The last approximations may contradict the physical reality of the whole process. These
remarks mean that, for model (7.1) to approach reality, some artificial conditions should be added,
which may again affect the compatibility with the real process. Moreover, this again raises the impact
of neglecting some parameters or some parts in the real 2D time-dependent model, and thus motivates
our approach in considering the whole 2D time-dependent model (3.1). Examinations of the complete
model have led to Figures 5, 6, and 7.

In Figure 5, the time-wise behavior of the salt concentration is illustrated at some interior points
(x, y), and compared to the concentration at the boundary point (0, 0), where it is initially c0. We
notice that the RO process works well at interior points (especially far from the boundary y = 0), as
the concentration of the salt decreases naturally until reaching a value less than half in a reduced time
interval.

Figure 4. Concentration C(0, x, 0) along the plate: Present method compared to [18].
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Figure 5. Concentration C(t, x, y) for a fixed interior point (x, y).

Figure 6. Concentration C(t, x, y) at the time t = 10s.

Figure 7. Concentration C(t, x, y) a the time t = 50s.

In Figures 6 and 7, the profile of the concentration of salts is investigated for a fixed time instants
when the process is active. Notice from these figures that the concentration is somehow perturbed
at the boundaries and takes a quasi-linear asymptotic profile at the interior of the channel. A logical
explanation of this behavior is that, effectively, it is not completely true that the concentration of salts
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is omitted from the liquid, but, in contrast, the effect of the perpendicular direction to the flow of the
osmosis is real, and it induces precipitation of the salts along the boundary of the membrane, which
becomes considerable over time, and thus has to be taken into consideration in any model. Taking
it into consideration in our opinion needs a whole revision of the system, such as the membranes,
and their components, homogeneity, heterogeneity, construction materials, temperature, and also the
permeability flow, which may not be constants, and may depend on the salts’ precipitation along the
process.

Besides, with the discovery and rapid development of modern technologies, such as nano-scales
and nanomaterials, the variations in scales and levels that were not observable in classical technology
are now well detected by modern instruments. This means that the ignorance of many parameters in
the equations or models governing physical and/or chemical phenomena such as reverse osmosis no
longer has any motivation or justification, as a maybe major part of these phenomena takes place in
macro and sometimes nano levels. This motivates our involvement of both the variations according to
the time and space variables in the model, especially the second-order space derivatives which explain,
even if small, the acceleration of the process propagation in the space, and the time derivative which
reflects the rate of the process in time.

7. Appendix

7.1. Appendix A: LS equation invertibility

Lemma 7.1. The matrices A and λR above have different eigenvalues.

Proof. For the sake of simplicity and clearness, we will develop the first two special cases of 2×2- and
3 × 3-matrices. In the first, we have to investigate the intersection of the spectra of the matrices

I − Am =

(
1 + 2λ −β0

−α1 1 + 2λ

)
and R =

(
2 −1
−1 2

)
.

It is easy to see that the eigenvalues of λR are λ and 3λ. But, notice that both det((1−λ)I −Am) , 0,
and det((1 − 3λ)I − Am) , 0. Hence, λ and 3λ are not eigenvalues of (I − Am). Therefore, Theorem 2.1
(see also [23]) implies that the linear Lyapunov-Sylvester operator LI−Am,−λR is invertible.
For the 3 × 3-case, we get

I − Am =


1 + 2λ −β0 0
−α1 1 + 2λ −β1

0 −α2 1 + 2λ

 and R =


2 −1 0
−1 2 −1
0 −1 2

 .
It is easy to see that λR has the only eignevalues 2λ, (2 −

√
2)λ and (2 +

√
2)λ. It is easy to check

that det(A − xI) , 0, for x ∈ {2λ, (2 −
√

2)λ, (2 +
√

2)λ}. Thus, the lemma is proved.

7.2. Appendix B: Critics about the existing model

In the existing works, as criticized in the introduction, approximate models have been investigated,
characterized by two major drawbacks. First, such models ignore or neglect the role of some variables,
based on assumptions on the minerals’ concentration, such as, salts, which is assumed to be rapidly
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varying according to the y-direction, compared to the x-one, allowing one to neglect the diffusion in
the x-direction. Second, such models assume that an equilibrium in time exists, and thus a stationary
variant is investigated. In this case, we get the following governing equation to the reverse osmosis
model:

y
∂C
∂x

= α
∂2C
∂y2 . (7.1)

However, this model may be solved for a general solution by utilizing the classical change of
variables ζ =

y
3
√

x
, which, by denoting C(x, y) = 3

√
xϕ(ζ), permits one to transform Eq (7.1) into

ϕ′′ +
ζ2

3α
ϕ′ −

ζ

3α
ϕ = 0. (7.2)

Notice that this last equation has a solution ϕ0(ζ) = ζ. To find a general solution, denoting ϕ(ζ) =

ζφ(ζ), and substituting in (7.2), we get

ζφ′′ + (2 +
ζ3

3α
)φ′ = 0, (7.3)

which is a classical ordinary differential equation whose solution is

φ1(ζ) =
1

3√9α

∫ ∞

3√9αζ

exp(−s3)
s2 ds.

The general solutions of (7.2) reads

ϕ(ζ) = K0ϕ0(ζ) + K1ζφ1(ζ), (7.4)

where K0 and K1 are constants.

8. Conclusion and some future directions

The aim of the present paper is to develop a numerical method to solve a reverse osmosis model,
where the governing (1+2)-dimensional diffusion-convection PDE due to the salt concentration in the
osmosis membrane is converted into a Sylvester equation that is proved to be uniquely solvable, stable,
consistent and convergent. The numerical scheme developed was validated with experimental data
from the literature, and via some numerical simulations. The objective of the present paper is therefore
twofold. As a result, many future directions may be raised.

Related to the Lyapunov-Sylvester algebraic system, an interesting direction that interested us is
to link fractional derivatives to convection-diffusion evolutionary problems by considering fractional
derivatives operators for the time and space variables in the PDE. With the LS equation, in algebra and
especially when the operators LA,B are defined for A, B belongs to some ring R by

LA,B(X) = AX + XB, X ∈ R,

we often call them generalized derivations on the ring R. These have been studied in the context of
algebras in some normed spaces. Indeed, a generalized derivation of an algebra R is any map of the
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formLA,B where A and B are fixed elements in R. In the theory of operator algebras, they are considered

as an important class of so-called elementary operators L(X) =

n∑
i=1

AiXBi, where, as previously, the

Ai’s and the Bi’s are elements of the algebra R. Remark that the operator LA,B satisfies

LA,B(XY) = LA,B(X)Y + XDB(Y),

whereDB(Y) = YB − BY is the so-called inner derivation. Remark that

DB(XY) = DB(X)Y + XDB(Y)

which looks like the well-known product derivation rule on function spaces ( f g)′ = f ′g + f g′. Hence,
the nomination of derivation on algebraic structures. So, it is questionable that an integration operator
IA,B could or could not be defined so that one has for any X and Y in R,

LA,B(X) = Y ⇐⇒ IA,B(Y) = X.

Taking the simple example, A =

(
0 1
2 1

)
and B =

(
1 1
0 2

)
, the associated Lyapunov-Sylvester

operator LA,B is invertible for the ring M2(R), but non-invertible on M2(Z/3Z). A second example, for

A =

(
1 2
2 1

)
and B =

(
1 1
2 1

)
, leads to an invertible operator on M2(R), but its inverse has no longer

the same form. A general form that may be expected is

L−1(X) =

m∑
i=1

AiXBi +

n∑
i=1

CiXT Bi.

So, here also, what could be the minimum values of the parameters m and n given the operatorL−1?
Could we expect a signature-type (n,m) for these operators?

We now return to the physical phenomenon subject of the application, which deals with the RO
model. In this context, water represents an essential factor for the existence of all creatures in this
universe. Even wastewater or brackish water constitute suitable environments for the life of several
types of organisms, such as bacteria, fishes, marine plants, and so on. This is in addition to its basic
role in environmental balance, such as maintaining temperatures and climate.

Clean, fresh, and/or potable water is the most important type of water and liquids overall, due to its
essential role in the continuation of the life of the most important type of beings in the universe, the
human, and such a role is irreplaceable by other liquids.

With the increase in demand for potable water due to frequent use, accompanied by a shortage of
natural sources such as rain, water napes, and many other reasons, humans have resorted to inventing
several ways to benefit from other water sources, such as rivers and seas, thus confronting the problem
of desalinating water and extracting impurities from it to make it suitable for drinking in particular.

The present paper investigates one of the methods applied to extract fresh water from seawater
using the reverse osmosis process. A numerical method is developed to solve a two-dimensional
time-dependent original mathematical model of a reverse osmosis process. The governing PDE is
transformed to a Lyapunov-Sylvester algebraic system, (which has been solved in its original
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geometric space 3D-dimension Euclidean space), without transforming it into a 1-dimensional space
as in the majority of existing works dealing with higher-dimensional PDEs. The system is
investigated for solvability, stability, consistency, and convergence. Besides, experimental results have
been provided based on simulation results, and eventually compared with existing studies. The
findings showed that the RO may be suitable for the aim of fresh water extraction, whenever it is
accompanied by many improvements, related to the space parameters for the used models, such as the
dimensions, the time factor, the materials used for the physical RO system, the permeability of the
membrane walls, and also the way of controlling the system during its progress.

On another side, RO, or more generally desalination tools, may also be linked to energy
consumption, which in turn needs optimal models to reduce such consumption. The membrane
module configuration, for example, could balance the flux and, hence, minimize energy consumption.
New technologies using nanofiltration for pressure-driven membrane processes are linked to both the
diffusion and the convection through the pores and/or charged membrane. To understand more and
improve these facts, the scientific community needs to involve related parameters into the
mathematical models such as the present convection-diffusion one. Optimality based on the
membrane properties, such as porosity and geometry, is still limited in comparison to the use of
substances’ properties ( [1, 5, 13, 14, 16, 17, 19].
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14. A. Djordjevich, S. Savović, A. Janićijević, Explicit Finite-Difference Solution of Two-Dimensional
Solute Transport with Periodic Flow in Homogenous Porous Media, J. Hydrol. Hydromech., 65
(2017), 426–432.

AIMS Mathematics Volume 9, Issue 7, 17531–17554.

http://dx.doi.org/http://doi.org/10.22079/JMSR.2018.81167.1176
http://dx.doi.org/http://doi.org/10.1080/19443994.2013.770192
http://dx.doi.org/https://doi.org/10.5004/DWT.2010.1162
http://dx.doi.org/https://doi.org/10.5614/j.eng.technol.sci.2016.48.4.1
http://dx.doi.org/http://doi.org/10.22052/ijmc.2017.86494.1289
http://dx.doi.org/http://doi.org/10.1016/j.amc.2008.06.061
http://dx.doi.org/http://doi.org/10.4208/jpde.v31.n3.1
http://dx.doi.org/http://doi.org/10.3390/pr7050271
http://dx.doi.org/http://doi.org/10.1007/s00366-020-01264-9


17553

15. M. Elnour, N. Meskin, K. M. Khan, R. Jain, S. Zaidi, H. Siddiqui, Full-Scale Seawater
Reverse Osmosis Desalination Plant Simulator, IFAC-PapersOnLine, 53 (2020), 16561–16568.
http://doi.org/10.1016/j.ifacol.2020.12.780

16. A. M. Farooque, S. Al-Jeshi, M. O. Saeed, A. Alreweli, Inefficacy of Osmotic Backwash Induced
by Sodium Chloride Salt Solution in Controlling SWRO Membrane Fouling, Appl. Water Sci., 4
(2014), 407–424. http://doi.org/10.1007/s13201-014-0158-x

17. K. P. Fattah, A. K. Al-Tamimi, W. Hamweyah, F. Iqbal, Evaluation of Sustainable Concrete
Produced with Desalinated Reject Brine, Int. J. Sustain. Built Environ., 6 (2017), 183–190.
http://doi.org/10.1016/j.ijsbe.2017.02.004

18. G. R. Fulford, P. Broadbridge, Industrial Mathematics: Case Studies in the Diffusion of Heat and
Matter, Cambridge: Cambridge University Press, 2002.

19. R. M. Garud, S. V. Kore, V. S. Kore, G. S. Kulkarni, A Short Review on Process and Applications
of Reverse Osmosis, Univ. J. Environ. Res. Technol., 1 (2011), 233–238.

20. Z. Hadadian, S. Zahmatkesh, M. Ansari, A. Haghighi, E. Moghimipour, Mathematical and
experimental modeling of reverse osmosis (RO) process, Korean J. Chem. Eng., 38 (2021), 366–
379. http://doi.org/10.1007/s11814-020-0697-9

21. M. Hamou Maamar, O. Belhamiti, New (0, 2) Jacobi multi-wavelets adaptive method for numerical
simulation of gas separations using hollow fiber membranes, Commun. Appl. Nonlinear Anal., 22
(2015), 61–81.

22. A. Jameson, Solution of equation AX + XB = C by inversion of an M × M or N × N matrix, SIAM
J. Appl. Math., 16 (1968), 1020–1023.

23. L. Kohaupt, Solution of the matrix eigenvalue problem VA + AV∗ = µV with applications
to the study of free linear dynamical systems, J. Comput. Appl. Math., 213 (2008), 142–165.
http://doi.org/10.1016/j.cam.2007.01.001

24. J. Kucera, Reverse Osmosis. Industrial Applications and Processes, Salem: Scrivener Publishing,
2010.

25. T. W. Lion, R. J. Allen, Osmosis in a minimal model system, J. Chem. Phys., 137 (2012), 244911.
http://doi.org/10.1063/1.4770271

26. O. P. Maure, Aspek Matematis dan Aspek Pendidikan pada Suatu Model Pemurnian Air dalam
Sistem Osmosis Terbalik, 2019. Available from: https://repository.usd.ac.id/35192.

27. O. P. Maure, S. Mungkasi, Application of Numerical Integration in Solving a Reverse Osmosis
Model, AIP Conf. Proc., 2202 (2019), 020043. http://doi.org/10.1063/1.5141656

28. O. P. Maure, S. Mungkasi, On Modelling of Water Distillation in a Reverse Osmosis Process,
Proceedings of the 2nd International Conference of Science and Technology for the Internet of
Things, ICSTI 2019, 2019. http://doi.org/10.4108/eai.20-9-2019.2292098

29. S. Noeiaghdam, D. Sidorov, A. Zamyshlyaeva, A. Tynda, A. Dreglea, A Valid Dynamical
Control on the Reverse Osmosis System Using the CESTAC Method, Mathematics, 9 (2020), 48.
http://doi.org/10.3390/math9010048

30. L. Sadek, T. H. Alaoui, Numerical methods for solving large-scale systems of differential
equations, Ricerche. Mat., 72 (2023), 785–802. http://doi.org/10.1007/s11587-021-00585-1

AIMS Mathematics Volume 9, Issue 7, 17531–17554.

http://dx.doi.org/http://doi.org/10.1016/j.ifacol.2020.12.780
http://dx.doi.org/http://doi.org/10.1007/s13201-014-0158-x
http://dx.doi.org/http://doi.org/10.1016/j.ijsbe.2017.02.004
http://dx.doi.org/http://doi.org/10.1007/s11814-020-0697-9
http://dx.doi.org/http://doi.org/10.1016/j.cam.2007.01.001
http://dx.doi.org/http://doi.org/10.1063/1.4770271
https://repository.usd.ac.id/35192
http://dx.doi.org/http://doi.org/10.1063/1.5141656
http://dx.doi.org/http://doi.org/10.4108/eai.20-9-2019.2292098
http://dx.doi.org/http://doi.org/10.3390/math9010048
http://dx.doi.org/http://doi.org/10.1007/s11587-021-00585-1


17554

31. E. M. Sadek, A. H. Bentbib, L. Sadek, H. T. Alaoui, Global extended Krylov subspace methods for
large-scale differential Sylvester matrix equations, J. Appl. Math. Comput., 62 (2020), 157–177.
http://doi.org/10.1007/s12190-019-01278-7

32. L. Sadek, H. T. Alaoui, The extended block Arnoldi method for solving generalized differential
Sylvester equations, J. Math. Model., 8 (2020), 189–206.

33. L. Sadek, H. T. Alaoui, Application of MGA and EGA algorithms on large-scale
linear systems of ordinary differential equations, J. Comput. Sci., 62 (2022), 101719.
http://doi.org/10.1016/j.jocs.2022.101719

34. L. Sadek, E. M. Sadek, T. H. Alaoui, On Some Numerical Methods for Solving Large
Differential Nonsymmetric Stein Matrix Equations, Math. Comput. Appl., 27 (2022), 69.
http://doi.org/10.3390/mca27040069

35. L. Sadek, H. T. Alaoui, The extended nonsymmetric block Lanczos methods for solving
large-scale differential Lyapunov equations, Math. Model. Comput., 8 (2021), 526–536.
http://doi.org/10.23939/mmc2021.03.526

36. L. Sadek, A Cotangent Fractional Derivative with the Application, Fractal Fract., 7 (2023), 444.
http://doi.org/10.3390/fractalfract7060444

37. L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dyn. Control, 11
(2023), 1276–1284. http://doi.org/10.1007/s40435-022-01061-w

38. L. Sadek, A. S. Bataineh, O. R. Isik, H. T. Alaoui, I. Hashim, A numerical approach based on
Bernstein collocation method: Application to differential Lyapunov and Sylvester matrix equations,
Math. Comput. Simul., 212 (2023), 475–488. http://doi.org/10.1016/j.matcom.2023.05.011

39. L. Sadek, Fractional BDF Methods for Solving Fractional Differential Matrix Equations, Int. J.
Appl. Comput. Math, 8 (2022), 238. http://doi.org/10.1007/s40819-022-01455-6

40. L. Sadek, Controllability and observability for fractal linear dynamical systems, J. Vib. Control, 29
(2023), 4730–4740. http://doi.org/10.1177/10775463221123354

41. R. F. Spellman, Reverse Osmosis. A Guide for the Nonengineering Professional, Boca Raton: CRC
Press, 2015. http://doi.org/10.1201/b18732

42. E. W. Tow, D. M. Warsinger, A. M. Trueworthy, J. Swaminathan, G. P. Thiel, S. M. Zubair, et al.,
Comparison of Fouling Propensity Between Reverse Osmosis, Forward Osmosis, and Membrane
Distillation, J. Membrane Sci., 556 (2018), 352–364. http://doi.org/10.1016/j.memsci.2018.03.065

43. M. E. Williams, A Review of Reverse Osmosis Theory, 2003. Available from: http://www.
wescinc.com/RO$_-$Theory.pdf.

44. S. J. Wimalawansa, Purification of Contaminated Water with Reverse Osmosis: Effective Solution
of Providing Clean Water for Human Needs in Developing Countries, Int. J. Emerging Technol.
Adv. Eng., 3 (2013), 75–89.

45. BYJU’S, Reverse osmosis. Available from: //byjus.com/chemistry/reverse-osmosis.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 7, 17531–17554.

http://dx.doi.org/http://doi.org/10.1007/s12190-019-01278-7
http://dx.doi.org/http://doi.org/10.1016/j.jocs.2022.101719
http://dx.doi.org/http://doi.org/10.3390/mca27040069
http://dx.doi.org/http://doi.org/10.23939/mmc2021.03.526
http://dx.doi.org/http://doi.org/10.3390/fractalfract7060444
http://dx.doi.org/http://doi.org/10.1007/s40435-022-01061-w
http://dx.doi.org/http://doi.org/10.1016/j.matcom.2023.05.011
http://dx.doi.org/http://doi.org/10.1007/s40819-022-01455-6
http://dx.doi.org/http://doi.org/10.1177/10775463221123354
http://dx.doi.org/http://doi.org/10.1201/b18732
http://dx.doi.org/http://doi.org/10.1016/j.memsci.2018.03.065
http://www.wescinc.com/RO$_-$Theory.pdf
http://www.wescinc.com/RO$_-$Theory.pdf
//byjus.com/chemistry/reverse-osmosis
http://creativecommons.org/licenses/by/4.0

	Introduction
	On the Lyapunov-Sylvester operator
	The mathematical model and its discretization
	Solvability of the numerical model
	Analysis of the consistency, stability, and convergence
	Consistency of the numerical model
	Stability of the numerical model
	Convergence of the numerical model

	Numerical results and simulations
	Appendix
	Appendix A: LS equation invertibility
	Appendix B: Critics about the existing model

	Conclusion and some future directions

