Research article

Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms

  • Received: 07 January 2024 Revised: 29 April 2024 Accepted: 07 May 2024 Published: 21 May 2024
  • MSC : 53C15, 53C25, 53C42

  • The present paper aims to demonstrate the theorems of existence and uniqueness for pointwise slant immersions in Kenmotsu space forms. Some substantial results are given in this direction. Also, we offer non-trivial examples of pointwise slant submanifolds of an almost contact- metric manifold.

    Citation: Noura Alhouiti. Theorems of existence and uniqueness for pointwise-slant immersions in Kenmotsu space forms[J]. AIMS Mathematics, 2024, 9(7): 17489-17503. doi: 10.3934/math.2024850

    Related Papers:

  • The present paper aims to demonstrate the theorems of existence and uniqueness for pointwise slant immersions in Kenmotsu space forms. Some substantial results are given in this direction. Also, we offer non-trivial examples of pointwise slant submanifolds of an almost contact- metric manifold.



    加载中


    [1] A. Alghanemi, N. Alhouiti, B. Y. Chen, S. Uddin, Existence and uniqueness theorems for pointwise slant immersions in complex space forms, Filomat, 35 (2021), 3127–3138. http://dx.doi.org/10.2298/FIL2109127A doi: 10.2298/FIL2109127A
    [2] N. Alhouiti, Existence and uniqueness theorems for pointwise-slant immersions in Sasakian space forms, AIMS Math., 8 (2023), 17470–17483. http://dx.doi.org/10.3934/math.2023892 doi: 10.3934/math.2023892
    [3] M. Atceken, S. K. Hui, Slant and pseudo-slant submanifolds in $(LCS)_{n}$-manifolds, Czech. Math. J., 63 (2013), 177–190. https://doi.org/10.1007/s10587-013-0012-6 doi: 10.1007/s10587-013-0012-6
    [4] D. E. Blair, Contact manifolds in Riemannian geometry, Berlin: Springer-Verlag, 1976. http://dx.doi.org/10.1007/BFb0079307
    [5] J. L. Cabreizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Existence and uniqueness theorem for slant immersions in Sasakian space forms, Publ. Math. Debrecen, 58 (2001), 559–574.
    [6] J. L. Cabreizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow. Math. J., 42 (2000), 125–138. http://dx.doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156
    [7] A. Carriazo, New developments in slant submanifolds theory, New Delhi: Narosa Publishing House, 2002.
    [8] B. Y. Chen, Geometry of submanifolds, New York: Dover Publication, 1973.
    [9] B. Y. Chen, Slant immersions, B. Aust. Math. Soc., 41 (1990), 135–147. http://dx.doi.org/10.1017/S0004972700017925
    [10] B. Y. Chen, Geometry of slant submanifolds, arXiv Preprint, 1990.
    [11] B. Y. Chen, O. J. Garary, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math., 36 (2012), 630–640. http://dx.doi.org/10.3906/mat-1101-34 doi: 10.3906/mat-1101-34
    [12] B. Y. Chen, K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257–266. http://dx.doi.org/10.2307/1996914 doi: 10.2307/1996914
    [13] B. Y. Chen, Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow. Math. J., 42 (2000), 439–454. http://dx.doi.org/10.1017/S0017089500030111 doi: 10.1017/S0017089500030111
    [14] B. Y. Chen, L.Vranken, Existence and uniqueness theorem for slant immersions and its applications, Results Math., 31 (1997), 28–39. http://dx.doi.org/10.1007/BF03322149 doi: 10.1007/BF03322149
    [15] B. Y. Chen, L. Vranken, Addendum to: Existence and uniqueness theorem for slant immersions and its applications, Results Math., 39 (2001), 18–22. http://dx.doi.org/10.1007/BF03322673 doi: 10.1007/BF03322673
    [16] J. H. Eschenburg, R. Tribuzy, Existence and uniqueness of maps into affine homogeneous spaces, Rend. Semin. Mat. U. Pad., 89 (1993), 11–18.
    [17] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen, 53 (1998), 217–223.
    [18] M. Gulbahar, E. Kilic, S. S. Celik, Special proper pointwise slant surfaces of a locally product Riemannian manifold, Turk. J. Math., 39 (2015), 884–899. http://dx.doi.org/10.3906/mat-1412-44 doi: 10.3906/mat-1412-44
    [19] R. S. Gupta, S. M. K. Haider, M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Radovi Matematticki, 12 (2004), 205–214.
    [20] R. Gupta, S. M. K. Haider, A. Sharfuddin, Existence and uniqueness theorem for slant immersion in cosymplectic space forms, Publ. Math. Debrecen, 67 (2005), 169–188.
    [21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku. Math. J., 24 (1972), 93–103. http://dx.doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [22] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183–198.
    [23] P. K. Pandey, R. S. Gupta, Existence and uniqueness theorem for slant immersions in Kenmotsu space forms, Turk. J. Math., 33 (2009), 409–425. http://dx.doi.org/10.3906/mat-0804-23 doi: 10.3906/mat-0804-23
    [24] K. S. Park, Pointwise slant and pointwise semi-slant submanifolds in almost contact metric manifolds, arXiv Preprint, 2014.
    [25] K. S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26 (2015), 1550099. http://dx.doi.org/10.1142/S0129167X15500998 doi: 10.1142/S0129167X15500998
    [26] B. Sahin, Warped product pointwise semi-slant submanifolds of Kähler manifolds, Port. Math., 70 (2013), 251–268. http://dx.doi.org/10.4171/PM/1934 doi: 10.4171/PM/1934
    [27] S. Uddin, A. Al-Khalidi, Pointwise slant submanifolds and their warped product in Sasakian manifolds, Filomat, 32 (2018), 4131–4142. http://dx.doi.org/10.2298/FIL1812131U doi: 10.2298/FIL1812131U
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(431) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog