Research article Special Issues

The analysis of fractional neutral stochastic differential equations in space

  • Received: 02 February 2024 Revised: 11 April 2024 Accepted: 08 May 2024 Published: 20 May 2024
  • MSC : 34A07, 34A08, 60G22

  • After extensive examination, scholars have determined that many dynamic systems exhibit intricate connections not only with their current and past states but also with the delay function itself. As a result, their focus shifts towards fractional neutral stochastic differential equations, which find applications in diverse fields such as biology, physics, signal processing, economics, and others. The fundamental principles of existence and uniqueness of solutions to differential equations, which guarantee the presence of a solution and its uniqueness for a specified equation, are pivotal in both the mathematical and physical realms. A crucial approach for analyzing complex systems of differential equations is the utilization of the averaging principle, which simplifies problems by approximating existing ones. Applying contraction mapping principles, we present results concerning the concepts of existence and uniqueness for the solutions of fractional neutral stochastic differential equations. Additionally, we present Ulam-type stability and the averaging principle results within the framework of space. This exploration involved the utilization of Jensen's, Gröenwall-Bellman's, Hölder's, Burkholder-Davis-Gundy's inequalities, and the interval translation technique. Our findings are established within the context of the conformable fractional derivative, and we provide several examples to aid in comprehending the theoretical outcomes.

    Citation: Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. The analysis of fractional neutral stochastic differential equations in space[J]. AIMS Mathematics, 2024, 9(7): 17386-17413. doi: 10.3934/math.2024845

    Related Papers:

  • After extensive examination, scholars have determined that many dynamic systems exhibit intricate connections not only with their current and past states but also with the delay function itself. As a result, their focus shifts towards fractional neutral stochastic differential equations, which find applications in diverse fields such as biology, physics, signal processing, economics, and others. The fundamental principles of existence and uniqueness of solutions to differential equations, which guarantee the presence of a solution and its uniqueness for a specified equation, are pivotal in both the mathematical and physical realms. A crucial approach for analyzing complex systems of differential equations is the utilization of the averaging principle, which simplifies problems by approximating existing ones. Applying contraction mapping principles, we present results concerning the concepts of existence and uniqueness for the solutions of fractional neutral stochastic differential equations. Additionally, we present Ulam-type stability and the averaging principle results within the framework of space. This exploration involved the utilization of Jensen's, Gröenwall-Bellman's, Hölder's, Burkholder-Davis-Gundy's inequalities, and the interval translation technique. Our findings are established within the context of the conformable fractional derivative, and we provide several examples to aid in comprehending the theoretical outcomes.



    加载中


    [1] B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: designing ABC-fractional masks in image processing, Phys. A, 542 (2020), 123516. https://doi.org/10.1016/j.physa.2019.123516 doi: 10.1016/j.physa.2019.123516
    [2] O. A. Arqub, M. Al-Smadi, Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions, Soft Comput., 24 (2020), 12501–12522. https://doi.org/10.1007/s00500-020-04687-0 doi: 10.1007/s00500-020-04687-0
    [3] X. J. Yang, General fractional derivatives: theory, methods and applications, New York: Chapman and Hall/CRC, 2019. https://doi.org/10.1201/9780429284083
    [4] M. I. Liaqat, A. Akgül, H. Abu-Zinadah, Analytical investigation of some time-fractional Black-Scholes models by the Aboodh residual power series method, Mathematics, 11 (2023), 1–19. https://doi.org/10.3390/math11020276 doi: 10.3390/math11020276
    [5] A. Jajarmi, D. Baleanu, S. S. Sajjadi, J. J. Nieto, Analysis and some applications of a regularized $\psi$-Hilfer fractional derivative, J. Comput. Appl. Math., 415 (2022), 114476. https://doi.org/10.1016/j.cam.2022.114476 doi: 10.1016/j.cam.2022.114476
    [6] M. I. Liaqat, A. Akgül, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Soliton Fract., 162 (2022), 112487. https://doi.org/10.1016/j.chaos.2022.112487 doi: 10.1016/j.chaos.2022.112487
    [7] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [8] D. Z. Zhao, M. K. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. https://doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [9] W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150–158. https://doi.org/10.1016/j.cam.2015.04.049 doi: 10.1016/j.cam.2015.04.049
    [10] A. A. Abdelhakim, J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear Dyn., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5
    [11] E. Ünal, A. Gökdoğan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128 (2017), 264–273. https://doi.org/10.1016/j.ijleo.2016.10.031 doi: 10.1016/j.ijleo.2016.10.031
    [12] X. Ma, W. Q. Wu, B. Zeng, Y. Wang, X. X. Wu, The conformable fractional grey system model, ISA Trans., 96 (2020), 255–271. https://doi.org/10.1016/j.isatra.2019.07.009 doi: 10.1016/j.isatra.2019.07.009
    [13] M. A. Hammad, R. Khalil, Conformable fractional heat differential equation, Int. J. Pure Appl. Math., 94 (2014), 215–221. https://doi.org/10.12732/IJPAM.V94I2.8 doi: 10.12732/IJPAM.V94I2.8
    [14] M. M. A. Khater, M. S. Mohamed, H. Alotaibi, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, et al., Novel explicit breath wave and numerical solutions of an Atangana conformable fractional Lotka-Volterra model, Alex. Eng. J., 60 (2021), 4735–4743. https://doi.org/10.1016/j.aej.2021.03.051 doi: 10.1016/j.aej.2021.03.051
    [15] M. M. Li, J. R. Wang, D. O'regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. https://doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7
    [16] S. Wang, W. Jiang, J. L. Sheng, R. Li, Ulam's stability for some linear conformable fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02672-3 doi: 10.1186/s13662-020-02672-3
    [17] T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
    [18] D. Z. Zhao, X. Q. Pan, M. K. Luo, A new framework for multivariate general conformable fractional calculus and potential applications, Phys. A, 510 (2018), 271–280. https://doi.org/10.1016/j.physa.2018.06.070 doi: 10.1016/j.physa.2018.06.070
    [19] G. L. Xiao, J. R. Wang, D. O'Regan, Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations, Chaos Soliton Fract., 139 (2020), 110269. https://doi.org/10.1016/j.chaos.2020.110269 doi: 10.1016/j.chaos.2020.110269
    [20] G. L. Xiao, J. R. Wang, On the stability of solutions to conformable stochastic differential equations, Miskolc Math. Notes, 21 (2020), 509–523. https://doi.org/10.18514/MMN.2020.3257 doi: 10.18514/MMN.2020.3257
    [21] H. M. Ahmed, Q. X. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755
    [22] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 24 (2022), 2378–2394. https://doi.org/10.1002/asjc.2650 doi: 10.1002/asjc.2650
    [23] Z. Li, L. P. Xu, Exponential stability in mean square of stochastic functional differential equations with infinite delay, Acta Appl. Math., 174 (2021), 1–18. https://doi.org/10.1007/s10440-021-00426-1 doi: 10.1007/s10440-021-00426-1
    [24] W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, A. H. Abdel-Aty, Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives, AIMS Math., 9 (2024), 12375–12398. https://doi.org/10.3934/math.2024605 doi: 10.3934/math.2024605
    [25] M. I. Liaqat, F. U. Din, W. Albalawi, K. S. Nisar, A. H. Abdel-Aty, Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives, AIMS Math., 9 (2024), 11194–11211. https://doi.org/10.3934/math.2024549 doi: 10.3934/math.2024549
    [26] K. X. Li, J. G. Peng, Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys., 65 (2014), 941–959. https://doi.org/10.1007/S00033-013-0369-2 doi: 10.1007/S00033-013-0369-2
    [27] J. Cui, L. T. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A Math. Theor., 44 (2011), 335201. https://doi.org/10.1088/1751-8113/44/33/335201 doi: 10.1088/1751-8113/44/33/335201
    [28] A. Singh, A. Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces, Chaos Soliton Fract., 150 (2021), 111095. https://doi.org/10.1016/j.chaos.2021.111095 doi: 10.1016/j.chaos.2021.111095
    [29] O. Kahouli, A. B. Makhlouf, L. Mchiri, P. Kumar, N. B. Ali, A. Aloui, Some existence and uniqueness results for a class of fractional stochastic differential equations, Symmetry, 14 (2022), 1–11. https://doi.org/10.3390/sym14112336 doi: 10.3390/sym14112336
    [30] E. Arhrrabi, M. H. Elomari, S. Melliani, L. S. Chadli, Existence and stability of solutions of fuzzy fractional stochastic differential equations with fractional Brownian motions, Adv. Fuzzy Syst., 2021 (2021), 1–9. https://doi.org/10.1155/2021/3948493 doi: 10.1155/2021/3948493
    [31] M. Niu, B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479–1489.
    [32] P. Y. Chen, Y. X. Li, X. P. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817–1840. https://doi.org/10.3934/cpaa.2015.14.1817 doi: 10.3934/cpaa.2015.14.1817
    [33] P. Y. Chen, Y. X. Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63–76. https://doi.org/10.1007/S13348-014-0106-Y doi: 10.1007/S13348-014-0106-Y
    [34] P. Y. Chen, X. P. Zhang, Y. X. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Cal. Appl. Anal., 19 (2016), 1507–1526. https://doi.org/10.1515/fca-2016-0078 doi: 10.1515/fca-2016-0078
    [35] A. Karczewska, C. Lizama, Solutions to stochastic fractional oscillation equations, Appl. Math. Lett., 23 (2010), 1361–1366. https://doi.org/10.1016/j.aml.2010.06.032 doi: 10.1016/j.aml.2010.06.032
    [36] R. Schnaubelt, M. Veraar, Regularity of stochastic Volterra equations by functional calculus methods, J. Evol. Equ., 17 (2017), 523–536. https://doi.org/10.1007/s00028-016-0365-z doi: 10.1007/s00028-016-0365-z
    [37] G. X. Xiao, J. R. Wang, Stability of solutions of Caputo fractional stochastic differential equations, Nonlinear Anal. Model. Control, 26 (2021), 581–596. https://doi.org/10.15388/namc.2021.26.22421 doi: 10.15388/namc.2021.26.22421
    [38] W. Mao, Q. X. Zhu, X. R. Mao, Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps, Appl. Math. Comput., 254 (2015), 252–265. https://doi.org/10.1016/j.amc.2014.12.126 doi: 10.1016/j.amc.2014.12.126
    [39] S. B. Zhou, H. Jin, Numerical solution to highly nonlinear neutral-type stochastic differential equation, Appl. Numer. Math., 140 (2019), 48–75. https://doi.org/10.1016/j.apnum.2019.01.014 doi: 10.1016/j.apnum.2019.01.014
    [40] L. L. Gao, L. T. Yan, On random periodic solution to a neutral stochastic functional differential equation, Math. Probl. Eng., 2018 (2018), 1–9. https://doi.org/10.1155/2018/8353065 doi: 10.1155/2018/8353065
    [41] M Yang, Q. R. Wang, Approximate controllability of Caputo fractional neutral stochastic differential inclusions with state-dependent delay, IMA J. Math. Control Inform., 35 (2018), 1061–1085. https://doi.org/10.1093/imamci/dnx014 doi: 10.1093/imamci/dnx014
    [42] K. Liu, Optimal control of stochastic functional neutral differential equations with time lag in control, J. Franklin Inst., 355 (2018), 4839–4853. https://doi.org/10.1016/j.jfranklin.2018.04.044 doi: 10.1016/j.jfranklin.2018.04.044
    [43] A. Ahmadova, N. I. Mahmudov, Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Soliton Fract., 139 (2020), 110253. https://doi.org/10.1016/j.chaos.2020.110253 doi: 10.1016/j.chaos.2020.110253
    [44] Z. K. Guo, Y. Xu, W. F. Wang, J. H. Hu, Averaging principle for stochastic differential equations with monotone condition, Appl. Math. Lett., 125 (2022), 107705. https://doi.org/10.1016/j.aml.2021.107705 doi: 10.1016/j.aml.2021.107705
    [45] J. Z. Huang, D. F. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. https://doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651
    [46] R. Z. Khasminskij, On the principle of averaging the Itov's stochastic differential equations, Kybernetika, 4 (1968), 260–279.
    [47] D. F. Luo, Q. X. Zhu, Z. G. Luo, An averaging principle for stochastic fractional differential equations with time-delays, Appl. Math. Lett., 105 (2020), 106290. https://doi.org/10.1016/j.aml.2020.106290 doi: 10.1016/j.aml.2020.106290
    [48] G. X. Xiao, M. Fečkan, J. R. Wang, On the averaging principle for stochastic differential equations involving Caputo fractional derivative, Chaos, 32 (2022), 101105. https://doi.org/10.1063/5.0108050 doi: 10.1063/5.0108050
    [49] I. M. Stoyanov, D. D. Bainov, The averaging method for a class of stochastic differential equations, Ukr. Math. J., 26 (1974), 186–194. https://doi.org/10.1007/BF01085718 doi: 10.1007/BF01085718
    [50] Y. Xu, B. Pei, Y. G. Li, Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise, Math. Methods Appl. Sci., 38 (2015), 2120–2131. https://doi.org/10.1002/mma.3208 doi: 10.1002/mma.3208
    [51] M. Abouagwa, J. Li, Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with non-Lipschitz coefficients, Stoch. Dyn., 19 (2019), 1950029. https://doi.org/10.1142/S0219493719500291 doi: 10.1142/S0219493719500291
    [52] J. K. Liu, W. Wei, J. B. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
    [53] M. Yang, T. Lv, Q. R. Wang, The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise, Fractal Fract., 7 (2023), 1–15. https://doi.org/10.3390/fractalfract7100701 doi: 10.3390/fractalfract7100701
    [54] J. K. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal Fract., 6 (2022), 1–13. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [55] R. Sakthivel, P. Revathi, N. I. Mahmudov, Asymptotic stability of fractional stochastic neutral differential equations with infinite delays, Abstr. Appl. Anal., 2013 (2013), 1–9. https://doi.org/10.1155/2013/769257 doi: 10.1155/2013/769257
    [56] A. R. Siva, M. Suvinthra, K. Balachandran, Y. K. Ma, Analysis of stochastic neutral fractional functional differential equations, Bound. Value Probl., 2022 (2022), 49. https://doi.org/10.1186/s13661-022-01628-8 doi: 10.1186/s13661-022-01628-8
    [57] A. Ahmadova, N. I. Mahmudov, Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Soliton Fract., 139 (2020), 110253. https://doi.org/10.1016/j.chaos.2020.110253 doi: 10.1016/j.chaos.2020.110253
    [58] H. B. Bao, J. D. Cao, Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay, Adv. Differ. Equ., 2017 (2017), 1–14. https://doi.org/10.1186/s13662-017-1106-5 doi: 10.1186/s13662-017-1106-5
    [59] S. Saifullah, S. Shahid, A. Zada, Analysis of neutral stochastic fractional differential equations involving Riemann-Liouville fractional derivative with retarded and advanced arguments, Qual. Theory Dyn. Syst., 23 (2024), 39. https://doi.org/10.1007/s12346-023-00894-w doi: 10.1007/s12346-023-00894-w
    [60] Z. Q. Lu, Y. G. Zhu, Q. Q. Xu, Asymptotic stability of fractional neutral stochastic systems with variable delays, Eur. J. Control, 57 (2021), 119–124. https://doi.org/10.1016/j.ejcon.2020.05.005 doi: 10.1016/j.ejcon.2020.05.005
    [61] Z. K. Guo, X. Y. Han, J. H. Hu, Averaging principle for stochastic Caputo fractional differential equations with non-Lipschitz condition, Fract. Calc Appl. Anal., 2023 (2023), 1–18. https://doi.org/10.1007/s13540-023-00211-x doi: 10.1007/s13540-023-00211-x
    [62] Z. K. Guo, J. H. Hu, C. G. Yuan, Averaging principle for a type of Caputo fractional stochastic differential equations, Chaos, 31 (2021), 053123. https://doi.org/10.1063/5.0042650 doi: 10.1063/5.0042650
    [63] H. M. Ahmed, Conformable fractional stochastic differential equations with control function, Syst. Control Lett., 158 (2021), 105062. https://doi.org/10.1016/j.sysconle.2021.105062 doi: 10.1016/j.sysconle.2021.105062
    [64] K. Ramkumar, K. Ravikumar, S. Varshini, Fractional neutral stochastic differential equations with Caputo fractional derivative: fractional Brownian motion, Poisson jumps, and optimal control, Stoch. Anal. Appl., 39 (2021), 157–176. https://doi.org/10.1080/07362994.2020.1789476 doi: 10.1080/07362994.2020.1789476
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(192) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog