Research article

Minimum distance–unbalancedness of the merged graph of $ C_3 $ and a tree

  • Received: 06 March 2024 Revised: 24 April 2024 Accepted: 08 May 2024 Published: 14 May 2024
  • MSC : 05C05, 05C09, 05C92

  • For a graph $ G $, let $ n_G(u, v) $ be the number of vertices of $ G $ that are strictly closer to $ u $ than to $ v $. The distance–unbalancedness index $ {\rm uB}(G) $ is defined as the sum of $ |n_G(u, v)-n_G(v, u)| $ over all unordered pairs of vertices $ u $ and $ v $ of $ G $. In this paper, we show that the minimum distance–unbalancedness of the merged graph $ C_3\cdot T $ is $ (n+2)(n-3) $, where $ C_3 \cdot T $ is obtained by attaching a tree $ T $ to the cycle $ C_3 $.

    Citation: Zhenhua Su, Zikai Tang. Minimum distance–unbalancedness of the merged graph of $ C_3 $ and a tree[J]. AIMS Mathematics, 2024, 9(7): 16863-16875. doi: 10.3934/math.2024818

    Related Papers:

  • For a graph $ G $, let $ n_G(u, v) $ be the number of vertices of $ G $ that are strictly closer to $ u $ than to $ v $. The distance–unbalancedness index $ {\rm uB}(G) $ is defined as the sum of $ |n_G(u, v)-n_G(v, u)| $ over all unordered pairs of vertices $ u $ and $ v $ of $ G $. In this paper, we show that the minimum distance–unbalancedness of the merged graph $ C_3\cdot T $ is $ (n+2)(n-3) $, where $ C_3 \cdot T $ is obtained by attaching a tree $ T $ to the cycle $ C_3 $.



    加载中


    [1] J. Wang, F. Belardo, A lower bound for the first Zagreb index and its application, MATCH Commun. Math. Comput. Chem., 74 (2015), 35–56.
    [2] A. A. Dobrynin, The Szeged and Wiener indices of line graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 743–756.
    [3] S. Bessy, F. Dross, K. Hrinakova, M. Knor, R. Škrekovski, Maximal Wiener index for graphs with prescribed number of blocks, Appl. Math. Comput., 380 (2020), 125274. https://doi.org/10.1016/j.amc.2020.125274 doi: 10.1016/j.amc.2020.125274
    [4] J. Jerebic, S. Klavžar, D. F. Rall, Distance-balanced graphs, Ann. Combin., 12 (2008), 71–79. http://dx.doi.org/10.1007/s00026-008-0337-2 doi: 10.1007/s00026-008-0337-2
    [5] T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spuzvić, I. Zubac, Mostar index, J. Math. Chem., 56 (2018), 2995–3013. https://doi.org/10.1007/s10910-018-0928-z
    [6] K. Handa, Bipartite graphs with balanced $(a, b)$-partitions, Ann. Combin., 51 (1999), 113–119.
    [7] G. Liu, K. Deng, The maximum Mostar indices of unicyclic graphs with given diameter, Appl. Math. Comput., 439 (2023), 127636. https://doi.org/10.1016/j.amc.2022.127636 doi: 10.1016/j.amc.2022.127636
    [8] A. Ali, T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput., 404 (2021), 126245. https://doi.org/10.1016/j.amc.2021.126245 doi: 10.1016/j.amc.2021.126245
    [9] F. Hayat, B. Zhou, On Mostar Index of Trees with Parameters, Filomat, 33 (2019), 6453–6458. https://doi.org/10.2298/FIL1919453H doi: 10.2298/FIL1919453H
    [10] Š. Miklavič, P. Šparl, Distance-unbalancedness of graphs, Appl. Math. Comput., 405 (2021), 126233. https://doi.org/10.1016/j.amc.2021.126233 doi: 10.1016/j.amc.2021.126233
    [11] M. Kramer, D. Rautenbach, Minimum distance-unbalancedness of trees, J. Math. Chem., 59 (2021), 942–950. https://doi.org/10.1007/s10910-021-01228-4 doi: 10.1007/s10910-021-01228-4
    [12] M. Kramer, D. Rautenbach, Maximally distance-unbalanced trees, J. Math. Chem., 59 (2021), 2261–2269. https://doi.org/10.1007/s10910-021-01287-7 doi: 10.1007/s10910-021-01287-7
    [13] M. Ghorbani, Z. Vaziri, Graphs with small distance-based complexities, Appl. Math. Comput., 457 (2023), 128188. https://doi.org/10.1016/j.amc.2023.128188 doi: 10.1016/j.amc.2023.128188
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(640) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog