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Abstract: For a graph G, let nG(u, v) be the number of vertices of G that are strictly closer to u
than to v. The distance–unbalancedness index uB(G) is defined as the sum of |nG(u, v) − nG(v, u)|
over all unordered pairs of vertices u and v of G. In this paper, we show that the minimum distance–
unbalancedness of the merged graph C3 · T is (n + 2)(n − 3), where C3 · T is obtained by attaching a
tree T to the cycle C3.
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1. Introduction

Throughout this paper, all graphs are simple, undirected, finite, and connected. Let G be a graph on
n vertices with vertex set V(G) and edge set E(G). For two vertices u and v of G, let distG(u, v) denote
the distance in G between u and v, and let nG(u, v) be the number of vertices w of G that are strictly
closer to u than to v, that is, that satisfy distG(u,w) < distG(v,w). We say that this pair of vertices is
balanced if nG(u, v) = nG(v, u). Thus, a connected graph is distance-balanced if and only if every pair
of adjacent vertices is balanced.

For a positive integer n, the complete bipartite graph K1,n−1 will be called the star of order n and
will be denoted by S n−1. The cycle of order n ≥ 3 will be denoted by Cn, and the path of order n (and
thus length n − 1) will be denoted by Pn.

Topological indices play an important role in mathematical chemistry as well as in graph theory,
which has been studied for several decades. Various indices are defined as sums of certain quantities
over all vertices (such as the first Zagreb index [1]), over all pairs of adjacent vertices (such as the
Szeged index [2]), or over all pairs of vertices of graphs (such as the Wiener index [3]).
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To measure the peripherality in a graph G (i.e., how far a graph is from being distance–balanced [4]),
Došlić et al. [5] introduced the Mostar index of G, which is defined as

Mo(G) =
∑

uv∈E(G)

|nG(u, v) − nG(v, u)|.

This index is closely related to the concept of distance-balancedness of graphs, which was first studied
in [6]. In terms of the Mostar index, a graph is distance-balanced if and only if its Mostar index is
equal to 0. For more research on the Mostar index, see [7–9].

In 2021, Miklavič and Šparl [10] introduced the distance–unbalancedness (index) of a graph G
which is defined as

uB(G) =
∑

{u,v}∈
(V(G)

2

) |nG(u, v) − nG(v, u)|,

where
(

V(G)
2

)
denotes the set of all 2-element subsets of the vertex set V(G) of G.

As the definition of distance–unbalancedness involves a summation over all unordered pairs of
distinct vertices, this parameter is much harder to approach than many other comparable parameters.
Therefore, there have been very few results in this field up to now.

Miklavič and Šparl [10] computed the distance–unbalancedness index uB(G) for members of some
well-known families of graphs, such as the complete multipartite graphs, the wheel graphs, and the
Cartesian products of paths by cycles. Specifically, the distance–unbalancedness index of paths with n
vertices was obtained

uB(Pn) =


(n − 1)(n + 1)(2n − 3)

12
, if n is odd,

(n − 2)n(2n + 1)
12

, if n is even.

A few conjectures about the minimum or maximum distance–unbalancedness indices of trees, spider
graphs, and kite graphs are proposed.

Later, Kramer and Rautenbach [11] confirmed one of the above conjecture, and showed that the
stars minimize the distance–unbalancedness among all trees of a fixed order, i.e.,

uB(T ) ≥ uB(K1,n−1) = (n − 1)(n − 2).

Meanwhile, they [12] contributed to problems posed by Miklavič and Šparl, and obtained the maximum
distance–unbalancedness of the tree and the subdivided star, where the subdivided star S (n1, · · · , nk)
arises from the star K1,k with the k edges e1, · · · , ek by subdividing the edge ei exactly ni − 1 times for
every i ∈ {1, · · · , k}.

A merged graph of C3 and a tree T , denoted by C3 · T , is obtained by attaching one vertex of the
cycle C3 with a vertex of a tree T , where |V(T )| = n − 2. S 3,n and P3,n are the merged graphs obtained
by attaching a pendent-vertex of the star S n−3 and an end-vertex of the path Pn−2 to C3, respectively.
Especially, let S 3,n be the merged graph obtained by attaching the center of the star S n−3 to C3. Clearly,
|V(C3 · T )| = |V(P3,n)| = |V(S 3,n)| = |V(S 3,n)| = n.

Although the conjecture of minimum distance–unbalancedness of trees has been solved, there are
still some open problems worth studying in [10], such as the following:
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Problem 1.1 (Miklavič and Šparl [10]) For each integer n ≥ 3, determine the smallest possible nonzero
value of the distance–unbalancedness index among all connected graphs of order n and classify all
graphs attaining this value.

Very recently, Ghorbani and Vaziri [13] classified all distance–balanced graphs with Sz-complexity
one, where the Sz-complexity (W-complexity) is the number of different contributions to the Szeged
index (Wiener index) in its summation formula. Moreover, the Sz-complexity and W-complexity
of some merged graphs, such as the windmill graph and the Duch windmill graph, are determined.
Inspired by this, we mainly study the minimum distance-unbalancedness of a merged graph C3 ·T . The
minimum value and extremal graph with the minimum distance–unbalancedness of a merged graph
C3 · T are characterized, which has certain significance for investigating Problem 1.1. The detailed
results are summarized as follows:
Theorem 1.2 Let H = C3 · T be a merged graph of C3 and a tree T , where |V(T )| = n − 2 and
|V(C3 · T )| = n. Then

uB(H) ≥


uB(P3,5) = 12, if n = 5,
uB(S 3,6) = 20, if n = 6,

uB(S 3,n) = (n + 2)(n − 3), if n ≥ 7.

Moreover, uB(H) = 12 if and only if H = P3,5 for n = 5, and uB(H) = 20 if and only if H = S 3,6 for
n = 6, and uB(H) = (n + 2)(n − 3) if and only if H = S 3,n for n ≥ 7.

The rest of this paper is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.2

For a graph G, the k-th power graph Gk of G has the same vertex set as G, and two distinct vertices
of G are adjacent in Gk if their distance in G is at most k. In order to prove Theorem 1.2, we consider
the following auxiliary parameter:

uBk(G) =
∑

uv∈E(Gk)

|nG(u, v) − nG(v, u)|,

and we establish the following lemma.
Lemma 2.1 Let H = C3 · T and n ≥ 8, then uB3(H) ≥ (n + 2)(n − 3).

Before proving the lemma, we show that Theorem 1.2 is an immediate consequence.
Proof of Theorem 1.2. For n ≥ 8, we have uB(H) ≥ uB3(H) ≥ (n + 2)(n − 3) by Lemma 2.1. It is an
easy calculation that H = S 3,n satisfies uB(H) = (n + 2)(n − 3). Now, in order to complete the proof,
we only need to prove that uB(H) > (n + 2)(n − 3) if H , S 3,n. Since uB(H) = (n + 2)(n − 3) implies
uB(H) = uB3(H), we have nH(u, v) = nH(v, u) for every two vertices u and v at distance four in H.

Let u and v be two vertices at distance four in H. Suppose u has a neighbor u′ that does not lie on
the path P between u and v, and v′ is the neighbor of v on P. If u′ and v′ have a distance of four, we
obtain that nH(u′, v′) < nH(u, v) = nH(v, u) < nH(v′, u′), which is a contradiction. Therefore, if there are
vertices at distance four in H, nH(u, v) = nH(v, u) implies that the induced subgraph of H is isomorphic
to the solid line in Figure 1(a). Furthermore, by the distinct connections with the center vertex w, we
can conclude that H can only be isomorphic to the graph in Figure 1(a) or 1(b). In Figure 1(a), we
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have

uB(H) > uB2(H)

=
∑

uv∈E(H)

|nH(u, v) − nH(v, u)| +
∑

uv∈E(H2)\E(H)

|nH(u, v) − nH(v, u)|

≥
[
(n − 5)(n − 2) + 2(n − 3) + 2(n − 6)

]
+
[
2(n − 4) + (n − 7) · 4 + 2(n − 5)

]
= (n + 2)(n − 3) + 6(n − 8)
≥ (n + 2)(n − 3).

(n − 7)· · ·

(a)

w

· · ·

(b)

w

Figure 1. Graphs of H.

In Figure 1(b), H is obtained by attaching (n−4)
3 stars S 3 and one subgraph S 3+ e to the center vertex

w. So, we have

uB(H) ≥ uB3(H)

=
∑

uv∈E(H)

|nH(u, v) − nH(v, u)| +
∑

uv∈E(H2)\E(H)

|nH(u, v) − nH(v, u)| + 2(n − 6)

≥
[2(n − 4)

3
(n − 2) +

(n − 4)
3

(n − 6) + 3(n − 6) + 2(n − 3)
]
+
[2(n − 4)

3
(n − 4) + 2(n − 5)

]
= (n + 2)(n − 3) +

2
3

(n2 − 7n + 3)

> (n + 2)(n − 3).

If the maximum distance between every two vertices u and v of H is three, then H is isomorphic to
the graph in Figure 2. If there are x pendant vertices far from the cycle C3, then the number of pendant
vertices adjacent to C3 is (n − 4 − x). So, we have

uB(H) ≥ uB2(H)

=
∑

uv∈E(H)

|nH(u, v) − nH(v, u)| +
∑

uv∈E(H2)\E(H)

|nH(u, v) − nH(v, u)|

≥
[
(n − 4)(n − 2) + |n − x − 1 − (x + 1)| + 2(n − 3)

]
+
[
x(n − x − 2) + (n − x − 4) · x + 2(x − 1) + (n − 4 − x) · 2

]
≥
(n + 2)(n − 3) + 2(n − 7), x = 1,

(n + 2)(n − 3) + 3n − 22 + |n − x − 1 − (x + 1)|, x ≥ 2.

> (n + 2)(n − 3).
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· · ·(n − 4 − x)

...
x

Figure 2. Graphs of H.

For n = 5, 6, and 7, using enumeration to calculate the minimum value of uB(H). For convenience,
we use the degree sequence of graphs to represent graph H. For instance, the degree sequence of graph
P3,5 is denoted by (2, 2, 3, 2, 1), the degree sequence of S 3,6 is denoted by (2, 2, 3, 3, 1, 1), and the degree
sequence of S 3,7 is denoted by (2, 2, 6, 1, 1, 1, 1).

If n = 5, since H = C3 · T , then T = P3, and by the distinct attaching of C3 with P3, H1 =

(2, 2, 3, 2, 1), or H2 = (2, 2, 4, 2, 1). It is easy to obtain by calculation that uB(H1) = 12 and uB(H2) =
14, and hence, uB(H) ≥ uB(H1) = 12, where H1 = (2, 2, 3, 2, 1) = P3,5.

If n = 6, then T = P4 or T = S 3. Analogously, by the distinct attachment of C3 to P4 or S 3, there
exist four degree sequences: H1 = (2, 2, 3, 2, 2, 1), H2 = (2, 2, 4, 1, 2, 1), H3 = (2, 2, 3, 3, 1, 1), and
H4 = (2, 2, 5, 1, 1, 1). It is not difficult to obtain that uB(H1) = 22, uB(H2) = 28, uB(H3) = 20, and
uB(H4) = 24. Therefore, uB(H) ≥ uB(H3) = 20, where H3 = (2, 2, 3, 3, 1, 1) = S 3,6.

For n = 7, then T = P5, or T = S 4, or T is a merged graphs obtained by attaching a pendent vertex
of S 3 to P2. Analogously, by the distinct attachment of C3 to T , there exists nine degree sequences:
H1 = (2, 2, 3, 2, 2, 2, 1), H2 = (2, 2, 4, 1, 2, 2, 1), H3 = (2, 2, 4, 2, 2, 1, 1), H4 = (2, 2, 3, 3, 1, 2, 1), H5 =

(2, 2, 5, 1, 1, 2, 1), H6 = (2, 2, 4, 1, 3, 1, 1), H7 = (2, 2, 3, 2, 3, 1, 1), H8 = (2, 2, 3, 4, 1, 1, 1), and H9 =

(2, 2, 6, 1, 1, 1, 1). After some tedious calculations, it can be concluded that uB(H) ≥ 36, with equality
holds if and only if H = H9 = S 3,7.

This completes the proof. □

3. Proof of Lemma 2.1

In this section, we proceed to the proof of the lemma.
Proof of Lemma 2.1. Choose the graph H = C3 · T of order n such that uB3(H) is as small as

possible. Hence, H has at least one vertex of degree ≥ 3. We will consider two different cases.
Case 1. H has exactly one vertex c of degree k + 2, where k ≥ 1.
In this case, there are k + 1 components of H − c, one of which is P2, and the other k components

are paths of orders n1, · · · , nk, such that n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Thus, n1 + n2 + · · · + nk = n − 3.
Case 1.1. n1 ≤ n

2 .
Note that

∑k
i=1
[
(n − 4) + (n − 6) + · · · + n − 2(ni − 1)

]
+ 2(n − 2n1) +

∑k−1
i=1
∑k

j=i+1(n − 2ni) ≥ 2n − 10
for n ≥ 8, and thus have

uB3(H) ≥
k∑

i=1

[
(n − 2) + (n − 3) + · · · + (n − 2ni)

]
+

k−1∑
i=1

k∑
j=i+1

(ni − n j) + 2(n − 3)

+

k∑
i=1

2|ni − 2| +
k∑

i=1

[
(n − 4) + (n − 6) + · · · + n − 2(ni − 1)

]
+ 2(n − 2n1) +

k−1∑
i=1

k∑
j=i+1

(n − 2ni)
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≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1

]
+ (n1 − n2) + 2(n − 3) +

k∑
i=1

2|ni − 2| + 2n − 10

= f1(n, k) + (n1 − n2) −
k∑

i=1

2n2
i +

k∑
i=1

2|ni − 2|,

where f1(n, k) = 2n2 − (k + 3)n + k − 13.
We consider the following optimization problem:

min f1(n, k) + (n1 − n2) −
k∑

i=1

2n2
i +

k∑
i=1

2|ni − 2|,

s.t.
n
2
≥ n1 ≥ n2 ≥ · · · ≥ nk ≥ 1, (3.1)

n1 + n2 + · · · + nk = n − 3.

Let (n1, n2, · · · , nk) be a lexicographically maximal optimal solution of (3.1).
If n1 <

n
2 , ni > 1 for some i ∈ {2, · · · , k}, and i is chosen largest with this property, then

n1 + 1 − (n2 − 1) − 2(n1 + 1)2 − 2(ni − 1)2 + 2(n1 + 1 − 2) + 2|ni − 1 − 2|
− [n1 − n2 − 2n2

1 − 2n2
i + 2(n1 − 2) + 2|ni − 2|]

≤
 − 4(n1 − ni) − 2, ni > 2,
− 4(n1 − ni) + 2, ni = 2.

Therefore, if ni > 2 or n1 > ni = 2, (n1 + 1, · · · , ni − 1, · · · , nk) is a better solution of (3.1), which is
a contradiction. This implies that there are only two cases:

(a) n1 = · · · = ni = 2, ni+1 = · · · = nk = 1.
(b) n1 = n − k − 2, n2 = · · · = nk = 1.
In the first case, since 2(n − 2n1) +

∑k−1
i=1
∑k

j=i+1(n − 2ni) ≥ 3(n − 4), we have

uB3(H) ≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1

]
+ (n1 − n2) + 2(n − 3) + 3(n − 4) +

k∑
i=1

2|ni − 2|

= (n + 2)(n − 3) + (i − 1)(n − 3) + n + 3k − i − 8
> (n + 2)(n − 3). (n ≥ 8, 1 ≤ i ≤ k)

In the second case, since f (n1) = −2n2
1 + (n + 2)n1 + n − 14 is a quadratic function that is concave

down and f (2) = f ( n
2 − 1) = 3n − 18 > 0 for n ≥ 8, we get f (n1) > 0. Therefore,

uB3(H) ≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1)

]
+ (n1 − n2) + 4n − 16 +

k∑
i=1

2|ni − 2|

= (n + 2)(n − 3) − 2n2
1 + (n + 2)n1 + n − 14

> (n + 2)(n − 3).
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Finally, if n1 =
n
2 and n2 <

n
2 − k − 1, then ni > 1 for some i ∈ {3, · · · , k}. If i is largest with this

property, then

−(n2 + 1) − 2(n2 + 1)2 − 2(ni − 1)2 + 2|n2 + 1 − 2| + 2|ni − 1 − 2|
− [ − n2 − 2n2

2 − 2n2
i + 2|n2 − 2| + 2|ni − 2|]

≤ −(n2 − ni) − 1 < 0.

This implies that (n1, n2 + 1, · · · , ni − 1, · · · , nk) is a better solution of (3.1), which is a contradiction.
So, there is only the following case:

(c) n1 =
n
2 , n2 =

n
2 − k − 1, n3 = · · · = nk = 1. Therefore, we have

uB3(H) ≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1)

]
+ (n1 − n2) + 4n − 16 +

k∑
i=1

2|ni − 2|

= (n + 2)(n − 3) + (n − 2k)(k − 2) + 5n − 8k − 12

> (n + 2)(n − 3). (2 ≤ k ≤ n
2
− 3)

Case 1.2. n1 >
n
2 .

Note that for n ≥ 8,
∑k

i=1
[
(n− 4)+ (n− 6)+ · · ·+ |n− 2(ni − 1)|]+ 2(2n1 − n) ≥ 2n− 10+ 4 = 2n− 6,

we have

uB3(H) ≥ [(n − 2) + · · · + 0 + 1 + · · · + (2n1 − n)
]
+

k∑
i=2

[
(n − 2) + · · · + (n − 2ni)

]
+

k−1∑
i=1

k∑
j=i+1

(ni − n j) + 2(n − 3) +
k∑

i=1

2|ni − 2| +
k∑

i=1

[
(n − 4) + (n − 6) + · · · + |n − 2(ni − 1)|]

+ 2(2n1 − n) +
k−1∑
i=1

k∑
j=i+1

|(2ni − n)|

≥ [(n − 2) + · · · + 0 + 1 + · · · + (2n1 − n)
]
+

k∑
i=2

[
(n − 2) + · · · + (n − 2ni)

]
+

k∑
i=2

(n1 − ni) + 2(n − 3) +
k∑

i=1

2|ni − 2| + 2n − 6

≥ 1
2

(n − 1)(n − 2) +
1
2

(2n1 − n)(2n1 − n + 1) + (k − 1)n1

+

k∑
i=2

[
(2ni − 1)n − ni(2ni + 1) + 1 − ni)

]
+ 4(n − 3) +

k∑
i=1

2|ni − 2|

= f2(n, k) + 2n2
1 − n1(4n − k) −

k∑
i=2

(2n2
i + 2ni) +

k∑
i=1

2|ni − 2|,

where f2(n, k) = 2n2 − (k − 1)n + k − 12.
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We consider the following optimization problem:

min f2(n, k) + 2n2
1 − n1(4n − k) −

k∑
i=2

(2n2
i + 2ni) +

k∑
i=1

2|ni − 2|,

s.t. n1 >
n
2
, n1 ≥ n2 ≥ · · · ≥ nk ≥ 1, (3.2)

n1 + n2 + · · · + nk = n − 3.

Let (n1, n2, · · · , nk) be a lexicographically maximal optimal solution of (3.2).
Note that n1+ni ≤ n1+n2 ≤ n−3−(k−2) = n−k−1, 4(n1+ni)−4n+k+6 ≤ 4(n−k−1)−4n+k+6 =

−3k + 2 < 0.
If ni > 1 for some i ∈ {2, · · · , k}, and i is largest with this property, then[

2(n1 + 1)2 − (n1 + 1)(4n − k) − 2(ni − 1)2 − 2(ni − 1) + 2(n1 + 1 − 2) + 2|ni − 1 − 2|]
− [2n2

1 − n1(4n − k) − 2n2
i − 2ni + 2(n1 − 2) + 2|ni − 2|]

≤ 4(n1 + ni) − 4n + k + 6 < 0.

This observation implies that
(d) n1 = n − k − 2, n2 = · · · = nk = 1. Therefore, we obtain

uB3(H) ≥ 1
2

(n − 1)(n − 2) +
1
2

(2n1 − n)(2n1 − n + 1) + (k − 1)n1

+ (k − 1)(n − 3) + 4(n − 3) + 2(n − 5)
= (n + 2)(n − 3) + k(k + 3) − 4
≥ (n + 2)(n − 3).

Case 2. H has at least two vertices of degree at least three.
Considering the vertex of degree at least three that is farthest to C3, denoted as c, which has a degree

of k + 1, where k ≥ 2. It follows that H − c has k + 1 components, where k components are paths of
orders n1, · · · , nk with n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Let n′ = 1 + n1 + n2 + · · · + nk, the other component K
of order n − n′.

Let d ∈ V(K) be the neighbor of c. Let the new graph H′ arise from the disjoint union of K and
a path P of order n′ by adding one edge between d and an endvertex of P. Our goal is to show that
uB3(H) > uB3(H′), which would contradict the choice of H, and complete the proof.

Case 2.1. n′ = 1 + n1 + n2 + · · · + nk ≤ n
2 .

uB3(H) − uB3(H′) =
k∑

i=1

[
(n − 2) + · · · + (n − 2ni) + (n − n′ − ni)

]
+

k−1∑
i=1

k∑
j=i+1

(ni − n j)

+

k∑
i=1

[
(n − 4) + (n − 6) + · · · + n − 2(ni − 1) + (n − 2ni)

]
+

k−1∑
i=1

k∑
j=i+1

(n − 2ni)

− [(n − 2) + · · · + n − (2n′ − 1)
] − [(n − 4) + (n − 6) + · · · + n − 2(n′ − 1)

]
AIMS Mathematics Volume 9, Issue 7, 16863–16875.
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≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1 + (n − n′ − ni)

]
+

k∑
i=1

[
(ni − 2)(n − ni − 1)

+ (n − 2ni)
]
+

k∑
i=2

(n − 2ni) − [(2n′ − 1)n − n′(2n′ − 1) + 1
] − [(n′ − 2)(n − n′ − 1)

]
= f3(n, n′, k) + 2n1 −

k∑
i=1

3n2
i .

where f3(n, n′, k) is a suitable function of n, n′ and k.
By the convexity of the function g(x) = x2,

min f3(n, n′, k) + 2n1 −
k∑

i=1

3n2
i ,

s.t. n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,

n1 + n2 + · · · + nk = n′ − 1,

implies that
(e) n1 = n′ − k, n2 = · · · = nk = 1.
Note that 3n′ = 2n′ + n′ ≥ 2(k + 1) + 3 ≥ 2k + 5, and hence,

uB3(H) − uB3(H′) ≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1 + (n − n′ − ni)

]
+ (n1 − 2)(n − n1 − 1)

+ k(n − 2n1) − [(2n′ − 1)n − n′(2n′ − 1) + 1
] − [(n′ − 2)(n − n′ − 1)

]
≥ (3n′ − 2k − 3)(k − 1) > 0.

Case 2.2. n′ = 1 + n1 + n2 + · · · + nk >
n
2 .

Case 2.2.1. n1 ≤ n
2 .

Similar to the above case, it can be concluded that

uB3(H) − uB3(H′) =
k∑

i=1

[
(n − 2) + · · · + (n − 2ni) + |n − n′ − ni|] + k−1∑

i=1

k∑
j=1

(ni − n j)

+

k∑
i=1

[
(n − 4) + (n − 6) + · · · + n − 2(ni − 1) + (n − 2ni)

]
+

k−1∑
i=1

k∑
j=i+1

(n − 2ni) − [(n − 2) + · · · + 1 + 0 + 1 + · · · + (2n′ − 1) − n
]

− [(n − 4) + · · · + 2 + 0 + 2 + · · · + 2(n′ − 1) − n
]

≥
k∑

i=1

[
(2ni − 1)n − ni(2ni + 1) + 1 + |n − n′ − ni|]
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+

k∑
i=1

[
(ni − 2)(n − ni − 1) + (n − 2ni)

]
+

k∑
i=2

(n − n1 − ni)

− [1
2

(n − 1)(n − 2) +
1
2

(2n′ − n)(2n′ − n − 1)
]

− [1
4

(n − 2)(n − 4) + (n′ − n
2

)(n′ − n
2
− 1)
]

= f4(n, n′, k) − (k − 2)n1 −
k∑

i=1

3n2
i +

k∑
i=1

|n − n′ − ni|,

where f4(n, n′, k) is a suitable function of n, n′ and k.
By the convexity of the function g(x) = x2,

min f4(n, n′, k) − (k − 2)n1 −
k∑

i=1

3n2
i +

k∑
i=1

|n − n′ − ni|,

s.t. n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,

n1 + n2 + · · · + nk = n′ − 1,

implies that
( f ) n1 = n′ − k, n2 = · · · = nk = 1.
Note that f (n′) = −6n′2 + (6n + 5k + 1)n′ − 3

2n2 − (k + 2)n − 2k2 + 1 is a quadratic function that is
concave, where n

2 + 1 ≤ n′ ≤ n− 3. By some tedious calculations, it can be concluded that f ( n
2 + 1) > 0

and f (n − 3) > 0. Therefore, we have

uB3(H) − uB3(H′) ≥ −6n′2 + (6n + 5k + 1)n′ − 3
2

n2 − (k + 2)n − 2k2 + 1 > 0.

Case 2.2.2. n1 >
n
2 .

We have

uB3(H) − uB3(H′) = (n − 2) + · · · + 1 + 0 + 1 + · · · + (2n1 − n) + n1 − (n − n′)

+

k∑
i=2

[
(n − 2) + · · · + (n − 2ni) + |n − n′ − ni|] + k−1∑

i=1

k∑
j=1

(ni − n j)

+
[
(n − 4) + · · · + 2 + 0 + 2 + · · · + (2n1 − n)

]
+

k∑
i=2

[
(n − 4) + · · · + n − 2(ni − 1) + (n − 2ni)

]
+

k−1∑
i=1

k∑
j=i+1

|(n − 2ni)|

− [(n − 2) + · · · + 1 + 0 + 1 + · · · + (2n′ − 1) − n
]

− [(n − 4) + · · · + 2 + 0 + 2 + · · · + 2(n′ − 1) − n
]

≥
k∑

i=2

[
(2ni − 1)n − ni(2ni + 1) + 1 + |n − n′ − ni|] + k∑

i=2

(3n1 − ni − n)

+

k∑
i=2

[
(ni − 2)(n − ni − 1) + (n − 2ni)

] − 3(n′ + n1 − n)(n′ − n1 − 1)
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= f5(n, n′, k) − (6n − 3k − 7)n1 −
k∑

i=2

3n2
i +

k∑
i=2

|n − n′ − ni|,

where f5(n, n′, k) is a suitable function of n, n′ and k.
We consider the following optimization problem:

min f5(n, n′, k) − (6n − 3k − 7)n1 −
k∑

i=2

3n2
i +

k∑
i=2

|n − n′ − ni|,

s.t. n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,

n1 + n2 + · · · + nk = n′ − 1.

Note that
−(6n − 3k − 7)(n1 + 1) − 3(ni − 1)2 + |n − n′ − (ni − 1)|
−[ − (6n − 3k − 7)n1 − 3n2

i + |n − n′ − ni|]
≤ −6

[
n − ni − 3k + 5

6
)
]
< −6(n − n′) < 0,

and hence,
(g) n1 = n′ − k, n2 = · · · = nk = 1. Then

uB3(H) − uB3(H′) ≥ (k − 1)(2n − n′ − 3) + (k − 1)(3n1 − n − 1) − 3(k − 1)(2n′ − k − n)
= 4(k − 1)(n − n′ − 1) > 0.

which is the desired contradiction, completing the proof. □

4. Conclusions

From [11], Kramer and Rautenbach showed that the star is the unique tree of order n having the
minimum possible distance–unbalancedness index among all trees of order n. This result leads to a
natural questions what is the minimum distance–unbalancedness index and the extremal graph among
all unicylic graphs of order n? After trying, we found that it is extremely difficult, and we cannot even
determine the minimum value of a unicylic graph with girth three.

In the paper, the minimum value and extremal graph with the minimum distance–unbalancedness of
a merged graph C3 · T are characterized. As a type of connected graphs, our work is of interest, which
has certain significance for investigating Problem 1.1. However, Problem 1.1 has been completely
confirmed, and there will still be numerous tasks to be done.

Finally, we propose the following conjecture based on previous results:
Conjecture 4.1. Let G be a unicylic graph on n vertices with girth three. Then

uB(G) ≥


uB(P3,5) = 12, if n = 5,
uB(S 3,6) = 20, if n = 6,

uB(S 3,n) = (n + 2)(n − 3), if n ≥ 7.

AIMS Mathematics Volume 9, Issue 7, 16863–16875.



16874

Author contributions

Zhenhua Su: Writing-original draft preparation, Writing-review and editing; Zikai Tang: Formal
analysis, Methodology. All authors have read and agreed to the published version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the Department of Education of Hunan Province (22B0763).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. J. Wang, F. Belardo, A lower bound for the first Zagreb index and its application, MATCH Commun.
Math. Comput. Chem., 74 (2015), 35–56.

2. A. A. Dobrynin, The Szeged and Wiener indices of line graphs, MATCH Commun. Math. Comput.
Chem., 79 (2018), 743–756.

3. S. Bessy, F. Dross, K. Hrinakova, M. Knor, R. Škrekovski, Maximal Wiener index for
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8. A. Ali, T. Došlić, Mostar index: Results and perspectives, Appl. Math. Comput., 404 (2021),
126245. https://doi.org/10.1016/j.amc.2021.126245

9. F. Hayat, B. Zhou, On Mostar Index of Trees with Parameters, Filomat, 33 (2019), 6453–6458.
https://doi.org/10.2298/FIL1919453H
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