Research article Special Issues

An application of heuristic optimization algorithm for demand response in smart grids with renewable energy

  • Received: 14 January 2024 Revised: 10 March 2024 Accepted: 22 March 2024 Published: 18 April 2024
  • MSC : 68T20

  • This work presented power usage scheduling by engaging consumers in demand response program (DRP) with and without using renewable energy generation (REG). This power usage scheduling problem was modeled as an optimization problem, which was solved using an energy scheduler (ES) based on the crossover mutated enhanced wind-driven optimization (CMEWDO) algorithm. The CMEWDO was an enhanced wind-driven optimization (WDO) algorithm, where the optimal solution returned from WDO was fed to crossover and mutation operations to further achieve the global optimal solution. The developed CMEWDO algorithm was verified by comparing it with other algorithms like the whale optimization algorithm (WOA), enhanced differential evolution algorithm (EDE), and the WDO algorithm in aspects of the electricity bill and peak to average demand ratio (PADR) minimization without compromising consumers' comfort. Also, the developed CMEWDO algorithm has a lower computational time (measured in seconds) and a faster convergence rate (measured in number of iterations) than the standard WDO algorithm and other comparative algorithms.

    Citation: Mohammed Jalalah, Lyu-Guang Hua, Ghulam Hafeez, Safeer Ullah, Hisham Alghamdi, Salem Belhaj. An application of heuristic optimization algorithm for demand response in smart grids with renewable energy[J]. AIMS Mathematics, 2024, 9(6): 14158-14185. doi: 10.3934/math.2024688

    Related Papers:

  • This work presented power usage scheduling by engaging consumers in demand response program (DRP) with and without using renewable energy generation (REG). This power usage scheduling problem was modeled as an optimization problem, which was solved using an energy scheduler (ES) based on the crossover mutated enhanced wind-driven optimization (CMEWDO) algorithm. The CMEWDO was an enhanced wind-driven optimization (WDO) algorithm, where the optimal solution returned from WDO was fed to crossover and mutation operations to further achieve the global optimal solution. The developed CMEWDO algorithm was verified by comparing it with other algorithms like the whale optimization algorithm (WOA), enhanced differential evolution algorithm (EDE), and the WDO algorithm in aspects of the electricity bill and peak to average demand ratio (PADR) minimization without compromising consumers' comfort. Also, the developed CMEWDO algorithm has a lower computational time (measured in seconds) and a faster convergence rate (measured in number of iterations) than the standard WDO algorithm and other comparative algorithms.



    加载中


    [1] M. Y. Raza, B. Lin, Analysis of Pakistan's electricity generation and CO$_2$ emissions: Based on decomposition and decoupling approach, J. Clean. Prod., 359 (2022), 132074. https://doi.org/10.1016/j.jclepro.2022.132074 doi: 10.1016/j.jclepro.2022.132074
    [2] A. Alzahrani, K. Sajjad, G. Hafeez, S. Murawwat, S. Khan, F. A. Khan, Real-time energy optimization and scheduling of buildings integrated with renewable microgrid, Appl. Energ., 335 (2023), 120640. https://doi.org/10.1016/j.apenergy.2023.120640 doi: 10.1016/j.apenergy.2023.120640
    [3] U. Assad, M. A. S. Hassan, U. Farooq, A. Kabir, M. Z. Khan, S. S. H. Bukhari, et al., demand response and optimization: A critical review of computational methods, Energies, 15 (2022), 2003. https://doi.org/10.3390/en15062003 doi: 10.3390/en15062003
    [4] G. Hafeez, N. Islam, A. Ali, S. Ahmad, M. Usman, K. S. Alimgeer, A modular framework for optimal load scheduling under price-based demand response scheme in smart grid, Processes, 7 (2019), 499. https://doi.org/10.3390/pr7080499 doi: 10.3390/pr7080499
    [5] S. Nojavan, K. Zare, Demand response application in smart grid, Springer, 2020. https://doi.org/10.1007/978-3-030-31399-9
    [6] A. Almutairi, N. Albagami, S. Almesned, O. Alrumayh, H. Malik, A novel optimal framework for scheduling rooftop solar home appliances considering electricity, real pricing and user comfort, Sol. Energy, 262 (2023), 111876. https://doi.org/10.1016/j.solener.2023.111876 doi: 10.1016/j.solener.2023.111876
    [7] E. S. F. Tantawy, G. M. Amer, H. M. Fayez, Scheduling home appliances with integration of hybrid energy sources using intelligent algorithms, Ain Shams Eng. J., 13 (2022), 101676. https://doi.org/10.1016/j.asej.2021.101676 doi: 10.1016/j.asej.2021.101676
    [8] M. A. Hossain, H. R. Pota, S. Squartini, F. Zaman, J. M. Guerrero, Energy scheduling of community microgrid with battery cost using particle swarm optimisation, Appl. Energ., 254 (2019), 113723. https://doi.org/10.1016/j.apenergy.2019.113723 doi: 10.1016/j.apenergy.2019.113723
    [9] I. Ullah, M. B. Rasheed, T. Alquthami, S. Tayyaba, A residential load scheduling with the integration of on-site PV and energy storage systems in micro-grid, Sustainability, 12 (2020), 184. https://doi.org/10.3390/su12010184 doi: 10.3390/su12010184
    [10] I. Essiet, Y. Sun, Z. Wang, Scavenging differential evolution algorithm for smart grid demand side management, Procedia Manuf., 35 (2019), 595–600. https://doi.org/10.1016/j.promfg.2019.05.084 doi: 10.1016/j.promfg.2019.05.084
    [11] I. Essiet, Y. Sun, Z. Wang, Scavenging differential evolution algorithm for smart grid demand side management, Procedia Manuf., 35 (2019), 595–600. https://doi.org/10.1016/j.promfg.2019.05.084 doi: 10.1016/j.promfg.2019.05.084
    [12] F. R. Albogamy, S. A. Khan, G. Hafeez, S. Murawwat, S. Khan, S. I. Haider, et al., Real-time energy management and load scheduling with renewable energy integration in smart grid, Sustainability, 14 (2022), 1792. https://doi.org/10.3390/su14031792 doi: 10.3390/su14031792
    [13] S. Leonori, M. Paschero, F. M. F. Mascioli, A. Rizzi, Optimization strategies for microgrid energy management systems by genetic algorithms, Appl. Soft Comput., 86 (2020), 105903. https://doi.org/10.1016/j.asoc.2019.105903 doi: 10.1016/j.asoc.2019.105903
    [14] W. Chiu, J. Hsieh, C. Chen, Pareto optimal demand response based on energy costs and load factor in smart grid, IEEE T. Ind. Inform., 16 (2020), 1811–1822. https://doi.org/10.1109/TⅡ.2019.2928520 doi: 10.1109/TⅡ.2019.2928520
    [15] M. Gholami, M. J. Sanjari, Multiobjective energy management in battery-integrated home energy systems, Renew. Energ., 177 (2021), 967–975. https://doi.org/10.1016/j.renene.2021.05.162 doi: 10.1016/j.renene.2021.05.162
    [16] X. Jiang, C. Xiao, Household energy demand management strategy based on operating power by genetic algorithm, IEEE Access, 7 (2019), 96414–96423. https://doi.org/10.1109/ACCESS.2019.2928374 doi: 10.1109/ACCESS.2019.2928374
    [17] A. Mateen, M. Wasim, A. Ahad, T. Ashfaq, M. Iqbal, A. Ali, Smart energy management system for minimizing electricity cost and peak to average ratio in residential areas with hybrid genetic flower pollination algorithm, Alex. Eng. J., 77 (2023), 593–611. https://doi.org/10.1016/j.aej.2023.06.053 doi: 10.1016/j.aej.2023.06.053
    [18] B. Mota, P. Faria, Z. Vale, Residential load shifting in demand response events for bill reduction using a genetic algorithm, Energy, 260 (2022), 124978. https://doi.org/10.1016/j.energy.2022.124978 doi: 10.1016/j.energy.2022.124978
    [19] R. Torkan, A. Ilinca, M. Ghorbanzadeh, A genetic algorithm optimization approach for smart energy management of microgrids, Renew. Energ., 197 (2022), 852–863. https://doi.org/10.1016/j.renene.2022.07.055 doi: 10.1016/j.renene.2022.07.055
    [20] R. El Makroum, A. Khallaayoun, R. Lghoul, K. Mehta, W. Zörner, Home energy management system based on genetic algorithm for load scheduling: A case study based on real life consumption data, Energies, 16 (2023), 2698. https://doi.org/10.3390/en16062698 doi: 10.3390/en16062698
    [21] S. Mandal, K. K. Mandal, Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution, Renewable Energ. Focus, 34 (2020), 129–141. https://doi.org/10.1016/j.ref.2020.05.002 doi: 10.1016/j.ref.2020.05.002
    [22] B. Chreim, M. Esseghir, L. Merghem-Boulahia, LOSISH—LOad scheduling in smart homes based on demand response: Application to smart grids, Appl. Energ., 323 (2022), 119606. https://doi.org/10.1016/j.apenergy.2022.119606 doi: 10.1016/j.apenergy.2022.119606
    [23] I. Ullah, I. Hussain, M. Singh, Exploiting grasshopper and cuckoo search bio-inspired optimization algorithms for industrial energy management system: Smart industries, Electronics, 9 (2020), 105. https://doi.org/10.3390/electronics9010105 doi: 10.3390/electronics9010105
    [24] Y. Liu, H. Li, J. Zhu, Y. Lin, W. Lei, Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm, Energy, 262 (2023), 125460. https://doi.org/10.1016/j.energy.2022.125460 doi: 10.1016/j.energy.2022.125460
    [25] M. Waseem, Z. Lin, S. Liu, I. A. Sajjad, T. Aziz, Optimal GWCSO-based home appliances scheduling for demand response considering end-users comfort, Electr. Pow. Syst. Res., 187 (2020), 106477. https://doi.org/10.1016/j.epsr.2020.106477 doi: 10.1016/j.epsr.2020.106477
    [26] R. K. Yadav, P. N. Hrisheekesha, V. S. Bhadoria, Grey wolf optimization based demand side management in solar pv integrated smart grid environment, IEEE Access, 11 (2023), 11827–11839. https://doi.org/10.1109/ACCESS.2023.3241856 doi: 10.1109/ACCESS.2023.3241856
    [27] S. Mouassa, T. Bouktir, F. Jurado, Scheduling of smart home appliances for optimal energy management in smart grid using Harris-hawks optimization algorithm, Optim. Eng., 22 (2021), 1625–1652. https://doi.org/10.1007/s11081-020-09572-1 doi: 10.1007/s11081-020-09572-1
    [28] G. Hafeez, Z. Wadud, I. U. Khan, I. Khan, Z. Shafiq, M. Usman, et al., Efficient energy management of IoT-enabled smart homes under price-based demand response program in smart grid, Sensors, 20 (2020), 3155. https://doi.org/10.3390/s20113155 doi: 10.3390/s20113155
    [29] M. Jamil, S. Mittal, Hourly load shifting approach for demand side management in smart grid using grasshopper optimisation algorithm, IET Gener. Transm. Dis., 14 (2020), 808–815. https://doi.org/10.1049/iet-gtd.2019.0566 doi: 10.1049/iet-gtd.2019.0566
    [30] E. Shirazi, S. Jadid, Cost reduction and peak shaving through domestic load shifting and DERs, Energy, 124 (2017), 146–159. https://doi.org/10.1016/j.energy.2017.01.148 doi: 10.1016/j.energy.2017.01.148
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(728) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Figures(17)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog