In this manuscript, we study a thin and narrow plate equation that models the deck of a suspension bridge that is subject to a Balakrishnan-Taylor damping and a strong damping. First, by using the Faedo Galerkin method, we prove the existence of both global weak and regular solutions. Second, we prove the exponential stability of the energy for regular solutions by combining the multiplier method and a well-known result of Komornik.
Citation: Zayd Hajjej. On the exponential decay of a Balakrishnan-Taylor plate with strong damping[J]. AIMS Mathematics, 2024, 9(6): 14026-14042. doi: 10.3934/math.2024682
In this manuscript, we study a thin and narrow plate equation that models the deck of a suspension bridge that is subject to a Balakrishnan-Taylor damping and a strong damping. First, by using the Faedo Galerkin method, we prove the existence of both global weak and regular solutions. Second, we prove the exponential stability of the energy for regular solutions by combining the multiplier method and a well-known result of Komornik.
[1] | E. Berchio, A. Falocchi, A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions, Ann. Mat. Pur. Appl., 200 (2021), 1651–1681. https://doi.org/10.1007/s10231-020-01054-6 doi: 10.1007/s10231-020-01054-6 |
[2] | J. M. Ball, Stability theory for an extensible beam, J. Differ. Equations, 14 (1973), 399–418. https://doi.org/10.1016/0022-0396(73)90056-9 doi: 10.1016/0022-0396(73)90056-9 |
[3] | E. Emmrich, M. Thalhammer, A class of integro-differential equations incorporing nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization, Nonlinearity, 24 (2011), 2523–2546. https://doi.org/10.1088/0951-7715/24/9/008 doi: 10.1088/0951-7715/24/9/008 |
[4] | H. R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron. J. Qual. Theo., 11 (2002), 1–21. https://doi.org/10.14232/ejqtde.2002.1.11 doi: 10.14232/ejqtde.2002.1.11 |
[5] | Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping, Abstr. Appl. Anal., 1 (1996), 83–102. https://doi.org/10.1155/S1085337596000048 doi: 10.1155/S1085337596000048 |
[6] | E. H. G. Tavares, M. A. J. Silva, V. Narciso, Long-time dynamics of Balakrishnan-Taylor extensible beams, J. Dyn. Differ. Equ., 32 (2020), 1157–1175. https://doi.org/10.1007/s10884-019-09766-x doi: 10.1007/s10884-019-09766-x |
[7] | J. Glover, A. C. Lazer, P. J. Mckenna, Existence and stability of of large scale nonlinear oscillation in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172–200. https://doi.org/10.1007/BF00944997 doi: 10.1007/BF00944997 |
[8] | P. J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. An., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232 |
[9] | A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn.-A, 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.587 doi: 10.3934/dcds.2015.35.587 |
[10] | F. Gazzola, Mathematical models for suspension bridges: Nonlinear structural instability, modeling, simulation and applications, 1 Eds., New York: Springer-Verlag, 2015. https://doi.org/10.1007/978-3-319-15434-3 |
[11] | V. S. Guliyev, M. N. Omarova, M. A. Ragusa, Characterizations for the genuine Calderon-Zygmund operators and commutators on generalized Orlicz-Morrey spaces, Adv. Nonlinear Anal., 12 (2023), 20220307. https://doi.org/10.1515/anona-2022-0307 doi: 10.1515/anona-2022-0307 |
[12] | H. Y. Li, B. W. Feng, Exponential and polynomial decay rates of a porous elastic system with thermal damping, J. Funct. Space., 2023 (2023). https://doi.org/10.1155/2023/3116936 |
[13] | N. Taouaf, Global existence and exponential decay for thermoelastic system with nonlinear distributed delay, Filomat, 37 (2023), 8897–8908. |
[14] | M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal.-Theor., 106 (2014), 181–734. https://doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011 |
[15] | G. Crasta, A. Falocchi, F. Gazzola, A new model for suspension bridges involving the convexification of the cables, Z. Angew. Math. Phys., 71 (2020), 93. https://doi.org/10.1007/s00033-020-01316-6 doi: 10.1007/s00033-020-01316-6 |
[16] | S. A. Messaoudi, S. E. Mukiawa, A suspension bridge problem: Existence and stability, In: International Conference on Mathematics and Statistics, Cham: Springer International Publishing, 2017,151–165. https://doi.org/10.1007/978-3-319-46310-0_9 |
[17] | M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka, Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signal., 30 (2018), 39. https://doi.org/10.1007/s00498-018-0226-0 doi: 10.1007/s00498-018-0226-0 |
[18] | A. D. D. Cavalcanti, M. Cavalcanti, W. J. Corrêa, Z. Hajjej, M. S. Cortés, R. V. Asem, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, J. Franklin I., 357 (2020), 2388–2419. https://doi.org/10.1016/j.jfranklin.2020.01.004 doi: 10.1016/j.jfranklin.2020.01.004 |
[19] | W. Liu, H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equ. Appl., 24 (2017), 67. https://doi.org/10.1007/s00030-017-0491-5 doi: 10.1007/s00030-017-0491-5 |
[20] | Y. Wang, Finite time blow-up and global solutions for fourth-order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713–733. https://doi.org/10.1016/j.jmaa.2014.04.015 doi: 10.1016/j.jmaa.2014.04.015 |
[21] | S. A. Messaoudi, S. E. Mukiawa, Existence and stability of fourth-order nonlinear plate problem, Nonauton. Dyn. Syst., 6 (2019), 81–98. https://doi.org/10.1515/msds-2019-0006 doi: 10.1515/msds-2019-0006 |
[22] | Z. Hajjej, General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term, Z. Angew. Math. Phys., 72 (2021), 90. https://doi.org/10.1007/s00033-021-01526-6 doi: 10.1007/s00033-021-01526-6 |
[23] | E. Berchio, A. Falocchi, About symmetry in partially hinged composite plates, Appl. Math. Opt., 84 (2021), 2645–2669. https://doi.org/10.1007/s00245-020-09722-y doi: 10.1007/s00245-020-09722-y |
[24] | E. Berchio, A. Falocchi, Maximizing the ratio of eigenvalues of nonhomogeneous partially hinged plates, J. Spectr. Theor., 11 (2021), 743–780. https://doi.org/10.4171/JST/355 doi: 10.4171/JST/355 |
[25] | D. Bonheure, F. Gazzola, I. Lasiecka, J. Webster, Long-time dynamics of a hinged-free plate driven by a nonconservative force, Ann. I. H. Poincaré-An., 39 (2022), 457–500. https://doi.org/10.4171/aihpc/13 doi: 10.4171/aihpc/13 |
[26] | V. Komornik, Exact controllability and stabilization: The multiplier method, Paris: Masson-John Wiley, 1994. |
[27] | V. Ferreira, F. Gazzola, E. M. dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differ. Equations, 261 (2016), 6302–6340. https://doi.org/10.1016/j.jde.2016.08.037 doi: 10.1016/j.jde.2016.08.037 |
[28] | J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61–90. https://doi.org/10.1016/0022-247X(73)90121-2 doi: 10.1016/0022-247X(73)90121-2 |
[29] | J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Paris: Dunod, 2002. |
[30] | M. T. L. Sonrier, Distrubutions espace de Sobolev application, Ellipses/Edition Marketing S.A, 1998. |
[31] | S. Yayla, C. L. Cardozo, M. A. J. Silva, V. Narciso, Dynamics of a Cauchy problem related to extensible beams under nonlocal and localized damping effects, J. Math. Anal. Appl., 494 (2021), 124620. https://doi.org/10.1016/j.jmaa.2020.124620 doi: 10.1016/j.jmaa.2020.124620 |