Research article

Unveiling the dynamics of drug transmission: A fractal-fractional approach integrating criminal law perspectives

  • Received: 01 February 2024 Revised: 11 March 2024 Accepted: 20 March 2024 Published: 08 April 2024
  • MSC : 92-10, 37C75, 65L07

  • The excessive use of drugs has become a growing concern in the current century, with the global toll of drug-related deaths and disabilities posing a significant public health challenge in both developed and developing countries. In pursuit of continuous improvement in existing strategies, this article presented a nonlinear deterministic mathematical model that encapsulates the dynamics of drug addiction transmission while considering the legal implications imposed by criminal law within a population. The proposed model incorporated the fractal-fractional order derivative using the Atangana-Baleanu-Caputo ($ \mathbb{ABC} $) operator. The objectives of this research were achieved by examining the dynamics of the drug transmission model, which stratifies the population into six compartments: The susceptible class to drug addicts, the number of individuals receiving drug misuse education, the count of mild drug addicts, the population of heavy-level drug addicts, individuals subjected to criminal law, and those who have ceased drug use. The qualitative analysis of the devised model established the existence and uniqueness of solutions within the framework of fixed-point theory. Furthermore, Ulam-Hyer's stability was established through nonlinear functional analysis. To obtain numerical solutions, the fractional Adam-Bashforth iterative scheme was employed, and the results were validated through simulations conducted using MATLAB. Additionally, numerical results were plotted for various fractional orders and fractal dimensions, with comparisons made against integer orders. The findings underscored the necessity of controlling the effective transmission rate to halt drug transmission effectively. The newly proposed strategy demonstrated a competitive advantage, providing a more nuanced understanding of the complex dynamics outlined in the model.

    Citation: Yasir Nadeem Anjam, Asma Arshad, Rubayyi T. Alqahtani, Muhammad Arshad. Unveiling the dynamics of drug transmission: A fractal-fractional approach integrating criminal law perspectives[J]. AIMS Mathematics, 2024, 9(5): 13102-13128. doi: 10.3934/math.2024640

    Related Papers:

  • The excessive use of drugs has become a growing concern in the current century, with the global toll of drug-related deaths and disabilities posing a significant public health challenge in both developed and developing countries. In pursuit of continuous improvement in existing strategies, this article presented a nonlinear deterministic mathematical model that encapsulates the dynamics of drug addiction transmission while considering the legal implications imposed by criminal law within a population. The proposed model incorporated the fractal-fractional order derivative using the Atangana-Baleanu-Caputo ($ \mathbb{ABC} $) operator. The objectives of this research were achieved by examining the dynamics of the drug transmission model, which stratifies the population into six compartments: The susceptible class to drug addicts, the number of individuals receiving drug misuse education, the count of mild drug addicts, the population of heavy-level drug addicts, individuals subjected to criminal law, and those who have ceased drug use. The qualitative analysis of the devised model established the existence and uniqueness of solutions within the framework of fixed-point theory. Furthermore, Ulam-Hyer's stability was established through nonlinear functional analysis. To obtain numerical solutions, the fractional Adam-Bashforth iterative scheme was employed, and the results were validated through simulations conducted using MATLAB. Additionally, numerical results were plotted for various fractional orders and fractal dimensions, with comparisons made against integer orders. The findings underscored the necessity of controlling the effective transmission rate to halt drug transmission effectively. The newly proposed strategy demonstrated a competitive advantage, providing a more nuanced understanding of the complex dynamics outlined in the model.



    加载中


    [1] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Diff. Equ., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-0949-5 doi: 10.1186/s13662-016-0949-5
    [2] A. Abidemi, Optimal cost-effective control of drug abuse by students: Insight from mathematical modeling, Model. Earth Syst. Environ., 9 (2023), 811–829. https://doi.org/10.1007/s40808-022-01534-z doi: 10.1007/s40808-022-01534-z
    [3] E. Addai, A. Adeniji, O. J. Peter, J. O. Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
    [4] E. Addai, L. L. Zhang, J. A. Prah, J. F. Gordon, J. K. K. Asamoah, J. F. Essel, Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets, Physica A: Stat. Mecha. Appl., 603 (2022), 127809. https://doi.org/10.1016/j.physa.2022.127809 doi: 10.1016/j.physa.2022.127809
    [5] E. Addai, L. L. Zhang, A. K. Preko, J. K. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthcare Analytics, 2 (2022), 100114. https://doi.org/10.1016/j.health.2022.100114 doi: 10.1016/j.health.2022.100114
    [6] Z. Ahmad, F. Ali, N.Khan, I. Khan, Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel, Chaos Soliton. Fract., 153 (2021), 111602. https://doi.org/10.1016/j.chaos.2021.111602 doi: 10.1016/j.chaos.2021.111602
    [7] Z. Ahmad, G. Bonanomi, D. D. Serafino, F. Giannino, Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Appl. Numer. Math., 185 (2023), 446–465. https://doi.org/10.1016/j.apnum.2022.12.004 doi: 10.1016/j.apnum.2022.12.004
    [8] S. Ahmad, A. Ullah, T. Abdeljawad, A. Akg${\ddot{u}}$l, N. Mlaiki, Analysis of fractal-fractional model of tumor-immune interaction, Results Phys., 25 (2021), 104178. https://doi.org/10.1016/j.rinp.2021.104178 doi: 10.1016/j.rinp.2021.104178
    [9] J. O. Akanni, Mathematical assessment of the role of illicit drug use on terrorism spread dynamics, J. Appl. Math. Comput., 68 (2022), 3873–3900. https://doi.org/10.1007/s12190-021-01674-y doi: 10.1007/s12190-021-01674-y
    [10] J. O. Akanni, D. A. Adediipo, O. O. Kehinde, O. W. Ayanrinola, O. A. Adeyemo, Mathematical Modelling of the Co-dynamics of illicit drug use and terrorism, Inf. Sci. Lett., 11 (2022), 559–572.
    [11] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020
    [12] N. Almutairi, S. Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials, MethodsX, 12 (2024), 102510. https://doi.org/10.1016/j.mex.2023.102510 doi: 10.1016/j.mex.2023.102510
    [13] Y. N. Anjam, R. Shafqat, I. E. Sarris, M. U. Rahman, S. Touseef, M. Arshad, A fractional order investigation of smoking model using Caputo-Fabrizio differential operator, Fractal Fract., 6 (2022), 623. https://doi.org/10.3390/fractalfract6110623 doi: 10.3390/fractalfract6110623
    [14] Y. N. Anjam, I. Shahid, H. Emadifar, S. A. Cheema, M. U. Rahman, Dynamics of the optimality control of transmission of infectious disease: A sensitivity analysis, Sci. Rep., 14 (2024), 1041. https://doi.org/10.1038/s41598-024-51540-7 doi: 10.1038/s41598-024-51540-7
    [15] Y. N. Anjam, M. Yavuz, M. U. Rahman, A. Batool, Analysis of a fractional pollution model in a system of three interconnecting lakes, AIMS Biophys., 10 (2023), 220–240. http://dx.doi.org/10.3934/biophy.2023014 doi: 10.3934/biophy.2023014
    [16] A. T. Anwar, P. Kumam, K. Sitthithakerngkiet, S. Muhammad, A fractal-fractional model-based investigation of shape influence on thermal performance of tripartite hybrid nanofluid for channel flows, Numer. Heat Tr. A. Appl., 85 (2024), 155–186. https://doi.org/10.1080/10407782.2023.2209926 doi: 10.1080/10407782.2023.2209926
    [17] A. M. Arria, K. M. Caldeira, B. A. Bugbee, K. B. Vincent, K. E. O. Grady, The academic consequences of marijuana use during college, Psychol. Addict. Behav., 29 (2015), 564–575. https://psycnet.apa.org/doi/10.1037/adb0000108 doi: 10.1037/adb0000108
    [18] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [19] E. J. Aspinall, D. Nambiar, D. J. Goldberg, M. Hickman, A. Weir, E. V. Velzen, et al., Are needle and syringe programmes associated with a reduction in HIV transmission among people who inject drugs: A systematic review and meta-analysis, Int. J. Epidemiol., 43 (2014), 235–248. https://doi.org/10.1093/ije/dyt243 doi: 10.1093/ije/dyt243
    [20] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Soliton. Fract., 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860
    [21] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [22] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [23] Attaullah, M. Jawad, S. Alyobi, M. F. Yassen, W. Weera, A higher order Galerkin time discretization scheme for the novel mathematical model of COVID-19, AIMS Math., 8 (2023), 3763–3790. http://dx.doi.org/10.3934/math.2023188 doi: 10.3934/math.2023188
    [24] A. Babaei, H. Jafari, A. Liya, Mathematical models of HIV/AIDS and drug addiction in prisons, Eur. Phys. J. Plus, 135 (2020), 1–12. https://doi.org/10.1140/epjp/s13360-020-00400-0 doi: 10.1140/epjp/s13360-020-00400-0
    [25] P. J. Brown, R. L. Stout, J. G. Rowley, 15Substance use disorder-PTSD comorbidity: Patients' perceptions of symptom interplay and treatment issues, J. Subst. Abuse Treat., 15 (1998), 445–448. https://doi.org/10.1016/S0740-5472(97)00286-9 doi: 10.1016/S0740-5472(97)00286-9
    [26] M. Caputo, M. Fabrizio, On the singular kernels for fractional derivatives. Some applications to partial differential equations, Progr. Fract. Differ. Appl., 7 (2021), 79–82. http://dx.doi.org/10.18576/pfda/0070201 doi: 10.18576/pfda/0070201
    [27] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [28] K. M. Carroll, L. S. Onken, Behavioral therapies for drug abuse, Am. J. Psychiat., 162 (2005), 1452–1460. https://doi.org/10.1176/appi.ajp.162.8.1452 doi: 10.1176/appi.ajp.162.8.1452
    [29] K. Diethelm, R. Garrappa, M. Stynes, Good (and not so good) practices in computational methods for fractional calculus, Mathematics, 8 (2020), 324. https://doi.org/10.3390/math8030324 doi: 10.3390/math8030324
    [30] M. Farman, R. Sarwar, A. Akgul, Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator, Chaos Soliton. Fract., 170 (2023), 113373. https://doi.org/10.1016/j.chaos.2023.113373 doi: 10.1016/j.chaos.2023.113373
    [31] V. A. Fonner, S. L. Dalglish, C. E. Kennedy, R. Baggaley, K. R. $\acute{O}$reilly, F. M. Koechlin, et al., Effectiveness and safety of oral HIV preexposure prophylaxis for all populations, AIDS, 30 (2016), 1973–1983. https://doi.org/10.1097/QAD.0000000000001145 doi: 10.1097/QAD.0000000000001145
    [32] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [33] M. Hafiruddin, F. Fatmawati, M. Miswanto, Mathematical model analysis of a drug transmission with criminal law and its optimal control, AIP Conf. Proceed., 2192 (2019). https://doi.org/10.1063/1.5139156 doi: 10.1063/1.5139156
    [34] A. A. Hamou, E. Azroul, G. Diki, M. Guedda, Effect of family and public health education in drug transmission: An epidemiological model with memory, Model. Earth Syst. Environ., 9 (2023), 2809–2828. https://doi.org/10.1007/s40808-022-01662-6 doi: 10.1007/s40808-022-01662-6
    [35] D. C. D. Jarlais, K. Arasteh, C. McKnight, H. Hagan, D. Perlman, S. R. Friedman, Using hepatitis C virus and herpes simplex virus-2 to track HIV among injecting drug users in New York City, Drug Alcohol Depen., 101 (2009), 88–91. https://doi.org/10.1016/j.drugalcdep.2008.11.007 doi: 10.1016/j.drugalcdep.2008.11.007
    [36] D. C. D. Jarlais, A. Nugent, A. Solberg, J. Feelemyer, J. Mermin, D. Holtzman, Syringe service programs for persons who inject drugs in urban, suburban, and rural areas-United States, 2013, MMWR, 64 (2015), 1337–1341.
    [37] A. S. Kalula, F. Nyabadza, A theoretical model for substance abuse in the presence of treatment, S. Afr. J. Sci., 108 (2012), 1–12. https://hdl.handle.net/10520/EJC97218
    [38] K. S. Kendler, C. A. Prescott, Cocaine use, abuse and dependence in a population-based sample of female twins, Brit. J. Psychiat., 173 (1998), 345–350. https://doi.org/10.1192/bjp.173.4.345 doi: 10.1192/bjp.173.4.345
    [39] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Cont. Pap. Math. Phys. Charac., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [40] A. A. Konadu, E. Bonyah, A. L. Sackitey, M. Anokye, J. K. K. Asamoah, A fractional order Monkeypox model with protected travelers using the fixed point theorem and Newton polynomial interpolation, Healthcare Analytics, 3 (2023), 100191. https://doi.org/10.1016/j.health.2023.100191 doi: 10.1016/j.health.2023.100191
    [41] G. F. Koob, N. D. Volkow, Neurobiology of addiction: A neurocircuitry analysis, Lancet. Psychiat., 3 (2016), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8 doi: 10.1016/S2215-0366(16)00104-8
    [42] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1991.
    [43] P. Kumar, V. Govindaraj, Z. A. Khan, Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay, AIMS Math., 7 (2022), 10483–10494. http://dx.doi.org/10.3934/math.2022584 doi: 10.3934/math.2022584
    [44] Z. F. Li, Z. Liu, M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivative, Chaos Soliton. Fract., 131 (2020), 109528. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528
    [45] J. Li, M. J. Ma, The analysis of a drug transmission model with family education and public health education, Infect. Dis. Model., 3 (2018), 74–84. https://doi.org/10.1016/j.idm.2018.03.007 doi: 10.1016/j.idm.2018.03.007
    [46] P. Y. Liu, L. Zhang, Y. F. Xing, Modelling and stability of a synthetic drugs transmission model with relapse and treatment, J. Appl. Math. Comput., 60 (2019), 465–484. https://doi.org/10.1007/s12190-018-01223-0 doi: 10.1007/s12190-018-01223-0
    [47] A. Malik, M. Alkholief, F. M. Aldakheel, A. A. Khan, Z. Ahmad, W. Kamal, et al., Sensitivity analysis of COVID-19 with quarantine and vaccination: A fractal-fractional model, Alex. Eng. J., 61 (2022), 8859–8874. https://doi.org/10.1016/j.aej.2022.02.024 doi: 10.1016/j.aej.2022.02.024
    [48] R. P. Mattick, C. Breen, J. Kimber, M. Davoli, Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence, Coch. Data. Syst. Rev., 3 (2009). https://doi.org/10.1002/14651858.CD002209.pub2 doi: 10.1002/14651858.CD002209.pub2
    [49] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, 1993.
    [50] K. M. Owolabi, A. Shikongo, Fractal fractional operator method on HER2+ breast cancer dynamics, Int. J. Appl. Comput. Math., 7 (2021), 85. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
    [51] C. Potier, V. Lapr$\acute{e}$vote, F. Dubois-Arber, O. Cottencin, B. Rolland, Supervised injection services: What has been demonstrated? A systematic literature review, Drug Alcohol Depen., 145 (2014), 48–68. https://doi.org/10.1016/j.drugalcdep.2014.10.012 doi: 10.1016/j.drugalcdep.2014.10.012
    [52] S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 109812. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
    [53] M. U. Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
    [54] M. U. Rahman, M. Arfan, M. Shah, Z. Shah, E. Alzahrani, Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives, Phys. Scr., 96 (2021), 115203. https://doi.org/10.1088/1402-4896/ac1218 doi: 10.1088/1402-4896/ac1218
    [55] R. A. Rudd, N. Aleshire, J. E. Zibbell, R. M. Gladden, Increases in drug and opioid overdose deaths-United States, 2000–2014, Am. J. Transplant., 16 (2016), 1323–1327. https://doi.org/10.1111/ajt.13776 doi: 10.1111/ajt.13776
    [56] J. Singh, H. K. Jassim, D. Kumar, An efficient computational technique for local fractional Fokker Planck equation, Physica A: Stat. Mech. Appl., 555 (2020), 124525. https://doi.org/10.1016/j.physa.2020.124525 doi: 10.1016/j.physa.2020.124525
    [57] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [58] N. D. Volkow, J. Montaner, The urgency of providing comprehensive and integrated treatment for substance abusers with HIV, Health Affairs, 30 (2011), 1411–1419. https://doi.org/10.1377/hlthaff.2011.0663 doi: 10.1377/hlthaff.2011.0663
    [59] T. X. Zhang, Y. Q. Zhao, X. L. Xu, S. Wu, Y. J. Gu, Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method, Chaos, Soliton. Fract., 178 (2024), 114268. https://doi.org/10.1016/j.chaos.2023.114268 doi: 10.1016/j.chaos.2023.114268
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(740) PDF downloads(57) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog