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Abstract: The excessive use of drugs has become a growing concern in the current century, with
the global toll of drug-related deaths and disabilities posing a significant public health challenge in
both developed and developing countries. In pursuit of continuous improvement in existing strategies,
this article presented a nonlinear deterministic mathematical model that encapsulates the dynamics
of drug addiction transmission while considering the legal implications imposed by criminal law
within a population. The proposed model incorporated the fractal-fractional order derivative using
the Atangana-Baleanu-Caputo (ABC) operator. The objectives of this research were achieved by
examining the dynamics of the drug transmission model, which stratifies the population into six
compartments: The susceptible class to drug addicts, the number of individuals receiving drug misuse
education, the count of mild drug addicts, the population of heavy-level drug addicts, individuals
subjected to criminal law, and those who have ceased drug use. The qualitative analysis of the devised
model established the existence and uniqueness of solutions within the framework of fixed-point theory.
Furthermore, Ulam-Hyer’s stability was established through nonlinear functional analysis. To obtain
numerical solutions, the fractional Adam-Bashforth iterative scheme was employed, and the results
were validated through simulations conducted using MATLAB. Additionally, numerical results were
plotted for various fractional orders and fractal dimensions, with comparisons made against integer
orders. The findings underscored the necessity of controlling the effective transmission rate to halt
drug transmission effectively. The newly proposed strategy demonstrated a competitive advantage,
providing a more nuanced understanding of the complex dynamics outlined in the model.
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1. Introduction

The constantly evolving body of research underscores the correlation between drug usage and
numerous physical, psychological, and socio-economic concerns. Globally, drug abuse stands as a
critical health and societal challenge, drawing significant governmental attention. A growing number
of individuals suffer from the impact of diverse substances, with drug abuse defined by the habitual
consumption of substances detrimental to physical, mental, or emotional well-being, often progressing
to addiction: A persistent condition marked by relentless drug-seeking behavior despite adverse
consequences. Among the commonly abused substances are prescription opioids, benzodiazepines,
cocaine, methamphetamine, marijuana, and alcohol. Genetic predispositions play a substantial role
in susceptibility to drug abuse, particularly among those with a familial history of substance misuse
[34, 37, 38]. Additionally, environmental factors such as stress, trauma, societal influences, mental
health disorders (e.g., anxiety, depression), and the availability of drugs contribute significantly to
substance misuse [17, 25]. The ramifications of drug misuse encompass various physical health
complications, including respiratory and cardiovascular issues, alongside infectious diseases like HIV
and hepatitis. Prolonged drug abuse can culminate in life-threatening overdoses [41, 55, 58].

Prevention programs targeting youth, including family-based and community interventions, are
effective in controlling drug transmission. Cognitive-behavioral therapy (CBT) and medication-
assisted treatment (MAT) play crucial roles in identifying and modifying harmful behaviors associated
with drug misuse [28], extending their scope to substance use disorders, prevention measures for HIV
and other infectious diseases, and drug-resistant infections [31, 48]. Combating drug transmission
requires a multifaceted approach that integrates harm reduction strategies, educational campaigns, and
public health interventions. Needle exchange programs (NEPs) mitigate the spread of bloodborne
infections among injectable drug users [19], while safe injection sites (SISs) offer medically supervised
environments for narcotic injection, providing sterile equipment, overdose prevention measures, and
referrals to health and social services [51]. MAT for opioid addiction, utilizing substances like
methadone, buprenorphine, and naltrexone, aids in maintaining sobriety by alleviating cravings and
withdrawal symptoms [48]. Education campaigns enhance awareness about drug use and harm
reduction techniques, reducing risky behaviors [36]. Mathematical modeling helps analyze drug
transmission dynamics and evaluate preventive measures. Network models are utilized to explore
drug users’ social and sexual networks, as well as the dissemination of bloodborne diseases like HIV
and hepatitis C [35].

Mathematical modeling is widely applied to solve various real-world problems. In epidemiology,
the Susceptible-Infectious-Recovered (SIR) model is a notable example used for understanding disease
propagation [39]. Neuroscience increasingly relies on mathematical models to grasp brain function
and behavior. Next-generation techniques have been employed to determine thresholds for illicit
drug use and terrorism. Analytically demonstrating global stability, a suitable Lyapunov function
established the equilibrium point of illicit drug usage and terrorism [10]. Drawing from mathematical
epidemiology concepts, a synthetic drug transmission model with treatment discerns addiction rates
among susceptible individuals with a history of drug abuse versus those without [46]. The paper
explores the optimal control analysis of disease transmission within a community, as discussed
in [14]. A seven-dimensional deterministic model examines illicit drug use and terrorism, delving
into local and global stability [9]. An updated model addressing medication treatment’s influence
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on HIV/AIDS transmission is presented [24], along with an exploration of rehabilitative therapy’s
impact on HIV/AIDS control in prisons. Illegal drug use (IDU) among students poses a significant
public health challenge, leading to academic, physical, and mental health issues, as well as diminished
development and productivity later in life. Implementing IDU prevention and control measures incurs
substantial financial burdens on governments and the general public [2].

In contemporary research endeavors, fractional calculus has emerged as a versatile mathematical
tool, encompassing derivatives and integrals of any real positive order, and has been utilized to
represent and solve problems across various fields [43, 49]. Various fractional strategies, such
as Katugumpola, Hadamard, Riemann-Liouville, and Caputo derivatives, have been employed to
improve the accuracy of modeling real-world phenomena. Researchers investigating fractional-order
mathematical models have adopted diverse approaches, including numerical, computational, and
iterative methods [15, 23, 52]. To extend the limitations of standard Riemann-Liouville and Caputo
fractional derivatives, a novel concept of fractional differentiation with nonlocal and nonsingular
kernels has been introduced [57]. A significant advancement is the Caputo-Fabrizio (CF) derivative,
which addresses the shortcomings of the traditional Caputo operator. Unlike conventional fractional
derivatives, the CF derivative is nonsingular and features an exponential law kernel, enhancing
precision under certain conditions [13, 26, 27]. Caputo further generalized the CF derivative into
another Atangana-Baleanu fractional derivative, involving the Mittag-Leffler function [21]. Research
has explored the mathematical modeling of COVID-19 with the CF operator [53], and a fractional
mathematical model for alcohol consumption utilizing Atangana-Baleanu Caputo derivatives has
been developed [54].

Atangana’s recent contribution introduces a new fractal-fractional operator, merging fractional and
fractal mathematics [21]. Existing literature has explored fractal-fractional derivatives based on power
law, exponential, and Mittag-Leffler kernels. The selection of the kernel for studying the problem
at hand is guided by its mathematical properties and relevance to real-world phenomena. This area
holds promise for addressing various complex problems across different contexts. Notably, the fractal
dimension and fractional order are both incorporated within this operator. Compared to traditional
methods of obtaining fractal fractions, this approach proves more effective in generating them [12,59].
Working with fractal-fractional derivatives enables the exploration of fractional operators and fractal
dimensions simultaneously. This operator enables the construction of models that accurately capture
memory effects in systems. Additionally, a variety of kernels and fractal-fractional operators have
been utilized to address the intricacies of fractal-fractional differential equations [16]. Employing
a fractional-order system model is essential for observing hereditary characteristics, memory, and
crossover behavior [40]. This operator exhibits both fractional calculus properties and a form of
self-similarity or fractal-like behavior. In the context of the Caputo operator, the fractal-fractional
derivative represents an innovative mathematical tool that merges fractal and fractional calculus,
offering enhanced capabilities for modeling and analyzing systems with memory-dependent dynamics.

Numerous studies have employed fractal-fractional models to predict the efficacy of health
surveillance, highlighting interdisciplinary synergies. For example, Li [44] explored a mathematical
model with bank data using a fractal-fractional Caputo derivative, while Owolabi [50] modeled
dynamics of the Human epidermal growth factor receptor 2 breast cancer. Ahmad [8] analyzed tumor-
immune interaction models. COVID-19 mathematical models employing fractal-fractional orders have
been qualitatively examined [11], alongside the exploration of new fractal-fractional operators to model
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COVID-19 spread [20]. Researchers investigating severe acute respiratory syndrome coronavirus 2
transmission dynamics and its link with Alzheimer’s disease utilized the CF fractional-order [5].
Fractal-fractional models within the CF framework elucidated the dynamics of two-age structure
smokers [3]. Studies have examined a fractal-fractional model and conducted sensitivity analysis of
COVID-19 with quarantine and vaccination [47], while Q fever dynamics were analyzed using CF
and Atangana-Baleanu-Caputo fractional derivatives [18]. A new fractal-fractional model for Zika
virus propagation was proposed, including insecticide-treated nets [4]. Additionally, studies have
explored infection dynamics in plants using fractal-fractional derivatives [30], and investigated a new
chaotic system utilizing fractal-fractional differential operators [6]. Pine wilt disease models integrated
nematodes, transmitting beetles, and symptomatic pine tree dynamics [7].

The selection of a fractional operator, along with its kernel type, should accurately reflect the
system’s memory effects, crossover behavior, and long-term dynamics. While criticisms exist
regarding the use of nonsingular fractional operators, evaluating the choice of the Mittag-Leffler
kernel is crucial based on the model’s objectives and applicability. The Mittag-Leffler kernel offers
advantages in capturing memory effects and long-range dependencies within the system, which are
essential for drug abuse modeling. Its mathematical properties enable the representation of complex
interactions among various factors influencing drug abuse dynamics, including law enforcement
policies, societal attitudes, and individual behaviors. These insights provided the impetus to capture
the broad significance of the findings in this research endeavor. The study delves into the dynamics of
a drug transmission model incorporating aspects of criminal law, classifying it into six compartments:
the susceptible class, individuals receiving drug misuse education, mild drug addicts, high-level
drug addicts, individuals subjected to criminal law, and those in the quitter class. The proposed
model integrates fractal-fractional order derivatives using the ABC operator. The investigation
commences with a thorough examination of the developed model to ensure its validity, establishing
the existence and uniqueness of the solution within the framework of fixed-point theory. Subsequently,
Ulam-Hyres stability is applied using nonlinear functional analysis to demonstrate solution stability.
Acknowledging the importance of the subject matter, a novel fractional Adam-Bashforth iterative
numerical scheme is employed for numerical simulations, with results validated through MATLAB
simulations. The numerical findings are then plotted for various fractional orders and fractal
dimensions, comparing them to integer orders. The study notes the sensitivity of fixing and changing
the fractional order and fractal dimension on the model’s characteristics, underscoring the utility of the
fractional approach.

We structure this article into seven sections. Section 2 outlines the model’s development and
its description. Section 3 covers the analytical preliminaries of the techniques and the fractional
formulation of the devised model. Section 4 is dedicated to analyzing the existence and uniqueness
within the framework of fixed-point theory. Stability analysis is established in Section 5. Section 6
presents numerical simulations to support theoretical results. Finally, the discussion and conclusion of
the proposed model are presented in the last section.
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2. Model development

2.1. Description of the model

The study underscores the crucial role of mathematical models in comprehending addiction
dynamics and developing effective prevention and treatment strategies. Specifically, when constructing
models for transmittable diseases such as drug addiction, it is essential to focus on establishing the
epidemiology. This process involves classifying key factors decisive for controlling drug addiction.
Several addiction models, based on transmission mechanisms, are documented in existing literature,
significantly contributing to the formulation of strategies for preventing and treating addiction [14,29].

This study delves into exploring a mathematical model aimed at understanding the spread of drug
addiction within the human population, incorporating a criminal law perspective [33]. It highlights key
limitations in the model analysis, such as simplifying real-world complexities, potential oversights in
parameter selection, reliance on assumed relationships, and the absence of dynamic external factors.
These constraints may limit the model’s ability to fully capture the complexities of human behavior
and societal dynamics, potentially impacting the generalizability of the findings. Thus, caution is
advised in interpreting the predictions, as real-world applicability may be constrained by the inherent
simplifications in the modeling approach.

There is evidence that the drug abuse phenomenon tends toward younger individuals, and health
education encompasses both family and public health education. Assumptions used in model
formulation include the presence of mild-level drug addicts in populations with or without drug misuse
education, the absence of mild drug addicts among strong drug users, and the imposition of criminal
charges on light and heavy narcotics addicts. The model considers the return of drug addicts who faced
criminal law to mild and severe addiction, and individuals who stop using drugs cannot be categorized
as mild or severe addicts. The natural rates of birth and death are assumed to be consistent, and
the age group facing criminal charges for drug addiction is 14 and above. At any time t ≥ 0, the
mathematical model divides the entire population N(t) into quintuple sets: Susceptible individuals to
drug addiction S(t); individuals susceptible to being narcotic addicts but have received drug misuse
education C(t); mild drug addicts L(t); heavy-level drug addicts H(t); individuals undergoing criminal
law consequencesW(t); and individuals who have stopped using drugs R(t).

The mathematical model aims to apprehend the intricate dynamics of drug addiction transmission,
considering educational interventions, criminal consequences, and the cessation of drug use. Thus, the
total human population at any given time t is expressed as:

N(t) = S(t) + C(t) + L(t) + H(t) +W(t) + R(t).

This arrangement allows us to model the dynamics of the drug addiction model by incorporating
the aspect of criminal penalties. This is achieved by tracking the transitions between these different
states within the population over time. Therefore, the foundational transmission dynamic model of
drug addiction in the human population is as follows:
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dS
dt

= (1 − q)dΛ − β1SL − β2SH − (d + µ)S,

dC
dt

= qdΛ + µS − β1ξCL − β2ξCH − (d + δ)C,

dL
dt

= β1SL + β2SH + β1ξCL + β2ξCH − (γ + π + d + d1)L + αW,

dH
dt

= πL + σW − (θ + d + d2)H,

dW
dt

= θH + γL − (α + σ + m + d)W,

dR
dt

= mW + δC − dR,

(2.1)

in accordance with the conditions:

S(0) = S0 ≥ 0, C(0) = C0 ≥ 0, L(0) = L0 ≥ 0, H(0) = H0 ≥ 0, W(0) =W0 ≥ 0, R(0) = R0 ≥ 0.

Moreover, Table 1 comprehensively delineates the specifics of each parameter within the equations
governing the system as depicted in model (2.1).

Table 1. The model parameters proposed are described as follows.

Parameter Description
d The natural birth and death rate
q The probability of receiving drug misuse education
d2 The death rate of heavy drug addicts
ξ The probability of a direct control level decrease
α The transition rate from individuals undergoing criminal law to mild drug addicts
d1 The death rate of mild drug addicts
Λ The size of the recruitment rate
θ The treatment rate from heavy addicts to individuals undergoing criminal law
γ The transition rate for mild drug addicts to individuals experiencing criminal law
β1 The effective contact rate for susceptible individuals with light drug addicts
β2 The effective contact rate for susceptible individuals with heavy drug addicts
µ The rate at which susceptible individuals accept drug misuse education
δ The progression rate from individuals with misuse education to those who stopped using drugs
π The transformation rate from light to heavy drug addicts
m The permanent quit drug rate after treatment
σ The relapse rate after treatment

3. Fractional drugs addiction model

Traditional integer-order models often fall short in capturing the dynamic behavior of addiction.
Fractional-order models, on the other hand, offer better suitability for real-world data, providing a more
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nuanced illustration of complex phenomena. In the context of modeling addiction within the given
system (2.1), we enhance the framework by replacing the conventional integer-order time derivative Dt

with a fractal-fractional order derivative. This modification allows for a more detailed exploration of
the long-term memory impact of addiction dynamics. The nuanced approach provides a more precise
illustration, especially crucial for navigating the inherent complexities and evolving patterns observed
in real-world addiction dynamics.

Definition 3.1. [20] Consider a continuous and differentiable function V(t) over the interval (c, d),
characterized by a fractional order 0 < w ≤ 1 and a fractal dimension 0 < r ≤ 1. This function can be
defined in an ABC sense as:

ABCDw ,r (V(t)) =
ABC(w )
(1 − w )

d
dsr

∫ t

0
V(s)kw

[
−σ

(1 − w )

(
t − sw

)w ]
ds.

In this context, ABC(w ) represents a ”normalization mapping” defined by ABC(0) = ABC(1) = 1,
which serves as the normalization constant. Here, kw denotes a well-established mapping referred to
as the ”Mittag-Leffler” function, encompassing the exponent mapping as a special case [49].

Definition 3.2. [20] Consider a continuous function V(t) defined over the interval (c, d). The fractal-
fractional order integral of the function V(t), characterized by a fractal order 0 < w ≤ 1 and a fractal
dimension 0 < r ≤ 1, can be expressed in the ABC sense as:

ABCI w
0 (V(t)) =

(1 − w )
ABC(w )

tr−1V(t) +
rw

ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1V(s)ds. (3.1)

Lemma 3.1. [1] Let’s express the solution to the provided problem considering 0 < r,w ≤ 1,

ABCDw
0 (Ω(t)) = rtr−1Y(t,Ω(t)), t ∈ [0,T ],

Ω(0) = Ω0, 0 < w , r ≤ 1,

as provided by

Ω(t) = Ω0 +
(1 − w )
ABC(w )

tr−1Y(t,Ω(t)) +
rw

ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1Y(s,Ω(s))ds.

Definition 3.3. [32] (Contractions Mapping). Suppose B is a Banach space, then the operator T :
X→ X is a contraction if

‖T (x) − T (y)‖ ≤ M‖x − y‖, ∀x, y, ∈ X, 0 <M < 1.

Lemma 3.2. [32] (Banach’s fixed point theorem). If a Banach space B contains a nonempty open
subsetD, then any contraction mapping q fromD into itself possesses a unique fixed point.
Lemma 3.3. [32] (Krasnoselskii’s fixed points theorem). The Banach space B has a nonempty, closed,
convex subsetD. Let F1 and F2 be two operators satisfying the following conditions:

(i) F1x + F2y ∈ D,∀x, y ∈ D.
(ii) The operator F1 is both compact and continuous.
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(iii) The operator F2 is a contraction mapping.
Thus, there exists v ∈ D such that F1v + F2v = v.
Theorem 3.4. [42] Every sequence that contracts is a Cauchy sequence, thus ensuring convergence in
a complete metric space.
Theorem 3.5. [42] Let B ⊆ R and Ψ : B→ Rn be continuously differentiable mappings, where s ∈ B,
then for each compact subsetB of B, Ψ satisfies a Lipschitz condition with a Lipschitz constant denoted
by L. In this context, L > 0 represents the supremum of the derivative of Ψ on B, i.e.,

L = sup
s∈B

∣∣∣∣∣dΨ

ds

∣∣∣∣∣ .
Following this, for t ≥ 0, the resulting nonlinear deterministic mathematical model (2.1) for drug

addiction is introduced. This model integrates the fractal-fractional order derivative employing the
ABC fractional order operator, characterized by a fractional order 0 < w ≤ 1 and dimension 0 < r ≤ 1.

ABCDw ,r
t S(t) = (1 − q)dΛ − β1SL − β2SH − (d + µ)S,

ABCDw ,r
t C(t) = qdΛ + µS − β1ξCL − β2ξCH − (d + δ)C,

ABCDw ,r
t L(t) = β1SL + β2SH + β1ξCL + β2ξCH − m1L + αW,

ABCDw ,r
t H(t) = πL + σW − m2H,

ABCDw ,r
t W(t) = θH + γL − m3W,

ABCDw ,r
t R(t) = mW + δC − dR,

(3.2)

with the initial conditions

S(0) = S0 ≥ 0, C(0) = C0 ≥ 0,L(0) = L0 ≥ 0, H(0) = H0 ≥ 0,W(0) =W0 ≥ 0, R(0) = R0 ≥ 0, 0 < w , r ≤ 1.

Moreover, for the sake of simplicity, we establish the following definitions:

m1 = γ + π + d + d1,

m2 = θ + d + d2,

m3 = α + σ + m + d.

The system (3.2) is autonomous, allowing it to be expressed in a concise form: ABCDw ,r
t Y(t) = G(Y(t)), 0 < t < t f < +∞,

Y(0) = Y0.
(3.3)

Here, Y : [0,+∞)→ R6 and G : R6 → R6 are vector-valued functions defined as:

Y(t) =



S(t)
C(t)
L(t)
H(t)
W(t)
R(t)


, Y0 =



S0

C0

L0

H0

W0

R0


, G(Y(t)) =



(1 − q)dΛ − β1SL − β2SH − (d + µ)S
qdΛ + µS − β1ξCL − β2ξCH − (d + δ)C

β1SL + β2SH + β1ξCL + β2ξCH − (γ + π + d + d1)L + αW

πL + σW − (θ + d + d2)H
θH + γL − (α + σ + m + d)W

mW + δC − dR


.

Theorem 3.6. The function G(Y) in (3.3) exhibits Lipschitz continuity.
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Proof. Let E denote a convex compact subset of

F =
{
(t,Y) | 0 ≤ t ≤ t f , Y ∈ R6

+

}
.

Let Y1,Y2 ∈ E, then according to the mean value theorem, there exists V ∈ (Y1,Y2) such that,
G(Y1(t)) −G(Y2(t))

Y1(t) − Y2(t)
= G′(V(t)),

or
G(Y1(t)) −G(Y2(t)) = G′(V(t)) · (Y1(t) − Y2(t)),

| G(Y1(t)) −G(Y2(t)) | = | G′(V(t)) · (Y1(t) − Y2(t)) |,
≤ || G′(V) ||∞ ||Y1 − Y2||∞.

As G ∈ C1[0, t f ] over the convex compact set E, there exists a positive constant τ such that:

|| G′(V) ||∞ ≤ τ.

Hence,

| G(Y1(t)) −G(Y2(t)) | ≤ τ||Y1 − Y2||∞,

sup
t∈[0, t f ]

| G(Y1) −G(Y2) | ≤ τ||Y1 − Y2||∞,

|| G(Y1) −G(Y2) ||∞ ≤ τ||Y1 − Y2||∞.

Thus, G(V) is Lipschitz. �

4. Theoretical insights into the devised model

In this section, we thoroughly analyze the devised model, exploring its key characteristics and
ensuring its suitability for numerical approximations. To affirm the robustness of our model, we
establish the existence and uniqueness of its solution using definitions and theorems from [21]. This
comprehensive theoretical analysis not only sheds light on the behavior of the model, but also confirms
its suitability for rigorous numerical investigations.

Now, we will investigate the existence of the proposed model. Let’s define a Banach space B =

Y×Y×Y×Y×Y×Y, where Y = H
(
[0,T ], R

)
, representing the function space, and the norm is defined

as ‖Ω‖ = maxt∈[0,T ]

∣∣∣Ω(t)
∣∣∣. Specifically,

‖Ω‖ = ‖S,C,L,H,W,R‖ = maxt∈[0,T ]
{
|S(t)| + |C(t)| + |L(t)| + |H(t)| + |W(t)| + |R(t)|

}
.

To establish the existence and uniqueness of the formulated model (3.2), we apply the fixed-point
theorem. For this purpose, we note that the integral is differentiable, allowing us to express the given
model (3.2) as:

ABCDw (S(t)) = rtr−1G1(S(t), t) = (1 − q)dΛ − β1SL − β2SH − (d + µ)S,
ABCDw (C(t)) = rtr−1G2(C(t), t) = qdΛ + µS − β1ξCL − β2ξCH − (d + δ)C,
ABCDw (L(t)) = rtr−1G3(L(t), t) = β1SL + β2SH + β1ξCL + β2ξCH − m1L + αW,
ABCDw (H(t)) = rtr−1G4(H(t), t) = πL + σW − m2H,
ABCDw (W(t)) = rtr−1G5(W(t), t) = θH + γL − m3W,
ABCDw (R(t)) = rtr−1G6(R(t), t) = mW + δC − dR.

(4.1)
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The system (4.1) is autonomous; hence, it can be encapsulated within a compact framework as: ABCDw
0 (Ω(t)) = rtr−1Y(t,Ω(t)), t ∈ [0,T ],

Ω(0) = Ω0, 0 < w, r ≤ 1,
(4.2)

and the solution to Eq (4.2) can be expressed as:

Ω(t) = Ω0 +
(1 − w )
ABC(w )

tr−1Y(t,Ω(t)) +
rw

ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1Y(s,Ω(s))ds, (4.3)

where

Ω(t) =



S(t)
C(t)
L(t)
H(t)
W(t)
R(t)


, Ω0 =



S0

C0

L0

H0

W0

R0


, Y(t,Ω(t)) =



G6(S, C, L, H, W, R, t)
G6(S, C, L, H, W, R, t)
G6(S, C, L, H, W, R, t)
G6(S, C, L, H, W, R, t)
G6(S, C, L, H, W, R, t)
G6(S, C, L, H, W, R, t)


.

Let’s reformat system (3.2) into a fixed-point form. We define the mapping T : V → V as follows:

T (Ω)(t) = Ω0 +
(1 − w )
ABC(w )

tr−1Y(t,Ω(t)) +
rw

ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1Y(s,Ω(s))ds. (4.4)

Assume T = F + G, where

F(Ω) = Ω0 +
(1 − w )
ABC(w )

tr−1Y(t,Ω(t)),

G(Ω) =
rw

ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1Y(s,Ω(s))ds.

(4.5)

Next, we will demonstrate the qualitative analysis of the given system by employing the fixed
point theory:
(V1) There exists a constant LY,MY, such that

|Y(t,Ω(t))| ≤ LY|Ω| + MY.

(V2) There exists a positive constant LY such that for any Ω, Ω̄ ∈ B provided that,

|Y(t,Ω) − Y(t, Ω̄)| ≤ LY[|Ω − Ω̄|].

Theorem 4.1. If conditions (V1,V2) are satisfied, the system (4.3) has at least one solution, then the
system (3.2) produces an equivalent number of solutions under the condition that (1−w )

ABC(w ) t
r−1LY < 1.

Proof. We establish the theorem through two outlined steps as follows:
Step I. Let Ω̄ ∈ V, whereV = {Ω ∈ B : ||Ω|| ≤ φ, φ > 0} represents a convex closed set. Therefore, for
the operator F defined in (4.5), one has:

||F(Ω) − F(Ω̄)|| =
(1 − w )
ABC(w )

tr−1maxt∈[0,T ]|Y(t,Ω(t)) − Y(t, Ω̄(t))|,

≤
(1 − w )
ABC(w )

tr−1LY||Ω − Ω̄||.

(4.6)
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Hence, the operator F is closed and, therefore, a contraction.
Step II. We will now verify the relative compactness of the operator G and show its continuity and
boundedness. It is apparent that the operator G is defined over the entire domain, sinceY is continuous.
Moreover, for Ω ∈ V, we have:

||G(Ω)|| = maxt∈[0,τ]

∣∣∣ rw
ABC(w )Γ(w )

∫ t

0
(t − s)w−1sr−1Y(s,Ω(s))ds

∣∣∣,
≤

rw
ABC(w )Γ(w )

∫ t

0
(s)w−1(1 − s)r−1|Y(s,Ω(s))|ds,

≤
r[LY|Ω| + MYT w+r−1]
ABC(w )Γ(w )

[
B(w , r)

]
.

(4.7)

The symbol B(w , , r) represents the beta function, respectively. Therefore, considering Eq (4.7), the
operator G is bounded. Continuing, for “equi-continuity,” suppose t1 > t2 ∈ [0, τ]. We have:

|G(Ω(t2)) −G(Ω(t1))| =
rw

ABC(w )Γ(w )

∣∣∣∣∣∫ t2

0
(t2 − x)w−1xr−1Y(x,Ω(x))dx −

∫ t1

0
(t1 − x)w−1xr−1Y(x,Ω(x))dx,

≤
r[LY|Ω| + MYT w+r−1] B(w , r)

ABC(w )Γ(w )
[tw

2 − tw
1 ].

(4.8)

As t2 approaches t1, the righthand side of (4.8) tends to zero. Furthermore, owing to the continuity of
the operator G, we have:

|G(Ω(t2)) −G(Ω(t1))| → 0, as t2 → t1.

Therefore, we have shown that G is both bounded and continuous, making it uniformly continuous.
According to Arzela-Ascoli’s theorem, a subset Ω ∈ V of G is compact if, and only if, it is closed,
bounded, and equicontinuous. Since G is relatively compact and completely continuous, it fulfills these
conditions. Considering Eqs (3.2) and (4.3), we conclude that the system has at least one solution. �

To establish the uniqueness of the solution for the model (3.2), we utilize the fixed-point method
outlined in [32].

Theorem 4.2. Under assumption (V2) and the uniqueness of solution for (4.3), we assert that the

system (3.2) also possesses a unique solution if the condition
[

(1−w )tr−1LY
ABC(w ) +

r[LYT w+r+1]B(w ,r)
ABC(w )Γ(w )

]
< 1

is satisfied.

Proof. Let the operator T : V → V by

T (Ω)(t) = Ω0(t)+
[
Y(t,Ω(t))−Y0(t)

] (1 − w )
ABC(w )

tr−1+
rw

ABC(w )Γ(w )

∫ t

0
(t−x)w−1tr−1Y(x,Ω(x))dx, t ∈ [0, τ].

Let Ω, Ω̄ ∈ V, then

||T (Ω) − T (Ω̄)|| ≤
(1 − w )
ABC(w )

tr−1maxt∈[0,τ]

∣∣∣Y(t,Ω(t)) − Y(t, Ω̄(t))
∣∣∣ +

rw
ABC(w )Γ(w )

maxt∈[0,τ]

∣∣∣∣∣∫ t

0
(t − x)w−1tr−1Y(x,Ω(x))dx −

∫ t

0
(t − x)w−1tr−1Y(x, Ω̄(x))dx,

≤ Θ||Ω − Ω̄||,

(4.9)
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and

Θ =

[ (1 − w )tr−1LY
ABC(w )

+
r[LYT w+r+1]B(w , r)LY
ABC(w )Γ(w )

]
. (4.10)

Upon examining (4.9), it becomes evident that the operator T acts as a contraction. Consequently,
Eq (4.3) possesses a unique solution. Therefore, the system (3.2) under consideration also has a
unique solution. �

5. Ulam-Hyers stability

The objective of this section is to establish the Ulam-Hyers (UH) stability of the proposed
model (3.2).

Definition 5.1. The suggested model is UH stable if there exists a ℵw ,r > 0 such that for any % > 0 and
for every Ω ∈ C([0,T ],R), it fulfills the following condition:∣∣∣ABCDw ,r

t Ω(t) − ψ(t,Ω(t))
∣∣∣ ≤ %, t ∈ [0,T ], (5.1)

and there exists a unique solution φ ∈ C([0,T ],R) such that∣∣∣Ω − φ(t)
∣∣∣ ≤ ℵw ,r %, t ∈ [0,T ]. (5.2)

Let’s consider a small perturbation φ(t) ∈ C([0,T ],R) such that φ(0) = 0. Let’s define
• |φ(t)| ≤ %, for % > 0;
• ABCDw ,r

t Ω(t) = Y(t,Ω(t)) + φ(t).
Lemma 5.1. The solution to the perturbed problem

ABCDw ,r
t Ω(t) = Y(t,Ω(t)) + ψ(t),

Ω(0) = Ω0,
(5.3)

satisfies the following relation:∣∣∣∣∣Ω(t) −
(
Ω0(t) + [Y(t,Ω(t)) − ψ0(t)]

(1 − w )
ABC(w )

tr−1 +
rw

ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1Y(x,Ω(x))dx

)∣∣∣∣∣,
≤

Γ(w )tr−1 + rT w+r−1

ABC(wΓ(w )
B(w , r)% = $w ,r%.

(5.4)

Proof. For the sake of simplicity, we will not delve into the proof. �

Theorem 5.2. Under assumption (V2) and Eq (5.4), the solution to Eq (4.3) exhibits UH stability.
Consequently, the analytical solution to the proposed system achieves UH stability if Θ < 1.
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Proof. Let Ω ∈ V denote a unique solution and Ω̄ ∈ V be any solution of Eq (4.3), then

|Ω(t) − Ω̄(t)| =
∣∣∣∣∣Ω(t) −

(
Ω0(t) + [Y(t, Ω̄(t)) − Y0(t)]

(1 − w )
ABC(w )

tr−1

+
rw

ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1Y(x, Ω̄(x))dx

)∣∣∣∣∣,
≤

∣∣∣∣∣Ω(t) −
(
Ω0(t) + [Y(t,Ω(t)) − Y0(t)]

(1 − w )
ABC(w )

tr−1 +
rw

ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1Y(x,Ω(x))dx

)∣∣∣∣∣
+

∣∣∣∣∣(Ω0(t) + [Y(t,Ω(t)) − Y0(t)]
(1 − w )
ABC(w )

tr−1 +
rw

ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1Y(x,Ω(x))dx

)
−

(
Ω0(t) + [Y(t, Ω̄(t)) − Y0(t)]

(1 − w )
ABC(w )

tr−1 +
rw

ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1Y(x, Ω̄(x))dx

)∣∣∣∣∣,
≤ Yw ,r +

(1 − w )
ABC(w )

LYtr−1||Ω − Ω̄|| +
rT w+r−1

ABC(w )Γ(w )
B(w , r)||Ω − Ω̄||,

≤ Yw ,r + Θ||Ω − Ω̄||.

(5.5)

From Eq (5.5), we can express it as follows:

|Ω(t) − Ω̄(t)| ≤
Yw ,r

1 − Θ
|Ω(t) − Ω̄(t)|. (5.6)

Based on Eq (5.6), we deduce that the solution to (4.3) exhibits UH stability, and, consequently,
generalized UH stability can be established using YΩ(%) = $w ,r% with YΩ(0) = 0. This demonstrates
that the solution to the proposed problem is both UH stable and generalized UH stable. �

6. Numerical technique for fractal-fractional model

In this segment, we aim to compute the numerical solutions for the system (3.2) with arbitrary
fractal orders using the ABC derivative, a well-known technique in fractal-fractional calculus. We
employ iterative schemes to approximate the solution for the given model. To achieve this, we rely on
fractal-fractional Atangana-Baleanu techniques [56] to obtain an approximate solution for plotting the
system (3.2). Consequently, we proceed with the expression (4.1) as follows:

ABCDw (S(t)) = rtr−1G1(S(t), t),
ABCDw (C(t)) = rtr−1G2(C(t), t),
ABCDw (L(t)) = rtr−1G3(L(t), t),
ABCDw (H(t)) = rtr−1G4(H(t), t),
ABCDw (W(t)) = rtr−1G5(W(t), t),
ABCDw (R(t)) = rtr−1G6(R(t), t).

(6.1)

The symbols Gi, i = 1, 2, 3, ..., 6 are defined in (4.1). Next, by applying the fractal-fractional integral
in the ABC sense to the first equation of (4.1), we obtain:

S(t) − S(0) =
(1 − w )
ABC(w )

tr−1[G1(S(t), t)
]
+

rw
ABC(w )Γ(w )

∫ t

0
(t − x)w−1xr−1G1(S(x), x)dx. (6.2)
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Now, we present the numerical solution of Eq (6.2) using the new approach for discrete time instances
t = tk+1, k = 0, 1, 2, ..., . The first equation of the system described above is then expressed accordingly

S(tk+1) − S(0) =
(1 − w )
ABC(w )

(tr−1
k+1)

[
G1(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

∫ tk+1

0
(tk+1 − x)w−1xr−1G1(S(x), x)dx,

=
(1 − w )
ABC(w )

(tr−1
k+1)

[
G1(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

∫ tp+1

p
(tk+1 − x)w−1xr−1G1(S(x), x)dx.

(6.3)

Next, we estimated the function G1 over the interval [tp, tp+1] using the interpolation polynomial
as follows:

G1 �
G1

∆
(t − tp−1) −

R1

∆
(t − tp), (6.4)

which suggests that

S(tk+1) =S(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G1(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

(G1(S(tk), tk)
∆

×

∫ tp+1

p
(t − tp−1)(tp+1 − t)w−1tr−1

p dt −
G1(S(tk), tk)

∆

∫ tp+1

p
(t − tp)(tk+1 − t)w−1tr−1

p dt
)
,

S(tk+1) =S(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G1(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G1(S(tp), tp)

∆
Ip−1,w

−
tr−1
p−1G1(S(tp−1), tp−1)

∆
Ip,w

)
.

(6.5)

Now, computing Ip−1,w and Ip,w , we derive:

Ip−1,w =

∫ tp+1

p
(t − tp−1)(tk+1 − t)w−1dt,

= −
1
w

[
(tp+1 − tp−1)(tk+1 − tp+1)σ − (tp − tp−1)(tk+1 − tp)σ

]
,

−
1

w (w − 1)

[
(tk+1 − tp+1)w+1 − (tk+1 − tp)w+1

]
,

(6.6)

and

Ip,w =

∫ tp+1

p
(t − tp)(tk+1 − t)w−1dt,

= −
1
w

[
(tp+1 − tp)(tk+1 − tp+1)w

]
−

1
w (w − 1)

[
(tk+1 − tp+1)w+1 − (tk+1 − tp)σ+1

]
.

(6.7)

AIMS Mathematics Volume 9, Issue 5, 13102–13128.



13116

Putting tp = p∆ yields

Ip−1,w = −
∆w+1

w

[
(p + 1 − (p − 1))(k + 1 − (p + 1))w − (p − (p − 1))(k + 1 − p)w

]
−

∆w+1

w (w − 1)

[
(k + 1 − (p + 1))w+1 − (k + 1 − p)w+1

]
,

=
∆w+1

w (w − 1)

[
− 2(w + 1)(k − p)w + (w + 1)(k + 1 − p)w − (k − p)w+1 + (k + 1 − p)w+1

]
,

=
∆w+1

w (w − 1)

[
(k − p)w [

− 2(w + 1) − (k − p)
]
+ (k + 1 − p)w [

w + 1 + k + 1 − p
]]
,

=
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2w + 2)

]
.

(6.8)

Now for Ip,w , we have

Ip,w = −
∆w+1

w

[
(p + 1 − p)(k + 1 − (p + 1))w

]
−

∆w+1

w (w − 1)

[
(k + 1 − (p + 1))w+1 − (k + 1 − p)w+1

]
,

=
∆w+1

w (w − 1)

[
− (w + 1)(k − p)w − (k − p)w+1 + (k + 1 − p)w+1

]
,

=
∆w+1

w (w − 1)

[
(k − p)w [

− (w + 1) − (k − p)
]
+ (k + 1 − p)w+1

]
,

=
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]
.

(6.9)

Upon substituting the values from (6.8) and (6.9) into (6.5), we obtain:

S(tk+1) = S(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G1(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G1(S(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G1(S(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.10)

Similarly, the remaining terms for the corresponding compartments of the devised model can be
expressed as follows:

C(tk+1) = C(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G2(C(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G2(C(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G2(C(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.11)
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L(tk+1) = L(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G3(L(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G3(L(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G3(L(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.12)



H(tk+1) = H(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G4(S(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G4(H(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G4(H(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.13)



W(tk+1) =W(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G5(W(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G5(W(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G5(W(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.14)



R(tk+1) = R(0) +
(1 − w )
ABC(w )

(tr−1
k+1)

[
G6(R(tk), tk)

]
+

rw
ABC(w )Γ(w )

k∑
p=0

( tr−1
p G6(R(tp), tp)

∆

×

[
∆w+1

w (w − 1)

[
(k + 1 − p)w (k − p + 2 + w ) − (k − p)w (k − p + 2 + 2w )

]]
−

tr−1
p−1G6(R(tp−1), tp−1)

∆

[
∆w+1

w (w − 1)

[
(k + 1 − p)w+1 − (k − p)w (k − p + 1 + w )

]])
.

(6.15)

6.1. Numerical simulation and discussion

This section focuses on analyzing the proposed fractal-fractional model, emphasizing how model
parameters interact and collectively influence the transmission dynamics of drug addiction within
society. The numerical procedures begin by adopting the compartmental initial conditions outlined
in [45] for the proposed model, which are as follows: S(0) = 135,C(0) = 90,L(0) = 77, H(t) =

49,W(t) = 15,R(t) = 11). The reliability of the study is ensured by adopting parametric values
from existing literature, as outlined in Table 2. The simulation duration ranges from 0 to 150 units,
representing days. Three distinct cases are investigated, exploring varying fractional orders w and
fractional dimensions r of the independent variable t.

In the first case, we investigate different fractional orders (w ) and fractional dimensions (r) for
the independent variable t, with the constraint w , r. This implies that the fractal order and
dimension are deliberately varied independently. Specifically, we consider w = 0.65, 0.70, 0.75, 0.80
and r = 0.03, 0.04, 0.05, 0.06. The trajectories of compartmental classes in the drug addiction
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transmission model exhibit noticeable changes due to the manipulation of these varying fractal orders
and dimensions. Each combination of w and r results in distinct patterns and behaviors observed in
Figures 1a–f. The time span covers t ∈ [0, 150] units, representing days. This exploration enables us to
understand how the interaction between fractional order and dimension influences the model dynamics
over time.

In Figure 1a, we observe the dynamic behavior of susceptible individuals to drug addiction S(t) over
time, considering various fractional orders and fractal dimension orders. The varying slopes associated
with different fractional orders indicate the rate at which susceptibility changes over time. The initial
decline in susceptibility reflects an increased vulnerability to addiction, likely due to factors such as
drug exposure or social influences. As the model progresses, the decline stabilizes, indicating an
equilibrium state of exposure where susceptibility reaches a relatively stable level. Higher fractional
orders exhibit steeper slopes, suggesting a more rapid decline in susceptibility, while lower fractional
orders show gentler slopes, indicating a slower decline. Overall, the varying slopes and stability of
transmission highlight the complex interplay between fractional orders, fractal dimensions, and the
progression of addiction over time. In Figure 1b, we observe the dynamics of individuals susceptible
to narcotic addiction but have received drug misuse education C(t). The initial decline in addiction
prevalence is evident, especially at higher fractional orders. This decline signifies the effectiveness
of drug misuse education in reducing addiction susceptibility. As time progresses, the stability of
transmission becomes apparent, indicating that the impact of drug misuse education persists over time.
This stability enables a more careful utilization of available information and resources in combating
narcotic addiction within the population.

Figure 1c depicts the dynamic behavior of mild drug addicts L(t) over time, particularly focusing on
higher fractional orders. The observed pattern reveals a rapid initial growth in the population of mild
drug addicts, followed by a gradual decline. However, with time, interventions and behavioral changes
lead to a gradual decline in mild addiction cases, indicating progress in addressing drug-related issues.
Figure 1d illustrates the dynamics of heavy-level drug addicts H(t) over time. The graph depicts an
increase in the number of individuals overcoming addiction, with a more pronounced decline in cases
for lower fractional orders. However, for higher fractional orders, the decline in addiction cases is
less significant, suggesting slower progress in recovery. This variation in recovery rates highlights the
influence of treatment effectiveness and societal factors on addiction dynamics.

In Figure 1e, a decline in the number of individuals facing criminal law consequences W(t)
is observed at lower fractional orders over time. This suggests a reduction in drug-related legal
repercussions. Lower fractional orders may indicate gradual changes in law enforcement policies or
societal attitudes toward drug offenses. The decrease in criminal consequences at lower orders implies
shifts in legal approaches or rehabilitation strategies targeting drug-related crimes. In Figure 1f,
individuals who have ceased drug use R(t) are depicted. The graph reveals that at higher fractional
orders, there is a rapid increase in the number of individuals who have stopped using drugs, while the
growth is slower at lower fractional orders. This suggests that higher fractional orders may facilitate
quicker cessation of drug use, potentially due to more effective intervention programs or behavioral
changes, while lower fractional orders indicate a slower, more gradual process of discontinuation
influenced by short-term memory effects within the system.
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In the second scenario, we delve into the dynamics of our model by varying the fractal dimensions
(r) within the range of 0.03 to 0.06, while maintaining a fixed fractal order at w = 0.90. The time
span considered is from t = 0 to t = 150 units, as illustrated in Figures 2a–f. This exploration offers a
unique perspective on how changes in fractal dimensions alone impact the dynamics of drug addiction
transmission, recovery, and quit decisions. By keeping the fractal order constant, we can focus
solely on the influence of fractional dimensions on addiction dynamics over an extended period. This
approach allows us to isolate and better understand the specific effects of varying fractal dimensions
on the behavior of the system related to drug addiction dynamics.

Table 2. Parameters and their values.

Parameters Values Source Parameters Values Source
m 0.25 [45] θ 0.421 Assumed
δ 0.01 [45] ω 0.001 Assumed
π 0.03 [45] γ 0.3 [45]
σ 0.7 [45] d2 0 [45]
ξ 0.9 [45] d1 0.2 [45]
β1 0.0007 [45] β2 0.0008 [45]
Λ 1500 Assumed µ 0.1 Assumed
q 0.8 [45] d 0.02 [45]

In the last scenario, we concentrate solely on the fractional order w without considering
the inclusion of the fractal dimension r. We examine a range of w values, specifically
0.75, 0.80, 0.85, 0.90, 0.95, and 0.99, over a time span of t ∈ [0, 50] units in days. This investigation
aims to gain insights into how variations in fractional orders alone influence the dynamics of drug
addiction transmission, recovery, and the decision to quit. Figures 3a–f offer a visual depiction of the
dynamic behavior of compartmental classes in the proposed model for this scenario. This focused
analysis allows us to discern the specific influence of changes in fractional orders on the intricate
dynamics of drug addiction within the specified temporal constraints.

In summary, Figures 1–3 provide a comprehensive exploration of drug addiction dynamics across
three distinct cases, considering varying fractional orders and fractal dimensions. These visualizations
elucidate the intricate relationship between model parameters, offering insights into the dynamics of
susceptible individuals to drug addiction (S(t)), individuals with drug misuse education (C(t)), mild
drug addicts (L(t)), heavy-level drug addicts (H(t)), individuals facing criminal law consequences
(W(t)), and individuals who have ceased drug use (R(t)). This analysis enhances our understanding of
the complex dynamics of drug addiction within society and emphasizes the validity and applicability
of the study’s findings in understanding and addressing real-world challenges related to drug addiction.
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(a) Dynamical simulation of S(t)
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(c) Dynamical simulation of L(t)
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(d) Dynamical simulation of H(t)
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(e) Dynamical simulation ofW(t)
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(f) Dynamical simulation of R(t)

Figure 1. Numerical simulations showcase the temporal responses of all compartments
within the proposed model under various fractional orders and fractal dimensions,
specifically when w , r.
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(c) Dynamical simulation of L(t)
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(f) Dynamical simulation of R(t)

Figure 2. Numerical simulations depict the temporal responses of all classes in the devised
model by varying the fractal dimensions while keeping the fractional order fixed.
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(a) Dynamical simulation of S(t)
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(b) Dynamical simulation of C(t)
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(c) Dynamical simulation of L(t)
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(d) Dynamical simulation of H(t)
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(e) Dynamical simulation ofW(t)
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(f) Dynamical simulation of R(t)

Figure 3. The numerical simulations showcase the temporal responses of all compartments
in the devised model by solely considering the fractional order w .
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7. Conclusions

This study focuses on the analysis of a novel deterministic mathematical model that captures the
dynamics of drug addiction transmission, incorporating aspects of criminal law within a population
using the fractal-fractional order derivative in the ABC sense. The analytical framework divides the
population into six compartments: Susceptible individuals to drug addiction, those receiving drug
misuse education, mild drug addicts, heavy-level drug addicts, individuals facing legal consequences,
and those who have discontinued drug use. The study aims for generalization by employing a wide
range of parametric settings. In the investigative process, the study establishes the existence and
uniqueness of solutions using the fixed-point approach. UH stability is analyzed using nonlinear
functional analysis to verify the stability of the devised model’s solution. The numerical solution
of the devised model is estimated using the fractal-fractional Adam Bashforth iterative scheme in the
fractional order, and MATLAB validates the numerical simulation. Moreover, simulation results are
depicted for various choices of fractional orders and fractal dimensions, and they are compared with
integer orders, offering a comprehensive assessment of different dimensions and orders. The graphical
findings demonstrate that variations in fractional orders and fractal dimensions significantly impact the
dynamics of the model. The memory time for stability and convergence is shorter for lower fractional
orders and fractal dimensions. Furthermore, it is anticipated that the current research will be more
valuable when analyzing how drugs affect motivation and education.

This study outlines potential directions for future research in the field of drug abuse modeling
and management. One avenue involves exploring the integration of behavioral dynamics into drug
abuse models, considering factors such as social networks, peer influence, and psychological profiles.
Additionally, integrating fractal-fractional derivatives into neural networks could optimize strategies
for managing drug abuse. The anticipated improvement in effectiveness, coupled with sensitivity
analyses under controlled parameters, holds promise for mitigating drug addiction transmission.
Moreover, utilizing large-scale datasets and machine learning techniques can enhance the predictive
accuracy of drug abuse models, aiding in identifying patterns, risk factors, and effective intervention
strategies. The numerical framework developed herein serves as a robust modeling tool for addressing
complex real-world problems, integrating fractional dimensions into the independent variable t.
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