Research article Special Issues

Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense

  • Received: 20 January 2024 Revised: 24 February 2024 Accepted: 05 March 2024 Published: 12 March 2024
  • MSC : 34A08, 34B15, 45G15

  • We investigate the criteria for both the existence and uniqueness of solutions within a nonlinear coupled system of Hilfer-Hadamard sequential fractional differential equations featuring varying orders. This system is complemented by nonlocal coupled Hadamard fractional integral boundary conditions. The desired outcomes are attained through the application of well-established fixed-point theorems. It is underscored that the fixed-point approach serves as an effective method for establishing both the existence and uniqueness of solutions to boundary value problems. The results obtained are further demonstrated and validated through illustrative examples.

    Citation: Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami. Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense[J]. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486

    Related Papers:

  • We investigate the criteria for both the existence and uniqueness of solutions within a nonlinear coupled system of Hilfer-Hadamard sequential fractional differential equations featuring varying orders. This system is complemented by nonlocal coupled Hadamard fractional integral boundary conditions. The desired outcomes are attained through the application of well-established fixed-point theorems. It is underscored that the fixed-point approach serves as an effective method for establishing both the existence and uniqueness of solutions to boundary value problems. The results obtained are further demonstrated and validated through illustrative examples.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523.
    [2] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [3] I. Podlubny, Fractional differential equations, Elsevier, 198 (1998), 1–304.
    [4] D. Valerio, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
    [5] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [6] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [7] R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal., 12 (2009), 299–318.
    [8] A. Alsaedi, A. Afrah, B. Ahmad, Existence results for nonlocal Hilfer-type integral-multipoint boundary value problems with mixed nonlinearities, Filomat, 36 (2022), 4751–4766. https://doi.org/10.2298/FIL2214751A doi: 10.2298/FIL2214751A
    [9] S. Theswan, S. K. Ntouyas, B. Ahmad, J. Tariboon, Existence results for nonlinear coupled Hilfer fractional differential equations with nonlocal Riemann-Liouville and Hadamard-type iterated integral boundary conditions, Symmetry, 14 (2022), 1948. https://doi.org/10.3390/sym14091948 doi: 10.3390/sym14091948
    [10] S. K. Ntouyas, B. Ahmad, J. Tariboon, Coupled systems of nonlinear proportional fractional differential equations of the Hilfer-type with multi-point and integro-multi-strip boundary conditions, Foundations, 3 (2023), 241–259. https://doi.org/10.3390/foundations3020020 doi: 10.3390/foundations3020020
    [11] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. A. Almalahi, et al., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Mathematics, 7 (2022), 1856–1872. https://doi.org/10.3934/math.2022107 doi: 10.3934/math.2022107
    [12] T. Abdeljawad, P. O. Mohammed, H. M. Srivastava, E. Al-Sarairah, A. Kashuri, K. Nonlaopon, Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application, AIMS Mathematics, 8 (2023), 3469–3483. https://doi.org/10.3934/math.2023177 doi: 10.3934/math.2023177
    [13] R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theor. Dyn. Syst., 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [14] A. Salim, B. Ahmad, M. Benchohra, J. E. Lazreg, Boundary value problem for hybrid generalized Hilfer fractional differential equations, Differ. Equ. Appl., 14 (2022), 379–391. https://doi.org/10.7153/dea-2022-14-27 doi: 10.7153/dea-2022-14-27
    [15] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Math. Pure Appl., 8 (1892), 101–186.
    [16] M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 267. https://doi.org/10.1186/s13662-021-03414-9 doi: 10.1186/s13662-021-03414-9
    [17] S. Muthaiah, M. Murugesan, T. N. Gopal, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 162–173. http://dx.doi.org/10.31197/atnaa.579701 doi: 10.31197/atnaa.579701
    [18] S. Muthaiah, T. N. Gopal, Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative, Proyecciones, 39 (2020), 1555–1575. https://doi.org/10.22199/issn.0717-6279-2020-06-0093 doi: 10.22199/issn.0717-6279-2020-06-0093
    [19] A. Tudorache, R. Luca, Positive solutions for a system of Hadamard fractional boundary value problems on an infinite interval, Axioms, 12 (2023), 793. https://doi.org/10.3390/axioms12080793 doi: 10.3390/axioms12080793
    [20] S. Hristova, A. Benkerrouche, M. S. Souid, A. Hakem, Boundary value problems of Hadamard fractional differential equations of variable order, Symmetry, 13 (2021), 896. https://doi.org/10.3390/sym13050896 doi: 10.3390/sym13050896
    [21] C. Promsakon, S. K. Ntouyas, J. Tariboon, Hilfer-Hadamard nonlocal integro-multipoint fractional boundary value problems, J. Funct. Spaces, 2021 (2021), 8031524. https://doi.org/10.1155/2021/8031524 doi: 10.1155/2021/8031524
    [22] B. Ahmad, S. K. Ntouyas, Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions, Fractal Fract., 5 (2021), 195. https://doi.org/10.3390/fractalfract5040195 doi: 10.3390/fractalfract5040195
    [23] S. Abbas, M. Benchohra, A. Petrusel, Coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces, Fixed Point Theory, 23 (2022), 21–34. https://doi.org/10.24193/fpt-ro.2022.1.02 doi: 10.24193/fpt-ro.2022.1.02
    [24] A. Tudorache, R. Luca, Systems of Hilfer-Hadamard fractional differential equations with nonlocal coupled boundary conditions, Fractal Fract., 7 (2023), 816. https://doi.org/10.3390/fractalfract7110816 doi: 10.3390/fractalfract7110816
    [25] B. Ahmad, S. Aljoudi, Investigation of a coupled system of Hilfer-Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions, Fractal Fract., 7 (2023), 178. https://doi.org/10.3390/fractalfract7020178 doi: 10.3390/fractalfract7020178
    [26] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. https://doi.org/10.1186/s13662-019-2459-8 doi: 10.1186/s13662-019-2459-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(729) PDF downloads(69) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog