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Abbreviations

The abbreviations used in this manuscript

BVPs Boundary Value Problems

HHFDEs Hilfer-Hadamard Fractional-order Differential Equations
HFIs Hadamard Fractional Integrals

HHFDs Hilfer-Hadamard Fractional Derivatives

CFDs Caputo Fractional Derivatives

HFDs Hilfer Fractional Derivatives

HFDEs Hilfer Fractional Differential Equations

HFDs Hadamard Fractional Derivatives (HFDs)

CHFDs Caputo-Hadamard Fractional Derivatives (CHFDs)

1. Introduction

This study introduces and investigates a novel nonlinear nonlocal coupled boundary value problem
(BVP) encompassing sequential Hilfer-Hadamard fractional-order differential equations (HHFDEs)
with varying orders. The problem is formulated as:

(1.1)

THDNP + JGHHDYI Y 0(1) = pi(1,0(0), (7)), 1<y <2, T€&:=[1,T],
(MHDVP2 1+ FGHHDYP0(1) = pa(1,0(1), 9(1)), 2 <y <3, T€E:=[1,T],

and it is enhanced by nonlocal coupled Hadamard fractional integral (HFI) boundary conditions:

{Q(l) =0, o) =41 em), (1.2)

e()=0, @) =0, @) =L"TT00m;), 1<n,mn<3

Here, ¥, € (1,2], Y, € (2,3], 1,52 € [0,1], K1, 5, e Ry, T > 1,601,602 > 0, 41,4, € R, W"D‘f’i’ﬁj
denotes the Hilfer-Hadamard fractional derivative (HHFD) operator of order ¢;,5;;i = 1,2.j = 1,2.
HI)IQ is the HFI operator of order y € {01,602}, and p;,p» : &E X R X R — R are continuous
functions. It is noteworthy that this study contributes to the literature by addressing a unique
configuration of sequential HHFDEs with distinct orders and coupled HFI boundary conditions. The
methodology employed involves the application of the fixed-point approach to establish both existence
and uniqueness results for problems (1.1) and (1.2). The conversion of the given problem into an
equivalent fixed-point problem is followed by the utilization of the Leray-Schauder alternative and
Banach’s fixed-point theorem to prove existence and uniqueness results, respectively. The outcomes
of this research are novel and enrich the existing body of literature on BVPs involving coupled
systems of sequential HHFDEs. Coupled fractional derivatives are essential for modeling systems
with non-local interactions and memory effects more accurately than ordinary derivatives. They
enable a more precise description of phenomena, such as anomalous diffusion and viscoelasticity,
enhancing our understanding of complex physical processes. This improved modeling capability
leads to more accurate predictions and insights into real-world phenomena, benefiting various fields
ranging from materials science to fluid dynamics and beyond. Over the past few decades, fractional

AIMS Mathematics Volume 9, Issue 4, 9926-9950.



9928

calculus has emerged as a significant and widely explored field within mathematical analysis. The
substantial growth observed in this field can be credited to the widespread utilization of fractional
calculus methodologies in creating inventive mathematical models to depict diverse phenomena across
economics, mechanics, engineering, science, and other domains. References [1-4] provide examples
and detailed discussions on this topic.

In the following section, we will present a summary of pertinent scholarly articles related to the
discussed problem. The Riemann-Liouville and Caputo fractional derivatives (CFDs), among other
fractional derivatives introduced, have drawn a lot of interest due to their applications. The Hilfer
fractional derivative (HFD) was introduced by Hilfer in [5]. Its definition includes the Riemann-
Liouville and CFDs as special cases for extreme values of the parameter. [6, 7] provided further
information about this derivative. [8—12] presented noteworthy results on Hilfer-type initial and
boundary value problems (BVPs). A new work [13] explores the Ulam-Hyers stability and existence
of solutions for a fully coupled system with integro-multistrip-multipoint boundary conditions and
nonlinear sequential Hilfer fractional differential equations (HFDEs). Moreover, [14] investigates a
hybrid generalized HFDE boundary value problem.

In 1892, Hadamard proposed the Hadamard fractional derivative (HFD), which is a fractional
derivative using a logarithmic function with an arbitrary exponent in its kernel [15]. Later research
in [16-20] examined variations such as HHFDs and Caputo-Hadamard fractional derivatives (CHFDs).
Importantly, for § values of 8 = 0 and 8 = 1, respectively, HFDs and CHFDs arise as special examples
of the HHFD.

Existence results for an HHFDE with nonlocal integro-multipoint boundary conditions was derived
in [21]:

HHDMY x(t) = £, x(D), t€[1,T],

(1) =0, > 6x(&) = 2" x(). (-
i=1

Here, @ € (1,2], 8 € [0,1],60;,A € R, n,& € (1,T) (i = 1,2, ...,m), “1° is the HFI of order § > 0, and
[ [1,T]XR — R is a continuous function. Problem (1.3) represents a non-coupled system, in contrast
to problems (1.1)—(1.2), which are coupled systems. Problems (1.1)—(1.2) exhibits nonlocal coupled
integral and multi-point boundary conditions involving HFIs, while problem (1.3) incorporates discrete
boundary conditions with HFIs. Existence results for nonlocal mixed Hilfer-Hadamard fractional
BVPs were developed by the authors of [22]:

HHDY x(t) = f(2, x(1), te€[1,T],

X()=0, ()= Y nal@) + D GHIOx(6) + Y dnD x(uy). (5
=1 i=1 k=1
Here, @ € (1,2], B € [0,1], ;& A4 € R, &0, € (1,T), (j = 1,2,...,m), (@ = 1,2,..,n),(k =
1,2,...,r), 1% is the HFI of order ¢; > 0, HD’l‘k is the HFD of order y > 0, and f : [1,T]XR — Ris
a continuous function. Problem (1.4) is not a coupled system, while problems (1.1)—(1.2) are coupled
systems. Problems (1.1)—(1.2) features nonlocal coupling with integral and multi-point boundary
conditions involving HFIs, whereas problem (1.4) incorporates mixed discrete boundary conditions
involving HFIs and derivatives. Additionally, [23] investigated a coupled HHFDEs in generalized
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Banach spaces. The authors of the aforementioned study [24] successfully derived existence results
for a coupled system of HHFDEs with nonlocal coupled boundary conditions:

DY) = f(t,u(n),v(1), 1<a<2, Te[l,T],
HHDYOu(1) = gt,u(r),v(1), 1<y<2, Te[l,T],

m T n T
D=0, M"DOWT) = IWDQ" dH. f“z)“f dK(s), 1.5
u(1) “u(T) Z] D) (5)+;1 - DTV5)AKi(s) (1.5)

)4 T q T
D=0, "O'WT)= f HDu(5)dP; f HD%(5)dQi(5).
w(1) (T Zl - "Djucs) (S)+,-:21 - Div5)dQs)

Here, a,y € (1,2], 8,6 € [0,1], T > 1, HHDF, 7{(HZ)T"S denotes the HHFD operator of
order «,f,v,0, WZ)’IQ is the HFD operator of order y € {¢,%,0:,1:,0:,6;}, (i = 1,2,...,m),(i =
,2,...,n),0 = 1,2,..,p),0@ = 1,2,..,9), and f,g : [1,T] X R X R — R are continuous
functions. In the boundary conditions, Riemann-Stieltjes integrals are involved with H;, K, P;, Q;,
(i=12,..m),0=12,...,n),0 =1,2,...,p),({ = 1,2,...,q), which are functions of the bounded
variation. Problem (1.5) involves a coupled system of HHFDEs, while problems (1.1)—(1.2) deal
with coupled systems of sequential HHFDEs. In problems (1.1)—(1.2), there is nonlocal coupling
with integral and multi-point boundary conditions involving HFIs, whereas in problem (1.5), Stieltjes-
integral boundary conditions are incorporated, involving HFDs. Within problems (1.1)—(1.2), various
fractional orders are involved, while problem (1.5) incorporates a uniform fractional order. The
authors [25] conducted an analysis on the coupled system of HHFDEs with nonlocal coupled HFI
boundary conditions:

HA D u(r) = 0, (t, u(0), v(1), 1 <a; <2, 1€&:=[1,3],
HHDP0(1) = 05 (1, u(D), v(2)), 2 <y <3, T€&:=[1,T],

w(1) =0, u(T)=4™I7vp),

v() =0, vip) =0, wWT)=L"ThuGs), 1<n.mn<T

(1.6)

Here, a; € (1,2], a» € (2,3], B1,B8> € [0,1], T > 1, 6,6, > 0, 1,4, € R, Wz)‘l’:ﬁf denotes the
Hilfer-Hadamard Fractional Derivative (HHFD) operator of order «;,8;;i = 1,2.j = 1,2, HIX is the
HFI operator of order y € {01, 0.}, and 01,0, : EXR XR — R are continuous functions. Problem (1.6)
involves a coupled system of HHFDEs, while problems (1.1)—(1.2) deal with coupled systems of
sequential HHFDEs. Despite sharing identical boundary conditions in both (1.1)—(1.2) and (1.6), the
auxiliary lemma used in problems (1.1)—(1.2) is entirely different from that in problem (1.6). Therefore,
problems (1.1)—(1.2) in the manuscript are distinctly separate from problem (1.6). In problem (1.6),
solutions are obtained for the coupled system of HHFDEs, whereas in problems (1.1)—(1.2), solutions
are derived for the coupled system of sequential HHFDEs. A two-point boundary value problem for a
system of nonlinear sequential HHFDEs was investigated in [26]:

CHOP + 4HDP ) = fou@. @), 1€ [1e),
(MHDP2 4 LD y0(1) = g(t, u(), v(D)), 1 € [1, el (1.7)
u(l) =0, ule) =A;, v(1) =0, vie) = A,.
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Here, ay,a; € (1,2], 81,82 € [0, 1], A1, A2, A;, A, € Ry, and f,g : [1,e] X R X R — R are continuous
functions. Within problems (1.1)—(1.2), various fractional orders are involved, while problem (1.7)
incorporates a uniform fractional order. Problem (1.7) is characterized by a two-point boundary
condition, whereas problems (1.1)—(1.2) incorporates multi-point boundary conditions along with
HFIs.

The sections of this document are organized as follows: The fundamental ideas of fractional calculus
relating to this research are introduced in Section 2. An auxiliary lemma addressing the linear versions
of problems (1.1) and (1.2) is provided in Section 3. The primary findings are presented in Section 4
along with illustrative examples. Finally, Section 5 provides a few recommendations.

2. Preliminaries

Definition 2.1. For a continuous function ¢ : [a,0) — R, the HFI of order 6 > 0 is given by

H 75 ‘5 ISD(W)
I.o(1) = F(é)f dw, 2.1

where log(-) = log,(-).
Definition 2.2. For a continuous function ¢ : [a, o) — R, the HFD of order 6 > 0 is given by
D) = ("I p) @), n=16]+1, (2.2)

nd"

<> and [6] represents the integer parts of the real number 6.

where p" = T

Lemma 2.3. If6,y > 0and 0 < a < b < oo, then

(1) (7{]5 (10 I))’—1)( ): ]"(fy) (10 g))’+6—1
198 L I'(y +6) £ ’

v-1 y—o0-1
Hqys T _ Iy Q
. ( D“*(loga) )(Q)‘r(y—&(loga) |

-5
In particular, for y = 1, we have (ﬁDZ+)(1) = ﬁ(log %) #0,0<6< 1.

Definition 2.4. Forn—1 < § < nand 0 <y < 1, the HHFD of order 6 and y for ¢ € L'(a,b) is
defined as

((H(Hz)i:?’) :(WIZJE"_(S) pn(l’(Ifl'l—(i)(l—Y)‘p)(T)
:((H[Zin—é) pn?-{Iflrl—q)go)(T)
="M DL e)(1), a =6+ ny = by,

where " T 8 and (HDEIQ are given as defined by (2.1) and (2.2), respectively.
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Theorem 2.5. If ¢ € £'(a,b),0 < a < b < oo, and (ﬂIZIq(p)(T) € AC;[a,b], then

", (W@jﬁo)(r) ="T;, (W@;tp)(r)

N (pm-f-”(ﬂfiso))(a)(l T)“‘f‘l
ra-p \" ’

=p(7) =
- a
J=o

where 6 > 0,0 <y < 1,and g = 6 + ny — 6y,n = [6] + 1. Observe that I'(q — j) exists for all
j=12,---,n—1andq € [6,n].

Lemma 2.6. Let h,h, € C(E,R). Then, the solution to the linear Hilfer-Hadamard coupled BVP is
given by:

FHDNP + G DN o(r) = i), 1<y <2,

HHDV + MM DN P)p(1) = hy(1), 2 <y <3,

o) =0, o) =1MIem),

o) =0, o) =0, o)=L IToms), 1<n.mm<Z,

Y22 n ,“
o(1) =(log )" % x l{ /llﬂffir{(log nl) 'Kzf D) 4o - 7(2f AD) 15
A logm, 1 w 1 w
Y22 72 Y-l 1 -1
- (log 771) ! f (log @) hZ(w)dw + ! f (log ﬂ) hZ(w)dw}
logn,)  T'(Yn) Ji @ @ I'(yy) J @ w
T T y-1
+ % f 8D) g — f (log E) hl(w)dw](log 1) log (E)
| @ I'yh) S w @ 1
7272 up) T
_ [( log z) %, f AP e, f @)
log 1, 1 w 1 @
¥2—2 m Ya-1 T Y21
_ (logi) ! f (log m ) @) 1 f (log E) ha(@) |
logm ) I'¥2) Ji @ @ ry) Ji @ @
73 73 Y1-1
+ ,12]"151(7(1 f @dw _ 1 f (log @) hl(w)dw)](log 771)72—2 10g (m)}
@ I'(y2) Ji () @ m

" o(w) 1 o\ (@)
—%1ﬁ p dw+r(¢2)j: (logg) p dow, 2.4)
¢(7) =(log 7" log (1) X 1{
p)

1 Y2-2 172 71
A logm, 1 1 w

w
1 v2—2 1 7 Yo—1 h 1 71 Yo—1 h
_ ( 0g 171 ) f (IOg @) Q(W)dw + f (log m) 2(w)dw}
log n> ') Ji w w I'(y,) J, w w
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< T Yi-1
T e
. @ 'y @ @ '

r2-2 7 T
_[( logz) %, f oD f o(@) ,
log n, 1 (Y 1 @

(log T )”‘2 1 f’lz ( . )‘”2‘1 ho() 1 fl ( T )‘”2‘1 ho()
- log = dw — log — dw
logn, I'(y2) Jy @ @ r'(yr) Ji @ @

, 73 ( ) 1 73 lﬂl—lh( ) )
+421‘f+(7(1 fl %dw—r(%) f1 (log%) 1; dw)](logz)yl 1}

7272 75 T
+ ( logT ) 7(2 f —(p(w)dw - 7(2‘[‘ —"D(W)d’w'
1

log m, w w

!
_ ( logt )72_2 1 fm (log @)d/z—l hZ(w)dw
log m, I'(ys) Jy @ @

1 f ( T )‘”2‘1 hy()
log — dw,
') Ji w ()

A, = (og T,

[(y2 = D(logm)* 7 Y, =1
A, = A 1 - —1 ,
SRR CAE S R R R

_l_

where

F()’l) 5 1
B =-1HL——""—( 7y
| 2F(62+y1)(0gn3)
b (T
By = (logT)* " log|—|,
2

A=AB, - AB,.
Proof. From the first equation of (2.3), we have

CHDPP + 5D o) = b (0),
CHDE® + 9T H D) = b1,

Taking the Hadamard fractional integral of order ¢, and ¥, on both sides of (2.7) and (2

A DNP + TN P o(r) = H T, (1),
q N _1’ J
(MIHH DY 4 H LGOI DY P o(0) = H T, (1),

Equation (2.9) can be written as follows,

T T U1—-1
o(1) = ¢olog "' + ¢ (log )" 7 = K, f @, .1 f (log 1) h (@)
1 1 w w

@ I'(yn)

(2.5)

(2.6)

2.7)
(2.8)

.8), we get

(2.9)

do.  (2.10)
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@(7) =do(log 7)*~! + d;(log 7)"> 7% + dy(log 7)* 3

@) hz(w)
—7<2f1 —dw + F(%)f( ) —dw. (2.11)

Here, cy, ¢;, Do, Dy, and d, are arbitrary constants. Now, using boundary conditions (1.2) together
with (2.10) and (2.11), one can get

= 1—1 C—l B T @ T l Y1-1 hl(w‘) )
o(7) = co(log )"~ + (log 7)™ K fl —do+ - W . (log w) ——dw =0, (212
D
o(1) =dy(log 7)™ + b, (log 7)" 72 + m
- K fT @ do + ( ) hz(w)
EUREC r(m) p=
- (2.13)

from which we have ¢; = 0 and d, = 0. Equations (2.12) and (2.13) can be written as

o(1) =co(log 7)™ = K, fT Q(:;)d F(wl)f( ) hl(w) dwo, (2.14)

U2-1
( 1) M@ 1 215
w

w

@(1) =0p(log 1) " + 0y (log 1) % — %, f @ 1oy F(%)

Using the conditions ¢(77,) = 0 in (2.15), we get

: [ fnz(lo )wz ™ g + vollog ! - ‘Kf w@), ] (2.16)
~(log )2 | T () S olog m> , _

and substituting the value of d; into (2.15), we obtain

v2-2 772 T
(1) =dy(log 7)7>* log (771) - ( oo ) TG f @dw - %, f AD) dw
2 | |

logn, w w

log7\" T 1\ hy
_(10g772) F(wz)f( ) _dmfl(k’gw) =% G

Now, using (2.14) and (2.17) in the conditions:

o(®) = 1, I o),
o(¥) = L I 0(p),

we find that

(2.18)

C().?(l + blﬂz = Il,
C()B] + b]BQ = Iz.
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Thus, we get,

1 y2-2 2 7
o =4 {8 g, f AD) s 6, f A 125
A log > 1 w 1 (2
log m)”_z 1 f"( nz)‘“‘lhz(m 1 f"( m)“’flhz(w) }
_ log == dw + log — —dw
(log m I'(yn) J, o @ I'(yn) J, - @
T I Y-l
+ K f Q—(W)dw' — ! f (log z) hl(w)dw}(log i)n—z log (E)
1 @ I'(yn) i w @ 7
loo T 7272 n T
_[( og ) %, f 6@ f o(@)
log Up) 1 (2 1 w
1ogiz)”‘2 1 f'"( nz)”‘lhz(w) 1 fi( z)‘““hz(m)
- log — dw — log — dw
(10g m I'(y2) i o @ ') Ji L @

6 m@ _ 1 " m lpl_lhl(w) ) m
+/12I1+(7(1‘f1 = da F(ll’z)fl (logg) p= dw)](long log(a)}, (2.19)

and

1 1 2 2 g
b =—{ [0 22 g, f D 1y — %, f @)
A i 10g772 1 w 1 w
log 7, )”‘2 1 f"( nz)‘““hxw) 1 f"( 7, )‘””hzuw }
- log 2| 2dw+ og L) 2%un
(log m I'(y2) J g @ w I'(Yr) Ji & @ @
I T Y1-1
o(@) 1 f I hi (@) H 6 4
K do - log — LTI ”
+ 1 ‘f; o w r(wl) | ( Og w) - dw 2 'Z-l+( Og 773)
72_2 72 T
_[(logz) %, f AP g, f o(@) ,
logn, I w | w
1ogz)”‘2 1 f’h( nz)wz_lhz(w) 1 fi( z)‘”‘lhz(w)
_ log — dw — log — dw
(log m IAUZY N S @ I'(y2) Jy - w

3 3 Yi-1
T T R

where A is defined in (2.6). By substituting the value of ¢y obtained from (2.19) into (2.14), and
substituting the values of dy and d; obtained from (2.20) and (2.16) into (2.15), the resulting solution
is given by (2.4) and (2.5). O

3. Main results

Denote by X = {o(D)o(r) € C([1,T],R) as the Banach space of all functions (continuous)

from [1, T] into R equipped with the norm |lo|]| = sup |o(7)|. Obviously, (X, ]| -||) is a Banach space
7€[1,T]
and, as a result, the product space (X X X, || - ||) is a Banach space with the norm ||(o, ©)|| = lloll + |||
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for (o, ¢) € (X x X). In view of Lemma 2.6, we define an operator Q : X X X — X X X by

Q(0, )(1) = (91(9, @)(1), (0, 90)(7)),

where

1 v2-2 172 1
PR {( og m) %, f @) %, f o@)
logn, 1 w 1 w

_ (log m )”‘2 [ (10g @)”“pz(s, o@), @N@)
I'(y2) Ji

logn, w w

'y Ji (o @

T T ~\¥1-1
o(@) 1 I p1(s, o(@), p(@))(@)
+7<1f1 - dw—r(lmf] (logg) dw]

w

1
Qi(0, p)(1) =(log 7)"' 7% x Z{

T
x (log T)> log (—)
m

Y22 ) T
_[(logi) 7(2[77 @dw—%f o@)
logn, 1 w . @
log 1, I'(ya) J () @

! f ' (lOg E)“’Z’lpxs, o@). ¢@)(@)
') J

w w

73
+zsz1(7<1 f %) 4oy
1

w

1 13 m ll’l—lp](s, o(@), p(w))(w) )] - (]71 )}
log = dw ||(log )2 log [
I'(y2) f ( o ) @] dogm)™ " log m

w w

% f’g(w) oy | f’(logT)“‘lpl(s,g(w),so(w))W) -
i rwn) Ji ’

w w w

and

A
_ (10g U )n_2 1 f " (log @)wz_]pz(s,e(wx p@)@)
I'(y2) )i

logn, w w

1

(0, )(7) =(log )2 log (é) y l{

I'(Y) w w

T T Y1-1

o@ 1 f ( E) p1(5,0(@), p(@))(@) ]
+7<1j: dw oo log — dw

w w

3.1

(3.2)

1 ¥2-2 2 71
PR gm )" g f @), _ %, f @),
" (\logm, 1 w 1 w
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x (1,717 (log 173)”‘1)

r 22 ) T
_ (1ogz) (Kzfn @dw—v(zf @) s
L 1

logn, w w

1
[ @)””pxs, o@). f@)@)
1

w w

1og3:)”‘2 1
logn, I'(Yr)

1 * T\ pa(s, 0(@), p(@))(@) " o(w)
i [ 2] i [

w w
1 3\ pus, o(@), p(@)) (@) -
_r(wof] (log 5) @ dw) (log 27 }

1 22 2 7
+ ( PET ) ;¢ f ¢(@) dw — I f ¢(@) dw
logn, w . @

1
_ ( log 7 )”‘2 1 f & (log m )‘””pxs, o@), @)@ |
I'(yo) Jy

log 1, (o ()

ARG l)wz‘lpxs, o@). @)@
I'(y2) Ji

+
w w

We need the following hypotheses in what follows:

(H,) Assume that there exist real constants «;,k; > 0(i = 1,2) and k9 > 0,k > O such that, for all
Te[l,T], 5, eR,i=1,2,

lo1(7, 0, 9)| < ko + kilol + k2lel,
lo2(T, 0, 0)| < ko + Kilo| + k2l

(H,) There exist positive constants £, £, such that, for all 7 € [1,T], 0, pieRi=1,2,
lo1(7,01,02) — p1(T, 1, 02)| < L(|91 — @1l + o2 — sozl),

lo2(7,01,02) — P2(T, 01, 92)| < ﬁ(lpl — il + 102 — sozl)-

Furthermore, we establish the notation:

W, :%[Wl(log 3) + Igl(()lpgl—%](log )22 log (%)
=
+ Ki(log¥) + Ig;)fl—%, (3.3)
R
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-
. Al(log m)” (logmp)”>  (logm)”
logm, I, +y+1) I'(61+yr+1)

(log T)* 2 log (E)

m

logz)”2 (logn)”  (log 1) }

log T\
+[( ™ ) 7(Z(IOg'”)+7<2(1°g7”)+(lognz TWa+ D) TWat )

logn,

x (log ;)" log (ﬂ)
Uy

(log n3)7' !

141
W, =(log T log (Uz) X (%)[Wl(log T) + (log ) ]/l I'(y1)
2

'y, +1) 2()’1 +02)

(log T)" !,

(log n3)> 41 (log n73)Y1+92
FG2+2) T +6+1)

-2
o _ T 1 log \*™" (log )™ (log m2)”
MW, =(log T log| = | x| = ||2, %K + 1, —="
2 =(log) Og(ﬂz) (A)[l 2(lognz) TG +2 e 1)
. (logm)”‘z (logn)”*  (logm)”* |, I'(y)
\logm) TG +va+1) TG +ya+ D] (1 +062)

logz)”‘2 (logm)”  (og )" ]
logm)  T'Wo+1) TI'Y2+1)

+ [7(1 A

(log )"

log T\
+ Kr(logn,) + Kr(log T) +
logm,

logT

Y22
x (log T)~! +( ) T (log m2) + Fr(log T) +(

log 1, logmn,

@ = min{1 — [(W; + W))k; + (W, + W) 1, 1 — [(W; + W)k + (W, + W)}

log T )”‘2 (logn)”  (log 1)
TWr+1) TWr+1)

(3.4)

(3.5)

(3.6)

(3.7)

To demonstrate the existence of solutions for problems (1.1) and (1.2), we employ the following

established result.

Lemma 3.1. The Leray-Schauder alternative. Let ¥(X) = {x € D : x = kX(x) for some 0 < k < 1},
where X : D — D is a completely continuous operator. Then, either the set F(X) is unbounded or

there exists at least one fixed point for operator X.

3.1. Existence results via the Leray-Schauder alternative

We establish an existence result in this section using the Leray-Schauder alternative.

Theorem 3.2. Presume (H,) is true. Furthermore, it is presumed that
Wy + Wy)ky + (W + W)k < 1,
and
(W + Wa)ky + (W + W)k, < 1.

Then, systems (1.1) and (1.2) have at least one solution on [1, T].

(3.8)

(3.9)
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Proof. To demonstrate that Q, defined by (3.1), has a fixed point, we shall employ the Leray-Schauder
alternative. The proof is split into two parts. Step 1, we show that Q : XXX — XXX, defined by (3.1),
is completely continuous (C.C).

First we show that Q is continuous. Let {(0,, ¢,)} be a sequence such that (0,, ¢,) = (0,¢) in X X X.
Then, for each 7 € [1, T], we have

1€21 (O, ©n) — 1(0, )|
-2
1 logm \” " (@) — p(w)
2 H 76
<oz e gf [ [T P
171 _
e f on(®@) — p(w) dw‘
1 w

.\ (logm )72_2 1
logn, I'(Yr)

1 f (log m )”‘1 p2(5.04(®@). pu(@)(@) = po(s. (@), p(@)(@) |
1

f’" (1 n )“’2‘1p2<s, 2u(®). ¢ @N@) ~ pa(s. (@), p(@))(®@)
0og — dw
1 w w

+

I'(Yr2) @ @
xs
LK, ' f on(®@) — o(@) dw‘
1 w

fz (10g g)lﬂllpl(s, 0n(@), ou(@) (@) — p1(s, (@), p(@)) (D) -
1

w

+

I'(Yy)

T
X (log T)** log ( )

m
log T\~ (@) —
+[(10g ) sz on(@) 90(w>dw“+7<2
0gm» 1
(1ogz)”‘2 1

w w

T
f en(@) — p(@) dw'
1

fnz (log m )wz—l 02(8, 0u(@), (@) (@) — pa(s, 0(@), So(w))(w)dw
1

logn, ) I'(¥n) @ .
. fz (log T )wz—l p2(5,01(@), pu(@)(@) = pa(s, 0(@), p(@)(@) | _
I'(Y2) |J @ o
+42[f1(7<1 f ) de'
1 w
- f b (10g @)w”ms, 0n(@), eu(@N(@) = p1(5,0(@), @ N(@) | )]
o) % —

x (log1,)"* " log (ﬂ)} + Ki
n

2

f " on(@) — o(@) dw'
1

w

+

f T (1 T )wl_lm (5, 00(®@), u(@)(@) = pi (5, (@), $(@))(@)
og = dw
1

w w

1 7272 m _
PROT {( og 771) % f lon(@) —¢(@)| ,
1

*\logn, w

1
I'(Yr)

1
<(log )" * X —
<(log ) A{
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N

N (log m) ) f "2( ) Ho2(8, 00(®@), 0u(@)) (@) — pa(s, o(), @) @),
logn, I'(y) w

F(ll/z)
len(w) Q(w)l

w

( ) loa(s. 0u(@). @u(@)(@) = pa(s. o(@), p(@) @) , }

+ 7(1

( ) o158, 00(@), on(@) (@) — p1 (s, 0(), QO(W))(W)I ]

w

F(%)
x (log T)* " log (E)
P

Y22 up _ T _
N [( logz) %, lpn(@) — (@) dw + %, f Ison(w) ()| Jo
logn, w

+ (logi)” ” f"( ) ' pa(5.04(@). 1 @N@) = pi(s.0(@). e@N@)
logn, ) I'(¥2) @

( ) loa(s. 0n(@). @u(@)(@) = pa(s. o(@), p@)@)
w

T (lﬁz)
I (% " |@n<w>z; o@)

f ”*( ) Hoi(s.00(®@). u(@)(@) = pi(s. 0(@), p(@) @) , )]

w

F(llfz)
x(]ogm))’z 210g( )}+WIM

( ) o1 (5. 0(@). @u(@)(@) = pi (5. 0(@), p@)@)

w

F(d’z)

Since P1 1S continuous, we get

lo1(s, 0n(@), (@) (@) — p1(s, 0(@), p(@))(@)| = 0 as (0n, ¢n) = (0, ¢),

and

lo2(s, 0n(@), u(@))(@) — p2(s, 0(@), p(@))(@)| = 0 as (0x, ¢n) = (0, ).
Then,

1221 (0n = @) = Qi@ = )l = 0 as (on, ) = (0.¢). (3.10)

In the same way, we obtain
122(0n — ¢n) — (0 — @)l = 0 as (04, vn) — (0, 9). (3.11)
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It follows from (3.10) and (3.11) that

1201 — @1) — Q0 — Pl = 0 as (0., @) — (0, ¢). (3.12)

Hence, Q is continuous. Let us initially establish the complete continuity of the operator Q : X X X —
X X X as defined in (3.1). Evidently, the continuity of the operator Q in terms of Q; and Q, is a
consequence of the continuity of p; and p,. Subsequently, we proceed to demonstrate that the operator
Q is uniformly bounded.

To achieve this, let M c X x X be a bounded set. Consequently, we can identify positive constants
N1 and N; satisfying pi|(7, o(7), ¢(7))| < N and p,|(t, 0(7), (7)) < N>,V (0, ¢) € M. Consequently,
we obtain

1221(0, @)l = sup [Q1(0, ¢)(7)|

1 1 72_2 72 171
<(log 7)"""% x K{ /117{[?;{( 08 ’71) sz @), sz @),
1 1

logn, w w
log 1, I'(y2) i (2 @
, ! f ) (lOg m)‘“‘lpz(s, o(@), ¢(@))(@) dw}
') Jy w @
T T yn-1
P (log g) p(s. 0(@), 9(@)(@) dw]
1 w F(lﬂl) 1 w w

I
x (log T)> log (—)
n

2

log T\ ™ T
_[( og ) %, f oD f @)
log . T .o

(1ogz)n-2 ! f’" (1 nz)‘”“pxs, o(@). ¢(@)(®@)
— og — do
I'(y2) Ji

logn, w w

T Ya-1 3
[ (log z) pr(s. 0@ @@ (7(1 [
Ir'yn) Ji w 1

w w

i f'n (log n )‘”l“pl(s, o(@), p(@))(@) dw) (log )" log (m)}
I'(yo) Jy @ @ T

_WfT@dw+ ! fT(lo l)wl_lpl(s’g(w)’(’O(w))(w)dw
'J e I'(yr) Ji = @ ’

log T2 (log T 22 T
SNI{T[Wl(log 3)+ m (logT)*“log 5
(logm)™ (logns)*+ i (log T)""
+ |:/127(1 F(52 n 2) + /12 F(51 n lﬁl n 1) (log T]l) lOg m + 7(1(10g I) + F(lﬁl n l)

log T2 log )" (log 7,)” (log 15)°"
VA BTt P + LK
2{ A [ ! 2(1ogn2 re, +2) e, +2)
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-2
ﬁl(logm)” (logm)” (g

=2 z
logn, TG +yr+ 1) TS +un+ 1)](10gi§)y log( )

Uyl

log ¥ )’” (logn)*”  (log 1)
logn,)  T'Wa+1) T'Wr+1)

x (log )" 2 log (@)} (3.13)
Uy

log T 2
+ I (logny) + Kr(logX) +
logn,

This, considering the notation in (3.3) and (3.4), results in:
121 (0, Il < WN; + W N> (3.14)
Likewise, using the notation of (3.5) and (3.6), we have
1920, @)l < WA + W Ny (3.15)
Then, it follows from (3.14) and (3.15) that
120, )l < (W) + WN + (B, + W) N, (3.16)

This demonstrates that the operator € is uniformly bounded.
To establish the equicontinuity of Q, we consider 7, 7, € [1, T] with 7y < 7,. Then, we find that

Q1 (0, p)(12) — Qi(0, p)(T1)I
v2—-2 n o
ﬁI(f{](lsl+{(log7n) %, f o@) g f o@)
log 1, I w | w
¥2-2 7 Y2-1 71 Y2-1
e [ () ) 2]
logn, I'(yn) J, @ o ') )i @ @
T T U1—1
+7(1f Q(—w)dw— ! f (log z) d—w](logi)ﬂ_zlog(z)
@ 'y w () m
272 12 T
_[(bgz) %, f [ f o(@)
logm, 1 w 1 ()
_(logi)”_2 1 fnz(lo @)“’Z‘Id_w_ 1 fz(lo E)wz—ld_w
ogn) Twn i \'"*w) @ Tl \ @) @
73 7 Yi-1
R
@ I'Y2) Ji @ @ m

[ e ) (2]
172 @ I'(yn) Ji f S

1 Tl T " e
f (log —) —, > 0ast —> 1, (3.17)
F(lpZ) 7 w w

independent of (o, ¢) € M. Likewise, it can be shown that [Q;(0, )(12) — Q2(0, )(T1)] = 0 as 7, — 74
independent of (0,¢) € M. Thus, the equicontinuity of Q; and €, implies that the operator Q is

1
<(log 7'2)71‘2 — (log 71)71‘2 X K{

dw

w

+
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equicontinuous. Hence, the operator Q is equicontinuous. Therefore, the operator Q satisfies the
conditions for compactness according to Arzela-Ascoli’s theorem. Lastly, we confirm the boundedness
of the set: O(Q) = {(0,p) € X X X : (0,¢) = «kQ0,9);0 < « < 1}. Let (0,¢) € O(Q). Then
(0, ¢) = kQ(p, ¢), which implies that

o(1) = k1 (0, )(7),
(1) = kQs(0, )(7),

for any 7 € [1, T].
Based on the assumption (), we obtain:

1 7272 2 11
AHr (28I g f 2@ 1o + %, f LG
*\logn, | w 1 w
logn \"7 1 (. m\" 7 K + &ilol + Rlell
+ ( ) f (log —) dw
logmn, I'(y) J @ @
[ (log m)“’z‘l [0 + Kilol + el dw}
F(lﬁz) 1 w w
& 1 (T T\ T
+ K, f Q(w)dw _ f (log _) [ko + Kilol + szl]dw](log z)yz—z log (_)
| @ I'(yn) J () @ m

¥2-2 ) T
+[(logi¥) ngn de+7(2f @a’w
1 1

log n, () (o

. (k,gz)w-z s (bg @)““ [y + ilol + alel]
logm ) I'(2) Jy @ @
- ) (log E)‘”‘l ko + ilol + Rlell

I'(y2) Jy w

w
" o(w) 1 s\ ko + kilol + Kalel]
LT SACLP) f log B d
+ 2I1+(7<]I p w+r(¢/2) 1 ( ng) p- w

><(1og;71)72-210g(ﬂ)}+7(1 f @) oy
n 1

w

- T(log 1)‘”“1 ko + Kilol + rolel] |
I'(y2) Jy w ()

< Wi [ko + kilol + k2lel] + W1 [Ko + Kilol + Kalel], (3.18)

lo() < (log /""" x %{

+

+

—+

which implies that

lloll = sup lo(7)| < Wko + WKy + (Wyky + Wak)llol] + (Wikz + W)l (3.19)
el1,3]

Similarly, one can find that

llgll < Wyko + Waky + (Wi + Wyl + Wik + Way)lloll. (3.20)
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From (3.19) and (3.20), we obtain
lloll + llgll (W, + W )kp + (W, + W)k + (W + Wiy + (W, + W, )k ol
+ (W + W)y + (W, + W)l

Which, by [l(0, @)l = lloll + ll¢ll, yields
1 o o
ll(o, @Il < 5[(%1 + W) )ko + (W, + Wy)Ko].

As a result, O(Q) is constrained within bounds. Consequently, the conclusion of Lemma 3.1 is
applicable, implying that the operator € possesses at least one fixed point. This fixed point indeed
corresponds to a solution of problems (1.1) and (1.2). O

In the forthcoming findings, the application of Banach’s fixed-point theorem will be utilized to
demonstrate the existence of a unique solution for the problems (1.1) and (1.2).

Theorem 3.3. If condition (H,) is met, and the inequality
(W) + W)Ly + (W, + Wy) L < 1, (3.21)

holds, where Wi and Wi are defined in (3.3)—(3.6), then problems (1.1) and (1.2) possess unique
solutions over the interval [1, T].

Proof. Denoting &1 = { sup |pi(7,0,0)| < oo} and K2 = { sup |p,(7,0,0)| < oo}, it can be inferred
ell1,3] el1,3]
from assumption () that

loi(t,0,0)l < Liloll + llell) + K
< Lillto, p)ll + Ky,

and

lo2(7, 0, ©)| < Lol(0, Pl + K2.
First, we show that QB, C B,, where B, = {(0,¢) € X X X : ||(0, ¢)|| < 1}, with

(W) + (W))K; + (W, + (2,))K, _
Tl (W + (W) Ly + (W, + (W)L

(3.22)

For (o, ¢) € B,, we have

121 (0, Pl = sup [Qi(0, p)(7)]
7€[1,3]
soo [(logm\" 7 (™ e(@) " p(w)
/llH_Z-ll 7(2[ —dw—?(zf —dw
" \logn, 1 w 1 w

. (log m )”‘2 1 f’” (log m )‘”sz(s, o@), @)@ |
') J,

log n, w w

1
<1 v1—2 _
<(log1) X A{
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_l_

og dw
') Jy

w

w
+ K fI @dw— ! fz(log E)wllpl(s’ Q(w)’(p(w))(w)dw]
SUE wd (Fa

I'( ()

2

log T\ m T
_[( og ) %, f oD f o@)
log > Lo .o

_(1ogz)”‘2 I fvz (log @)‘”Z‘Ipxs,g(w),w(w))(w) i
I'(y2) Ji

T
x (log ) log (—)
n

logn, w w
T U1 3
1 f (log E) Pz(S,Q(W),¢(w))(w)dw+/12[?2 (7(1 f” @dw
I'(yr) Jy w (o i @
L )" pis 0(@), p(@)(w@) o (m
- ) j: (log 5) p- dw)}(log )" " log (E)}
T T Y1-1
~ K, f P f (log 1) pils, (@), p@)@) , (3.23)
@ ') Jy @ @
and
log 37172 (log Ty’ 2 I
1220, Pl <(Lyr + R1){ [7(1(1059’ I+ m](log I " log (5)

(log )™ 1 (log 173)%*¥1
FG,+2) PTG +yy +1)

log T log TN2 ] 72 6 ] o)
(logT) | log 1%, 0gm (logn2) N M(Z(Ognz)
T +1) A logm,)  I'(6; +2) G, +2)

-
N Al(log 771)” (ogm)” _ (ogrm)”
logn, I, +yr+1) I'(6i+yr+1)

+ [/127(1

(log ;)" 2 log (Z—) + %, (log T)

1
2

(log T)> log ( * )

M

log T )”‘2 (log )" , (log )

log T\??
+[( ™ ) 7ang"z)”ﬁ(logz”(lognz Tt D) TWat D

logn,

x (log ;)" * log (ﬂ)}
Upl

Making use of the notation of (3.3)—(3.6), we get
11 (0, Il < (LiW; + LoWr)r + WKy + WoK,. (3.24)

Likewise, we can find that

1€1 (0, P)I| < (—51@1 + ~£2Qﬁ2)f + QB15€1 + Qﬁ292- (3.25)
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Then, it follows from (3.24)—(3.25) that

1200, P)II < [1€21 (0, Pl + (|20, Pl < 1.
Therefore, QB, C B, as (o0, ¢) € B, is an arbitrary element.

To confirm the contraction property of the operator Q, consider (0;,¢;) € B, for i = 1,2.
Subsequently, we obtain

121 (01, 1) — Q1 (0, P)l|
~ 1 logn \”
<|dog Ty 2| x =3 |4, MT5
<|(tog) |XA{ 1 log 7
1 _
N 7(2‘[ ei1(@) ‘P(W)dw'
1 w
N (logm)yz_ 1
logm, I'(y2)

f m (log m)Wlp 2(5.01(®@), 01 (@)(@) = pals. o(@). ¢(@))(@)

w

) ) 3
%, f” p1(@) QD(W)dw
1 w

f 2 (1 m )wz_lpz(s, 01(@), p1 (@) (@) — pa(s, o(@), p(@))(@)
0g — dw

: |
.

w

I'(yr2)

f* o1(@) — Q(w)dw|
1 w

f z (log E)Wlm(s’ 01(@), 01(@)@) - pi(5. 0(@), ¢(@))(@)

w w

+7<1

" T

T
x (log T)> log (—)
Uy

N [( log T )”‘27(2 f"z o1(@) - ¢(@)
log, 1

@
N ( log¥ )yz—Z 1
logn, I'(y,)

f : (log T )‘”Z”pz(s, 01(@). ¢1(@)(@) — pa(s. (@), p(@)(@) ,

d’lD"+7<2

fl (@)~ p(@) | |
—— /w'
1 w

[ (1og @)’”z‘lpxs,@l(w), 01@)(@) = s, o) o) @) |

w w

+
I'(Yr)

w w

+ LI (7(1

f " 01(@) - o(w) dw‘
1

w

L]
I'(Yr)

x (logn;)">~ 2log( }+7( ‘f Ql(w) Q(W)

( 1)% 'p1(5.01(@). e @)@) — pi(s. 0@, p@N@) |
w

w

f ' (log @)Wlpl(s’g‘(w)’ 01(@) (@) — pi(s, 0(@), p(@))()

w w

&l

F(lﬁz)
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=2 )
AT {(logm)7 % ["le@-e@l,
1

1
<(log 7)""" % x —
<(log7) A{ log n, w

" i (@) - 902(?U)|

+ 5,
N (log m) ) f ( ) '02(s, 01(@), 01 (@)(@) — pa(s, 02(), @)@
logn, I'(y,) @
f’“ ( ) Ipz(S o01(@), p1(@)) (@) — pa(s, 02(@), wz(W))(W)I }
F (2) ()

ok f oi@) - e,

( ) Hoi(s.01(@), 01 (@) (@) = pu(s, 02(@), pr(@) @)l , ]

w

F(lﬁl)

T
x (log T)> log (—)
Yp)

v2—2 ) _ T _
N [( 10g3) %, lp1(@) — (@), LK, f lp1(@) — (@),
logn, w (o

(1()z‘=’f5)y2 - f ( ) |P2(S 01(@), p1(@))(@) — pa(s, 02(@), Q02(7ﬂ))(w)|
logn, I'(Y2) @

( ) oo (s, 01(@), 01 (@) (@) — pas, 02(), SOZ(W))(w)l
w

F(lffz)

173 —
I (7(] lo1 (@) Qz(w)l Jo

L] ”3( ) 'oi(s. 01(@), 1(@)(@) = pi (s, 02(), (@) @) , )]
I'(y2) Ji @

x (log ;)" log( f "loi(@) - @z<w>| -

+(](1

( )¢ 165, 01@). o1 (@)(@) — 15, 2(@). e2(@)(@)] |
w w

F ('ﬁ 2)
Which, by (H,), yields

121 (01, 1) — Q1(02, Il < (WL + W Lr)[llor — 02 + ller — ealll. (3.26)

Similarly, we can discover that

1Q0(01, ¢1) — Q1(02, )| < (W, L1 + W, L) [lor — 02 + ller — @alll. (3.27)

Consequently, it follows from (3.26) and (3.27) that
1€2(01, ¢1) — Q01 @Il = 11 (01, ¢1) — Q101 @Dl + [1€22(01, 1) — Q1 (01, 1)l
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< ([ + W 1Ly + [Wy + Wyl Lo)lllor — 02 + llgr — @alll. (3.28)

This, in line with condition (3.21), implies that Q acts as a contraction. As a result, the operator  has
a unique fixed point, following the application of the Banach fixed-point theorem. Consequently, there
exists a unique solution for problems (1.1) and (1.2) over the interval [1, T]. O

4. Examples

The sequential fractional differential system under consideration, involving the coupled Hilfer-
Hadamard operators, is expressed as:

DV + K THDLT (1) = pi(n o) p(T), 1<y <2, Te&:=(1.1T], @
(HDEP + IGHNDT (1) = pa(r,0(0), (D), 2 <Y <3, TE&:=[1,T), '
supplemented with nonlocal coupled Hadamard integral boundary conditions:
o) =0, o) = LMo, 42)
(1) =0, @) =0, @) ="T%e@ms), 1<n,mmns<T.

Here, Y1 = 2,¥1 = 3,81 = 3,80 = 3.3 = 10,6, = 3,6 = 3, = 6, = 3,3 = 5,4, = 3,4, =
2,y = %,)’2 = %,‘Kl = %,‘Kz = é,A = 0.114465 with the given data, and it is found that 25,
2.79137199, W, = 1.574688, W, = 6.799260, W, = 0.91745564.

In order to demonstrate Theorem 3.2, we use

lu(7)l cos ¢(7)
,0(7), = V2r+1+ + , 4.3
@, ¢) = V2T L+ S oD T e+ 10 @3
(1, 0(7), (1)) = ™" + tan” o(r) + ! sin ¢(7)
pAL LD, P = € 30r) 45 AT
It is evident that condition (#1) is fulfilled with parameter values: xy = \/§ K1 = % Ky = 11—5 Ky = eiz
K| = %, and &5 = %. Moreover, we have
1 A a1
(W + %z)g + (W, + 91;2)% ~ 0.4318658333 < 1, (4.4)
and
1 A A1

Hence, the assumptions of Theorem 3.2 are satisfied. Consequently, the outcome of Theorem 3.2 is
applicable, and therefore, problems (1.1) and (1.2), with p; and p, specified in (4.3), possess at least
one solution over the interval [1,10].

To demonstrate Theorem 3.3, we take into account

1 .
2 70 W(Sm@(r) + (D)D), (4.6)
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pi(r.0(0).0() =
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_ 2T 1 -1
p2(T,0(7), (7)) = ¢ " + 50+ d) 4)(tan o(7) + cos ¢(17)).

1

75> and

Put simply, we discover that £ = - and £ =

A1 a1
(W + %1)% + (W, + ﬂBz)E ~ 0.41937332 < 1.

Since the conditions of Theorem 3.3 are satisfied, it can be concluded, according to its findings,
that problems (1.1) and (1.2), with p; and p, defined in (4.6), possess unique solutions over the
interval [1,10].

5. Conclusions

We have presented criteria for the existence of solutions to a coupled system of nonlinear sequential
HHFDEs with distinct orders, coupled with nonlocal HFI boundary conditions. We derive the expected
results using a methodology that uses modern analytical tools. It is imperative to emphasize that the
results offered in this specific context are novel and contribute to the corpus of existing literature on
the topic. Furthermore, our results encompass cases where the system reduces to one with boundary
conditions of the following form: When 4, = 4, = 0, we get

o) =0, o) =0,
o1)=0, ¢ =0, ©I)=0, 1<n,m<I.

These cases represent new findings. Looking ahead, our future plans include extending this work to a
tripled system of nonlinear sequential HHFDEs with varying orders and integro-multipoint boundary
conditions. We also intend to investigate the multivalued analogue of the problem studied in this paper.
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