Research article Special Issues

The problem of determining source term in a kinetic equation in an unbounded domain

  • Received: 12 December 2023 Revised: 26 January 2024 Accepted: 22 February 2024 Published: 06 March 2024
  • MSC : 35A23, 35R30

  • In this paper, we deal with an inverse problem of determining the source function in a kinetic equation that is considered in an unbounded domain with Cauchy data. We prove the uniqueness of the solution of an inverse problem by means of a pointwise Carleman estimate. In recent years, kinetic equations have occurred in a variety of important fields and applications, such as aerospace engineering, semi-conductor technology, nuclear engineering, chemotaxis, and immunology.

    Citation: Özlem Kaytmaz. The problem of determining source term in a kinetic equation in an unbounded domain[J]. AIMS Mathematics, 2024, 9(4): 9184-9194. doi: 10.3934/math.2024447

    Related Papers:

  • In this paper, we deal with an inverse problem of determining the source function in a kinetic equation that is considered in an unbounded domain with Cauchy data. We prove the uniqueness of the solution of an inverse problem by means of a pointwise Carleman estimate. In recent years, kinetic equations have occurred in a variety of important fields and applications, such as aerospace engineering, semi-conductor technology, nuclear engineering, chemotaxis, and immunology.



    加载中


    [1] F. Salvarani, Recent advances in kinetic equations and applications, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-82946-9
    [2] G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369–520. https://doi.org/10.1017/S0962492914000063 doi: 10.1017/S0962492914000063
    [3] J. P. Françoise, G. L. Naber, S. T. Tsou, Encyclopedia of mathematical physics, Amsterdam: Elsevier, 2006.
    [4] P. Degond, L. Pareschi, G. Russo, Modeling and computational methods for kinetic equations, Boston: Birkhäuser, 2004. https://doi.org/10.1007/978-0-8176-8200-2
    [5] B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc., 41 (2004), 205–244.
    [6] A. M. Whitman, Thermodynamics: basic principles and engineering applications, Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-19538-9
    [7] V. F. Onyshchenko, L. A. Karachevtseva, K. V. Andrieieva, N. V. Dmytruk, A. Z. Evmenova, Kinetics of charge carriers in bilateral macroporous silicon, Semicond. Phys. Quantum Electron. Optoelectron., 26 (2023), 159–164. https://doi.org/10.15407/spqeo26.02.159 doi: 10.15407/spqeo26.02.159
    [8] L. L. Salas, F. C. Silva, A. S. Martinez, A new point kinetics model for ADS-type reactor using the importance function associated to the fission rate as weight function, Ann. Nucl. Energy, 190 (2023), 109869. https://doi.org/10.1016/j.anucene.2023.109869 doi: 10.1016/j.anucene.2023.109869
    [9] W. H. Shan, P. Zheng, Global boundedness of the immune chemotaxis system with general kinetic functions, Nonlinear Differ. Equ. Appl., 30 (2023), 29. https://doi.org/10.1007/s00030-023-00840-4 doi: 10.1007/s00030-023-00840-4
    [10] A. K. Amirov, Integral geometry and inverse problems for kinetic equations, Berlin, Boston: De Gruyter, 2001. https://doi.org/10.1515/9783110940947
    [11] Yu. E. Anikonov, Inverse problems for kinetic and other evolution equations, Berlin, Boston: De Gruyter, 2001. https://doi.org/10.1515/9783110940909
    [12] M. V. Klibanov, S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate, J. Math. Anal. Appl., 343 (2008), 352–365. https://doi.org/10.1016/j.jmaa.2008.01.071 doi: 10.1016/j.jmaa.2008.01.071
    [13] F. Golgeleyen, A. Amirov, On the approximate solution of a coefficient inverse problem for the kinetic equation, Math. Commun., 16 (2011), 283–298.
    [14] A. Amirov, Z. Ustaoglu, B. Heydarov, Solvability of a two dimensional coefficient inverse problem for transport equation and a numerical method, Transport Theory Statist. Phys., 40 (2011), 1–22. https://doi.org/10.1080/00411450.2010.529980 doi: 10.1080/00411450.2010.529980
    [15] T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 9.
    [16] C. E. Kenig, Carleman estimates, uniform Sobolev inequalities for second-order differential operators, and unique continuation theorems, In: Proceedings of the International Congress of Mathematicians, 1 (1986), 948–960.
    [17] A. P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), 16–36. https://doi.org/10.2307/2372819 doi: 10.2307/2372819
    [18] L. Hörmander, Linear partial differential operators, Berlin, Heidelberg: Springer, 1963. https://doi.org/10.1007/978-3-642-46175-0
    [19] A. L. Bukhgeim, M. V. Klibanov, Global uniqueness of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269–272.
    [20] J. P. Puel, M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Probl., 12 (1996), 995. https://doi.org/10.1088/0266-5611/12/6/013 doi: 10.1088/0266-5611/12/6/013
    [21] V. Isakov, M. Yamamoto, Carleman estimate with the Neumann boundary condition and its applications to the observability inequality and inverse hyperbolic problems, Contemp. Math., 268 (2000), 191–225.
    [22] O. Y. Imanuvilov, M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Probl., 17 (2001), 717. https://doi.org/10.1088/0266-5611/17/4/310 doi: 10.1088/0266-5611/17/4/310
    [23] O. Y. Imanuvilov, M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Commun. Partial Differ. Equ., 26 (2001), 1409–1425. https://doi.org/10.1081/PDE-100106139 doi: 10.1081/PDE-100106139
    [24] M. Bellassoued, M. Yamamoto, Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation, J. Math. Pures Appl., 85 (2006), 193–224. https://doi.org/10.1016/j.matpur.2005.02.004 doi: 10.1016/j.matpur.2005.02.004
    [25] M. V. Klibanov, M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation, Appl. Anal., 85 (2006), 515–538. https://doi.org/10.1080/00036810500474788 doi: 10.1080/00036810500474788
    [26] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. https://doi.org/10.1088/0266-5611/25/12/123013 doi: 10.1088/0266-5611/25/12/123013
    [27] M. M. Lavrentiev, V. G. Romanov, S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, American Mathematical Society, 1986.
    [28] V. G. Romanov, Estimate for the solution to the Cauchy problem for an ultrahyperbolic inequality, Dokl. Math., 74 (2006), 751–754. https://doi.org/10.1134/S1064562406050346 doi: 10.1134/S1064562406050346
    [29] F. Gölgeleyen, M. Yamamoto, Stability of inverse problems for ultrahyperbolic equations, Chinese Ann. Math. Ser. B, 35 (2014), 527–556. https://doi.org/10.1007/s11401-014-0848-6 doi: 10.1007/s11401-014-0848-6
    [30] İ. Gö lgeleyen, Ö. Kaytmaz, Conditional stability for a Cauchy problem for the ultrahyperbolic Schrödinger equation, Appl. Anal., 101 (2022), 1505–1516. https://doi.org/10.1080/00036811.2020.1781829 doi: 10.1080/00036811.2020.1781829
    [31] İ. Gölgeleyen, Ö. Kaytmaz, Uniqueness for a Cauchy problem for the generalized Schrödinger equation, AIMS Math., 8 (2023), 5703–5724. https://doi.org/10.3934/math.2023287 doi: 10.3934/math.2023287
    [32] F. Gö lgeleyen, Ö. Kaytmaz, A Hölder stability estimate for inverse problems for the ultrahyperbolic Schrödinger equation, Anal. Math. Phys., 9 (2019), 2171–2199. https://doi.org/10.1007/s13324-019-00326-6 doi: 10.1007/s13324-019-00326-6
    [33] P. Cannarsa, G. Floridia, F. Gölgeleyen, M. Yamamoto, Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Probl., 35 (2019), 105013. https://doi.org/10.1088/1361-6420/ab1c69 doi: 10.1088/1361-6420/ab1c69
    [34] F. Gölgeleyen, M. Yamamoto, Stability for some inverse problems for transport equations, SIAM J. Math. Anal., 48 (2016), 2319–2344. https://doi.org/10.1137/15M1038128 doi: 10.1137/15M1038128
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(667) PDF downloads(49) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog