Soft set theory has attracted many researchers from several different branches. Sound theoretical improvements are accompanied with successful applications to practical solutions of daily life problems. However, some of the attempts of generalizing crisp concepts into soft settings end up with completely equivalent structures. This paper deals with such a case. The paper mainly presents the metrizability of the soft topology induced by a soft metric. The soft topology induced by a soft metric is known to be homeomorphic to a classical topology. In this work, it is shown that this classical topology is metrizable. Moreover, the explicit construction of an ordinary metric that induces the classical topology is given. On the other hand, it is also shown that soft metrics are actually cone metrics. Cone metrics are already proven to be an unsuccessful attempt of generalizing metrics. These results clarify that most, if not all, properties of soft metric spaces could be directly imported from the related classical theory. The paper concludes with an application of the findings, i.e., a new soft fixed point theorem is stated and proven with the help of the obtained homemorphism.
Citation: Gültekin Soylu, Müge Çerçi. Metrization of soft metric spaces and its application to fixed point theory[J]. AIMS Mathematics, 2024, 9(3): 6904-6915. doi: 10.3934/math.2024336
Soft set theory has attracted many researchers from several different branches. Sound theoretical improvements are accompanied with successful applications to practical solutions of daily life problems. However, some of the attempts of generalizing crisp concepts into soft settings end up with completely equivalent structures. This paper deals with such a case. The paper mainly presents the metrizability of the soft topology induced by a soft metric. The soft topology induced by a soft metric is known to be homeomorphic to a classical topology. In this work, it is shown that this classical topology is metrizable. Moreover, the explicit construction of an ordinary metric that induces the classical topology is given. On the other hand, it is also shown that soft metrics are actually cone metrics. Cone metrics are already proven to be an unsuccessful attempt of generalizing metrics. These results clarify that most, if not all, properties of soft metric spaces could be directly imported from the related classical theory. The paper concludes with an application of the findings, i.e., a new soft fixed point theorem is stated and proven with the help of the obtained homemorphism.
[1] | D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[2] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[3] | F. Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inf. Sci., 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004 |
[4] | F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, $N$-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6 doi: 10.1007/s00500-017-2838-6 |
[5] | P. K. Maji, Neutrosophic soft set, Infinite Study, 2013. |
[6] | P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[7] | J. C. R. Alcantud, G. Santos-García, M. Akram, A novel methodology for multi-agent decision-making based on $N$-soft sets, Soft Comput., 2023. https://doi.org/10.1007/s00500-023-08522-0 doi: 10.1007/s00500-023-08522-0 |
[8] | M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. https://doi.org/10.1007/s40314-020-01161-3 doi: 10.1007/s40314-020-01161-3 |
[9] | M. G. Voskoglou, Application of soft sets to assessment processes, Amer. J. Appl. Math. Stat., 10 (2022), 1–3. https://doi.org/10.12691/ajams-10-1-1 doi: 10.12691/ajams-10-1-1 |
[10] | F. Al-Sharqi, A. G. Ahmad, A. Al-Quran, Similarity measures on interval-complex neutrosophic soft sets with applications to decision making and medical diagnosis under uncertainty, Neutrosophic Sets Syst., 51 (2022), 495–515. https://doi.org/10.5281/zenodo.7135362 doi: 10.5281/zenodo.7135362 |
[11] | J. C. R. Alcantud, The semantics of $N$-soft sets, their applications, and a coda about three-way decision, Inf. Sci., 606 (2022), 837–852. https://doi.org/10.1016/j.ins.2022.05.084 doi: 10.1016/j.ins.2022.05.084 |
[12] | M. Baghernejad, R. A. Borzooei, Results on soft graphs and soft multigraphs with application in controlling urban traffic flows, Soft Comput., 27 (2023), 11155–11175. https://doi.org/10.1007/s00500-023-08650-7 doi: 10.1007/s00500-023-08650-7 |
[13] | H. Aktaş, N. Çağman, Soft sets and soft groups, Inf. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008 doi: 10.1016/j.ins.2006.12.008 |
[14] | U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463. https://doi.org/10.1016/j.camwa.2010.03.034 doi: 10.1016/j.camwa.2010.03.034 |
[15] | F. Sidky, M. E. El-Shafei, M. K. Tahat, Soft topological modules, Ann. Fuzzy Math. Inf., 21 (2021), 267–278. https://doi.org/10.30948/afmi.2021.21.3.267 doi: 10.30948/afmi.2021.21.3.267 |
[16] | A. I. Alajlan, A. M. Alghamdi, Soft groups and characteristic soft subgroups, Symmetry, 15 (2023), 1450. https://doi.org/10.3390/sym15071450 doi: 10.3390/sym15071450 |
[17] | T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. https://doi.org/10.3906/mat-2005-117 doi: 10.3906/mat-2005-117 |
[18] | Z. A. Ameen, T. M. Al-shami, R. Abu-Gdairi, A. Mhemdi, The relationship between ordinary and soft algebras with an application, Mathematics, 11 (2023), 2035. https://doi.org/10.3390/math11092035 doi: 10.3390/math11092035 |
[19] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[20] | N. Çağman, S. Karataş, S. Enginoğlu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016 |
[21] | L. D. R. Kočinac, T. M. Al-shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput., 25 (2021), 12693–12702. https://doi.org/10.1007/s00500-021-06069-6 doi: 10.1007/s00500-021-06069-6 |
[22] | T. M. Al-shami, M. E. El-Shafei, Two types of separation axioms on supra soft topological spaces, Demonstr. Math., 52 (2019), 147–165. https://doi.org/10.1515/dema-2019-0016 doi: 10.1515/dema-2019-0016 |
[23] | T. M. Al-shami, M. E. El-Shafei, On supra soft topological ordered spaces, Arab J. Basic Appl. Sci., 26 (2019), 433–445. https://doi.org/10.1080/25765299.2019.1664101 doi: 10.1080/25765299.2019.1664101 |
[24] | T. M. Al-shami, A. Mhemdi, A weak form of soft $\alpha$-open sets and its applications via soft topologies, AIMS Math., 8 (2023), 11373–11396. https://doi.org/10.3934/math.2023576 doi: 10.3934/math.2023576 |
[25] | S. Alzahran, A. I. El-Maghrabi, M. A. Al-Juhani, M. S. Badr, New approach of soft M-open sets in soft topological spaces, J. King Saud Univ., 35 (2023), 102414. https://doi.org/10.1016/j.jksus.2022.102414 doi: 10.1016/j.jksus.2022.102414 |
[26] | M. Matejdes, Soft topological spaces and topology on the cartesian product, Hacet. J. Math. Stat., 45 (2016), 1091–1100. https://doi.org/10.15672/HJMS.20164513117 doi: 10.15672/HJMS.20164513117 |
[27] | J. C. R. Alcantud, An operational characterization of soft topologies by crisp topologies, Mathematics, 9 (2021), 1656. https://doi.org/10.3390/math9141656 doi: 10.3390/math9141656 |
[28] | S. Das, S. K. Samanta, On soft metric spaces, J. Fuzzy Math., 21 (2013), 207–213. |
[29] | B. R. Wadkar, R. Bhardwaj, R. M. Sharaff, Coupled fixed point theorems in soft metric space, Mater. Today, 29 (2020), 617–624. https://doi.org/10.1016/j.matpr.2020.07.323 doi: 10.1016/j.matpr.2020.07.323 |
[30] | K. Mishra, C. Singh, A. Choubey, Implementation of soft fixed point theorems with $B$-metric space, Int. J. Sci. Technol. Res., 8 (2019), 3199–3203. |
[31] | T. V. An, N. V. Dung, Z. Kadelburg, S. Radenovic, Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat., 109 (2015), 175–198. https://doi.org/10.1007/s13398-014-0173-7 doi: 10.1007/s13398-014-0173-7 |
[32] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[33] | Z. Ercan, On the end of the cone metric spaces, Topol. Appl., 166 (2014), 10–14. https://doi.org/10.1016/j.topol.2014.02.004 doi: 10.1016/j.topol.2014.02.004 |
[34] | M. Khani, M. Pourmahdian, On the metrizability of cone metric spaces, Topol. Appl., 158 (2011), 190–193. https://doi.org/10.1016/j.topol.2010.10.016 doi: 10.1016/j.topol.2010.10.016 |
[35] | M. Abbas, G. Murtaza, S. Romaguera, On the fixed point theory of soft metric spaces, Fixed Point Theory Appl., 2016 (2016), 17. https://doi.org/10.1186/s13663-016-0502-y doi: 10.1186/s13663-016-0502-y |
[36] | M. Abbas, G. Murtaza, S. Romaguera, Remarks on fixed point theory in soft metric type spaces, Filomat, 33 (2019), 5531–5541. https://doi.org/10.2298/FIL1917531A doi: 10.2298/FIL1917531A |
[37] | S. Das, S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math., 20 (2012), 551–576. |
[38] | B. Samet, C. Vetro, F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl., 2013 (2013), 5. https://doi.org/10.1186/1687-1812-2013-5 doi: 10.1186/1687-1812-2013-5 |
[39] | T. V. An, T. L. Quan, Some new fixed point theorems in metric spaces, Math. Moravica, 20 (2016), 109–121. |
[40] | I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inf., 3 (2012), 171–185. |
[41] | T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M. E. El-Shafei, Compactness and connectedness via the class of soft somewhat open sets, AIMS Math., 8 (2022), 815–840. https://doi.org/10.3934/math.2023040 doi: 10.3934/math.2023040 |
[42] | T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119. https://doi.org/10.1007/s13370-020-00783-4 doi: 10.1007/s13370-020-00783-4 |
[43] | M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. https://doi.org/10.2298/FIL1813755E doi: 10.2298/FIL1813755E |
[44] | F. Š. Erduran, E. Yiǧit, R. Alar, A. Gezici, Soft fuzzy metric spaces, Gen. Lett. Math., 3 (2017), 91–101. |
[45] | V. Gupta, A. Gondhi, Soft tripled coincidence fixed point theorems in soft fuzzy metric space, J. Sib. Fed. Univ., 33 (2023), 397–407. |