Research article Special Issues

An optimal power flow solution for a power system integrated with renewable generation

  • Received: 22 December 2023 Revised: 13 January 2024 Accepted: 26 January 2024 Published: 06 February 2024
  • MSC : 68T20

  • Integrating Green Renewable Energy Sources (GRES) as substitutes for fossil fuel-based energy sources is essential for reducing harmful emissions. The GRES are intermittent and their integration into the conventional IEEE 30 bus configuration increases the complexity and nonlinearity of the system. The Grey Wolf optimizer (GWO) has excellent exploration capability but needs exploitation capability to enhance its convergence speed. Adding particle swarm optimization (PSO) with excellent convergence capability to GWO leads to the development of a novel algorithm, namely a Grey Wolf particle swarm optimization (GWPSO) algorithm with excellent exploration and exploitation capabilities. This study utilizes the advantages of the GWPSO algorithm to solve the optimal power flow (OPF) problem for adaptive IEEE 30 bus systems, including thermal, solar photovoltaic (SP), wind turbine (WT), and small hydropower (SHP) sources. Weibull, Lognormal, and Gumbel probability density functions (PDFs) are employed to forecast the output power of WT, SP, and SHP power sources after evaluating 8000 Monte Carlo possibilities, respectively. The multi-objective green economic optimal solution consisted of 11 control variables to reduce the cost, power losses, and harmful emissions. The proposed method to address the OPF problem is validated using an adaptive IEEE bus system. The proposed GWPSO algorithm is evaluated by comparing it with PSO and GWO optimization algorithms in terms of achieving an optimal green economic solution for the adaptive IEEE 30 bus system. This evaluation is conducted within the confines of the same test system using identical system constraints and control variables. The integration of a small SHP with WT and SP sources, along with the proposed GWPSO algorithm, led to a yearly cost reduction ranging from $\$$19,368 to $\$$30,081. Simulation findings endorsed that the proposed GWPSO algorithm executes fruitfully compared to alternative algorithms regarding a consistent convergence curve and robustness, proving its potential as a viable choice for achieving cost-effective solutions in power systems incorporating GRES.

    Citation: Hisham Alghamdi, Lyu-Guang Hua, Muhammad Riaz, Ghulam Hafeez, Safeer Ullah, Monji Mohamed Zaidi, Mohammed Jalalah. An optimal power flow solution for a power system integrated with renewable generation[J]. AIMS Mathematics, 2024, 9(3): 6603-6627. doi: 10.3934/math.2024322

    Related Papers:

  • Integrating Green Renewable Energy Sources (GRES) as substitutes for fossil fuel-based energy sources is essential for reducing harmful emissions. The GRES are intermittent and their integration into the conventional IEEE 30 bus configuration increases the complexity and nonlinearity of the system. The Grey Wolf optimizer (GWO) has excellent exploration capability but needs exploitation capability to enhance its convergence speed. Adding particle swarm optimization (PSO) with excellent convergence capability to GWO leads to the development of a novel algorithm, namely a Grey Wolf particle swarm optimization (GWPSO) algorithm with excellent exploration and exploitation capabilities. This study utilizes the advantages of the GWPSO algorithm to solve the optimal power flow (OPF) problem for adaptive IEEE 30 bus systems, including thermal, solar photovoltaic (SP), wind turbine (WT), and small hydropower (SHP) sources. Weibull, Lognormal, and Gumbel probability density functions (PDFs) are employed to forecast the output power of WT, SP, and SHP power sources after evaluating 8000 Monte Carlo possibilities, respectively. The multi-objective green economic optimal solution consisted of 11 control variables to reduce the cost, power losses, and harmful emissions. The proposed method to address the OPF problem is validated using an adaptive IEEE bus system. The proposed GWPSO algorithm is evaluated by comparing it with PSO and GWO optimization algorithms in terms of achieving an optimal green economic solution for the adaptive IEEE 30 bus system. This evaluation is conducted within the confines of the same test system using identical system constraints and control variables. The integration of a small SHP with WT and SP sources, along with the proposed GWPSO algorithm, led to a yearly cost reduction ranging from $\$$19,368 to $\$$30,081. Simulation findings endorsed that the proposed GWPSO algorithm executes fruitfully compared to alternative algorithms regarding a consistent convergence curve and robustness, proving its potential as a viable choice for achieving cost-effective solutions in power systems incorporating GRES.



    加载中


    [1] C. P. Anke, D. Möst, The expansion of RES and the EU ETS-valuable addition or conflicting instruments? Energ. Policy, 150 (2021), 112125. https://doi.org/10.1016/j.enpol.2020.112125 doi: 10.1016/j.enpol.2020.112125
    [2] A. Alzahrani, M. A. Hayat, A. Khan, G. Hafeez, F. A. Khan, M. I. Khan, et al., Optimum sizing of stand-alone microgrids: Wind turbine, solar photovoltaic, and energy storage system, J. Energy Storage, 73 (2023), 108611. https://doi.org/10.1016/j.est.2023.108611 doi: 10.1016/j.est.2023.108611
    [3] E. Dogan, T. Luni, M. T. Majeed, P. Tzeremes, The nexus between global carbon and renewable energy sources: A step towards sustainability, J. Clean. Prod., 416 (2023), 137927. https://doi.org/10.1016/j.jclepro.2023.137927 doi: 10.1016/j.jclepro.2023.137927
    [4] B. Atems, J. Mette, G. Y. Lin, G. Madraki, Estimating and forecasting the impact of nonrenewable energy prices on US renewable energy consumption, Energ. Policy, 173 (2023), 113374. https://doi.org/10.1016/j.enpol.2022.113374 doi: 10.1016/j.enpol.2022.113374
    [5] M. Riaz, A. Hanif, S. J. Hussain, M. I. Memon, An optimization-based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy, Appl. Sci., 11 (2021), 6883. https://doi.org/10.3390/app11156883 doi: 10.3390/app11156883
    [6] P. P. Biswas, P. N. Suganthan, G. A. J. Amaratunga, Optimal power flow solutions incorporating stochastic wind and solar power, Energ. Convers. Manage., 148 (2017), 1194–1207. https://doi.org/10.1016/j.enconman.2017.06.071 doi: 10.1016/j.enconman.2017.06.071
    [7] D. S. Kirschen, H. P. V. Meeteren, MW/voltage control in a linear programming based optimal power flow, IEEE T. Power Syst., 3 (1988), 481–489. https://doi.org/10.1109/59.192899 doi: 10.1109/59.192899
    [8] M. F. Bedrinana, M. J. Rider, C. A. Castro, Ill-conditioned optimal power flow solutions and performance of non-linear programming solvers, 2009 IEEE Bucharest PowerTech, IEEE, 2009. https://doi.org/10.1109/PTC.2009.5282232
    [9] P. Fortenbacher, T. Demiray, Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations, Int. J. Elec. Power, 107 (2019), 680–689. https://doi.org/10.1016/j.ijepes.2018.12.008 doi: 10.1016/j.ijepes.2018.12.008
    [10] Y. Guo, S. Sheng, N. Anglani, B. Lehman, Economically optimal power flow management of grid-connected photovoltaic microgrid based on dynamic programming algorithm and grid I/O strategy for different weather scenarios, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 2019. https://doi.org/10.1109/APEC.2019.8722264
    [11] K. Xie, Y. H. Song, Dynamic optimal power flow by interior point methods, IEEE Proceedings-Generation, Transmission and Distribution, 148 (2001), 76–84. https://doi.org/10.1049/ip-gtd: 20010026
    [12] M. S. Osman, M. A. Abo-Sinna, A. A. Mousa, A solution to the optimal power flow using genetic algorithm, Appl. Math. Comput., 155 (2004), 391–405. https://doi.org/10.1016/S0096-3003(03)00785-9 doi: 10.1016/S0096-3003(03)00785-9
    [13] M. S. Kumari, S. Maheswarapu, Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution, Int. J. Elec. Power, 32 (2010), 736–742. https://doi.org/10.1016/j.ijepes.2010.01.010 doi: 10.1016/j.ijepes.2010.01.010
    [14] A. A. A. El-Ela, M. A. Abido, S. R. Spea, Optimal power flow using differential evolution algorithm, Electric Pow. Syst. Res., 80 (2010), 878–885. https://doi.org/10.1016/j.epsr.2009.12.018 doi: 10.1016/j.epsr.2009.12.018
    [15] M. A. Abido, Optimal power flow using particle swarm optimization, Int. J. Elec. Power, 24 (2002), 563–571. https://doi.org/10.1016/S0142-0615(01)00067-9 doi: 10.1016/S0142-0615(01)00067-9
    [16] I. N. Trivedi, P. Jangir, S. Parmar, N. Jangir, Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer, Neural Comput. Appl., 30 (2018), 1889–1904. https://doi.org/10.1007/s00521-016-2794-6 doi: 10.1007/s00521-016-2794-6
    [17] I. N Trivedi, P. Jangir, N. Jangir, S. Parmar, Voltage stability enhancement and voltage deviation minimization using multi-verse optimizer algorithm, 2016 International conference on circuit, power and computing technologies (ICCPCT), IEEE, 2016. https://doi.org/10.1109/ICCPCT.2016.7530136
    [18] M. Al-Attar, Y. S. Mohamed, A. A. M. El-Gaafary, A. M. Hemeida, Optimal power flow using moth swarm algorithm, Electr. Pow. Syst. Res., 142 (2017), 190–206. https://doi.org/10.1016/j.epsr.2016.09.025 doi: 10.1016/j.epsr.2016.09.025
    [19] B. Bentouati, C. Saliha, R. A. El-Sehiemy, G. G. Wang, Elephant herding optimization for solving non-convex optimal power flow problem, J. Electr. Electron. Eng., 10 (2017), 31.
    [20] S. Duman, U. Guvenc, Y. Sönmez, N. Yörükeren, Optimal power flow using gravitational search algorithm, Energ. Convers. Manage., 59 (2012), 86–95. https://doi.org/10.1016/j.enconman.2012.02.024 doi: 10.1016/j.enconman.2012.02.024
    [21] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, L. Abualigah, Ewoa-opf: Effective whale optimization algorithm to solve optimal power flow problem, Electronics, 10 (2021), 2975. https://doi.org/10.3390/electronics10232975 doi: 10.3390/electronics10232975
    [22] M. Siavash, C. Pfeifer, A. Rahiminejad, B. Vahidi, An application of grey wolf optimizer for optimal power flow of wind integrated power systems, 18th International Scientific Conference on Electric Power Engineering (EPE), IEEE, 2017. https://doi.org/10.1109/EPE.2017.7967230
    [23] O. D. Garzon-Rivera, J. Ocampo, L. Grisales-Norea, O. Montoya, J. J. Rojas-Montano, Optimal power flow in Direct Current Networks using the antlion optimizer, Stat. Optim. Inform. Comput., 8 (2020), 846–857. https://doi.org/10.19139/soic-2310-5070-1022 doi: 10.19139/soic-2310-5070-1022
    [24] T. Jumani, M. Mustafa, M. Rasid, N. Mirjat, M. Baloch, S. Salisu, Optimal power flow controller for grid-connected microgrids using grasshopper optimization algorithm, Electronics, 8 (2019), 111. https://doi.org/10.3390/electronics8010111 doi: 10.3390/electronics8010111
    [25] S. Khunkitti, A. Siritaratiwat, S. Premrudeepreechacharn, R. Chatthaworn, N. Watson, A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems, Energies, 11 (2018), 2270. https://doi.org/10.3390/en11092270 doi: 10.3390/en11092270
    [26] J. Radosavljevic, D. Klimenta, M. Jevtic, N. Arsic, Optimal power flow using a hybrid optimization algorithm of particle swarm optimization and gravitational search algorithm, Electr. Pow. Compo. Sys., 43 (2015), 1958–1970. https://doi.org/10.1080/15325008.2015.1061620 doi: 10.1080/15325008.2015.1061620
    [27] S. Birogul, Hybrid harris hawk optimization based on differential evolution (HHODE) algorithm for optimal power flow problem, IEEE Access, 7 (2019), 184468–184488. https://doi.org/10.1109/ACCESS.2019.2958279 doi: 10.1109/ACCESS.2019.2958279
    [28] B. Venkateswararao, D. Ramesh, F. Pedro, G. Márquez, Hybrid approach with combining cuckoo-search and grey-wolf optimizer for solving optimal power flow problems, J. Electr. Eng. Technol., 18 (2023), 1637–1653. https://doi.org/10.1007/s42835-022-01301-1 doi: 10.1007/s42835-022-01301-1
    [29] M. Soroush, M. Shahbakhti, J. Sarda, K. Pandya, K. Y. Lee, Hybrid cross entropy—cuckoo search algorithm for solving optimal power flow with renewable generators and controllable loads, Optim.Contr. Appl. Met., 44 (2023), 508–532. https://doi.org/10.1002/oca.2974 doi: 10.1002/oca.2974
    [30] M. Riaz, A. Hanif, H. Masood, M. A. Khan, An optimal power flow solution of a system integrated with renewable sources using a hybrid optimizer, Sustainability, 13 (2021), 13382. https://doi.org/10.3390/su132313382 doi: 10.3390/su132313382
    [31] A. M. Shaheen, R. A. El-Sehiemy, H. M. Hasanien, A. Ginidi, An enhanced optimizer of social network search for multi-dimension optimal power flow in electrical power grids, Int. J. Elec. Power, 155 (2024), 109572. https://doi.org/10.1016/j.ijepes.2023.109572 doi: 10.1016/j.ijepes.2023.109572
    [32] A. Shaheen, A. Ginidi, R. El-Sehiemy, A. Elsayed, E. Elattar, H. T. Dorrah, Developed Gorilla troops technique for optimal power flow problem in electrical power systems, Mathematics, 10 (2022), 1636. https://doi.org/10.3390/math10101636 doi: 10.3390/math10101636
    [33] E. Delarue, V. D. B. Kenneth, Carbon mitigation in the electric power sector under cap-and-trade and renewables policies, Energ. Policy, 92 (2016), 34–44. https://doi.org/10.1016/j.enpol.2016.01.028 doi: 10.1016/j.enpol.2016.01.028
    [34] P. P. Biswas, P. N. Suganthan, B. Y. Qu, G. A. J. Amaratunga, Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power, Energy, 150 (2018), 1039–1057. https://doi.org/10.1016/j.energy.2018.03.002 doi: 10.1016/j.energy.2018.03.002
    [35] S. Narinder, S. B. Singh, Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance, J. Appl. Math., 2017 (2017). https://doi.org/10.1155/2017/2030489 doi: 10.1155/2017/2030489
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(903) PDF downloads(85) Cited by(2)

Article outline

Figures and Tables

Figures(18)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog