Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Uniform in number of neighbors consistency and weak convergence of kNN empirical conditional processes and kNN conditional U-processes involving functional mixing data

  • * Both authors contributed equally to this work
  • Received: 27 November 2023 Revised: 27 December 2023 Accepted: 05 January 2024 Published: 18 January 2024
  • MSC : 60F05, 60F15, 62E20, 62G05, 62G07, 62G08, 62G20, 62G35

  • U-statistics represent a fundamental class of statistics arising from modeling quantities of interest defined by multi-subject responses. U-statistics generalize the empirical mean of a random variable X to sums over every m-tuple of distinct observations of X. Stute [182] introduced a class of so-called conditional U-statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a regression function. Stute proved their strong pointwise consistency to: r(m)(φ,t):=E[φ(Y1,,Ym)|(X1,,Xm)=t],fortXm. In this paper, we are mainly interested in the study of the kNN conditional U-processes in a functional mixing data framework. More precisely, we investigate the weak convergence of the conditional empirical process indexed by a suitable class of functions and of the kNN conditional U-processes when the explicative variable is functional. We treat the uniform central limit theorem in both cases when the class of functions is bounded or unbounded satisfying some moment conditions. The second main contribution of this study is the establishment of a sharp almost complete Uniform consistency in the Number of Neighbors of the constructed estimator. Such a result allows the number of neighbors to vary within a complete range for which the estimator is consistent. Consequently, it represents an interesting guideline in practice to select the optimal bandwidth in nonparametric functional data analysis. These results are proved under some standard structural conditions on the Vapnik-Chervonenkis classes of functions and some mild conditions on the model. The theoretical results established in this paper are (or will be) key tools for further functional data analysis developments. Potential applications include the set indexed conditional U-statistics, Kendall rank correlation coefficient, the discrimination problems and the time series prediction from a continuous set of past values.

    Citation: Salim Bouzebda, Amel Nezzal. Uniform in number of neighbors consistency and weak convergence of kNN empirical conditional processes and kNN conditional U-processes involving functional mixing data[J]. AIMS Mathematics, 2024, 9(2): 4427-4550. doi: 10.3934/math.2024218

    Related Papers:

    [1] Jamalud Din, Muhammad Shabir, Samir Brahim Belhaouari . A novel pessimistic multigranulation roughness by soft relations over dual universe. AIMS Mathematics, 2023, 8(4): 7881-7898. doi: 10.3934/math.2023397
    [2] Rukchart Prasertpong . Roughness of soft sets and fuzzy sets in semigroups based on set-valued picture hesitant fuzzy relations. AIMS Mathematics, 2022, 7(2): 2891-2928. doi: 10.3934/math.2022160
    [3] R. Mareay, Radwan Abu-Gdairi, M. Badr . Soft rough fuzzy sets based on covering. AIMS Mathematics, 2024, 9(5): 11180-11193. doi: 10.3934/math.2024548
    [4] Rizwan Gul, Muhammad Shabir, Tareq M. Al-shami, M. Hosny . A Comprehensive study on (α,β)-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation. AIMS Mathematics, 2023, 8(11): 25888-25921. doi: 10.3934/math.20231320
    [5] Feng Feng, Zhe Wan, José Carlos R. Alcantud, Harish Garg . Three-way decision based on canonical soft sets of hesitant fuzzy sets. AIMS Mathematics, 2022, 7(2): 2061-2083. doi: 10.3934/math.2022118
    [6] Amal T. Abushaaban, O. A. Embaby, Abdelfattah A. El-Atik . Modern classes of fuzzy α-covering via rough sets over two distinct finite sets. AIMS Mathematics, 2025, 10(2): 2131-2162. doi: 10.3934/math.2025100
    [7] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [8] Tareq M. Al-shami, Salem Saleh, Alaa M. Abd El-latif, Abdelwaheb Mhemdi . Novel categories of spaces in the frame of fuzzy soft topologies. AIMS Mathematics, 2024, 9(3): 6305-6320. doi: 10.3934/math.2024307
    [9] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [10] Admi Nazra, Jenizon, Yudiantri Asdi, Zulvera . Generalized hesitant intuitionistic fuzzy N-soft sets-first result. AIMS Mathematics, 2022, 7(7): 12650-12670. doi: 10.3934/math.2022700
  • U-statistics represent a fundamental class of statistics arising from modeling quantities of interest defined by multi-subject responses. U-statistics generalize the empirical mean of a random variable X to sums over every m-tuple of distinct observations of X. Stute [182] introduced a class of so-called conditional U-statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a regression function. Stute proved their strong pointwise consistency to: r(m)(φ,t):=E[φ(Y1,,Ym)|(X1,,Xm)=t],fortXm. In this paper, we are mainly interested in the study of the kNN conditional U-processes in a functional mixing data framework. More precisely, we investigate the weak convergence of the conditional empirical process indexed by a suitable class of functions and of the kNN conditional U-processes when the explicative variable is functional. We treat the uniform central limit theorem in both cases when the class of functions is bounded or unbounded satisfying some moment conditions. The second main contribution of this study is the establishment of a sharp almost complete Uniform consistency in the Number of Neighbors of the constructed estimator. Such a result allows the number of neighbors to vary within a complete range for which the estimator is consistent. Consequently, it represents an interesting guideline in practice to select the optimal bandwidth in nonparametric functional data analysis. These results are proved under some standard structural conditions on the Vapnik-Chervonenkis classes of functions and some mild conditions on the model. The theoretical results established in this paper are (or will be) key tools for further functional data analysis developments. Potential applications include the set indexed conditional U-statistics, Kendall rank correlation coefficient, the discrimination problems and the time series prediction from a continuous set of past values.



    Set theory is a crucial concept for the study of fundamental mathematics. In classical set theory, however, a set is determined solely by its elements. That is, the concept of a set is exact. For example, the set of even integers is exact because every integer is either odd or even. Nevertheless, In our daily lives, we encounter various problems involving inaccuracies. As an example, young men are imprecision because we can not classify all youngsters into two different classes: young men and older men. Thus the youngsters are not exact but a vague concept. The classic set requires precision for all mathematics. For this reason, imprecision is essential to computer scientists, mathematicians, and philosophers interested in the problems of containing uncertainty. There exist many theories to deal with imprecisions, such as vague set theory, probability theory, intuitionistic FS, and interval mathematics; these theories have their merits and demerits.

    Zadeh [61] invented the concept of an FS, which was the first successful response to vagueness. In this approach, the sets are established by partial membership, apart from the classical set, where exact membership is required. It can cope with issues containing ambiguities and resolve DM problems, which are frequently proper techniques for characterizing ambiguity, but this theory its own set of problems, as discussed in [33].

    It was in 1999 that Molodtsov [33] introduced a new mathematical approach for dealing with imprecision. This new approach is known as SST, which is devoid of difficulties occurring in existing theories. SST has more comprehensive practical applications. SST's first practical applications were presented by Maji et al. [30,31], and they also defined several operations and made a theoretical study on SST. Ali et al. [1] provided some new SS operations and refined the notion of a SS complement. It is common for SST parameters to be vague words. To solve these problems, A FSS is defined by Maji et al. [32] as an amalgamation of SS and FS. Real-world DM problems can be solved with FSS. A problem-solving method is proposed based on FSS theory was discussed by Roy and Maji in [40], an interval-valued FSS is presented by Yang et al. in [58], and a DM problem is investigated using the interval-valued FSS. In a recent study, Bhardwaj et al. [6] described an advanced uncertainty measure that was based on FSS, as well as the application of this measure to DM problems. More applications of a SS and FS can be found in [12,13,51]

    RST, proposed by Pawlak in 1982 [37] is another mathematical approaches to deal with problems that contains imprecision. RST is a typical method to deal with imprecision. It is not a replacement for classical set theory, Like FST, but rather an integrated part of it. No extra or preliminary data knowledge is required for RST, like statistical probability, which is the advantage of RST. RST has found many useful applications. Particularly in the areas of collecting data and artificial intelligence, DM. The RS technique looks to be of fundamental relevance to cognitive sciences [37,38]. It appears fundamental to knowledge creation from databases, pattern recognition, inductive reasoning, and expert systems. Pawlak's RST is based on partition or equivalence relation. Due to the fact that it can only handle entire data, such a partition has limitations for many applications. To handle these problems, the equivalence relation is replaced by similarity relations, tolerance relations, neighborhood systems, general binary relations, and others. ST, FS, and RST were merged by Feng et al. [15]. [2,41] examines the RSS and SRS, The SBr and knowledge bases approximation of RS was discussed by Li et al. [26]. SRFS and SFRS were discussed by Meng et al. [34], novel FRS models are presented by Zhang et al. [63] and applied to MCGDM, using picture FS and RS theory Sahu et al. [49] present a career selection method for students, a built-in FUCOM-Rough SAW supplier selection model is presented by Durmić et al. [9]. Dominance Based Rough Set Theory was used by Sharma et al. in their recent study [50] to select criteria and make hotel decisions, and A rough-MABAC-DoE-based metamodel for iron and steel supplier selection was developed by Chattopadhyay et al. [7], Fariha et al. [15] presented A novel decision making method based on rough fuzzy information. Multi-criteria decision-making methods under soft rough fuzzy knowledge were discussed by Akram et al. [5]. An application of generalized intuitionistic fuzzy soft sets to renewable energy source selection was discussed by Khan et al. [22]. FS and RS are combined in[8], Xu et al. [54] discussed FRS model over dual universes. Some generalization of FSs and soft sets along with their applications can be seen in [21,35,36]

    The original RS model depended on a single equivalence relation. In many actual circumstances, when dealing with data with multiple granulations, this might be problematic. Aiming to deal with these problems, Qian et al. [39] presented an MGRS model to approximate the subset of a universe with respect to multi-equivalence relations instead of single-equivalence relations. It establishes a new study direction in RS in the multi-granulation model. The MGRS has attracted a substantial number of scholars from all over the world who have considerably contributed to its development and applications. Depending on the specific ordered and tolerance relations, Xu et al. [56] discussed two types of MGRSs, [57] incorporates a reference to FMGRS, Multi-granulation rough set from the crisp to the fuzzy case was defined by Yang et al. [60]. Ali et al. [3] described improved types of dominance-based MGRS and its applications in conflict analysis problems, Two new MGRS types were introduced by Xu et al. [55], Neighborhood-based MGRS was discussed by Lin, et al. [27], Liu et al. [28] discuss regarding MGCRS. According to Kumar et al., [20] an optimistic MGRS-based classification for medical diagnostics had been proposed. Huang et al. [19] defined intuitionistic FMGRSs by combining the concepts of MGRS and intuitionistic FS.

    There are numerous practical problems, including disease symptoms and drugs used in disease diagnosis, comprise a diverse universe of objects. The original rough set model deals with the problems that arise in one universe of objects. In order to solve the problems with the rough set that exist in the single universe of objects, Regarding the development of the relationship between the single-universe and dual universe models, Liu [24], Yan et al. [59] introduced a generalised RS model over dual universes of objects rather than a single universe of objects. Ma and Sun [29], developed the probabilistic RS across dual universes to quantify knowledge uncertainty, The graded RS model over dual universes and its characteristics were described by Liu et al. [25], the reduction of an information system using an SBr-based approximation of a set across dual universes was presented by Shabir et al. [42], a dual universe FRS based on interval data is presented by Zhang et al. [62], Wu et al. [53] developed the FR approximation of a set across dual universes, MGRS was presented over dual universes of objects by Sun et al. [44]. MGRS over dual universe is a well-organized framework for addressing a variety of DM problems. Moreover, it has grown in popularity among experts in multiple decision problems, attracts a wide range of theoretical and empirical studies. Zhang et al. [64] presented PFMGRS over dual universes and how it may be used in mergers and acquisitions. A decision-theoretic RS over dual universes based on MGFs for DMs and three-way GDMs was described by Sun et al. [45,46]. Din et al. [10] recently presented the PMGRFS over dual universes. Further applications in GDM of MG over dual universes can be found in [47,48]. For steam turbine fault diagnosis, Zhang et al. [65] presented the FMGRS over two universes, and Tan et al. [52] demonstrated decision-making with MGRS over two universes and granulation selection.

    The concept of MGRS was introduced by Qian et al. in [39] through the utilization of multiple equivalence relations rhoi on a mathfrakU universe. Sun et al. [44], replace multi equivalence relations ρi, by general binary relation ρi universal U×V, it was the more general from MG, also discussed OMRGRS and PMGRS over dual universes. On the other hands, Shabir et al. [11,43], generalized these notions of MGRS and replace relations by SBr on U×V. It was a very interesting generalization of multigranulation roughness, but there was an issue that it does not hold some properties like the lower approximation not contained in upper approximation. Secondly, the roughness of the crisp set and the result we got two soft sets. The question is how to rank an object. We suggest multigranulation roughness of a fuzzy set to address this query. Because of the above study, we present a novel optimistic MGR of an FS over dual universes.

    The major contribution of this study is:

    ● We extend the notion of MGRS to MGR of FS based on SBrs over two universes to approximate an FS μF(V) by using the aftersets of SBr and approximate an FS γF(U) by using foresets of SBrs. After that, we look into certain algebraic aspects of our suggested model.

    ● The Accuracy measure are discussed to measure the exactness or roughness of the proposed MGRFS model.

    ● Two algorithms are defined for discission-making and discuss an example from an applications point of view.

    The remaining of the article is organised as follows. The fundamental idea of FS, Pawlak RS, MGRSs, SBr, and FSS is recalled in Section 2. The optimistic multi-granulation roughness of a fuzzy set over dual universes by two soft binary relation, as well as its fundamental algebraic features and examples, are presented in Section 3. The optimistic multi-granulation roughness of a fuzzy set over two universes by multi soft binary relations is presented in Section 4 along with some of their fundamental algebraic features. The accuracy measurements for the presented optimistic multigranulation fuzzy soft set are shown in Section 5. We concentrate on algorithms and a few real-world examples of decision-making problems in Section 6. Finally, we conclude the paper in Section 7.

    Basic concepts for the FS, RS, MGRS, SS, SBR, and FSS are presented in this section; these concepts will all be used in later sections.

    Definition 2.1. [61] The set {(w,μ(w)): For each wW} is called fuzzy set in W, where μ:W[0,1], where W A membership function μ:W[0,1] is called as a FS, where W set of objects. Let μ and μ1 be two FS in W. Then μμ1 if μ(w)μ1(w), for all wW. Moreover, μ=μ1 if μμ1 and μμ1. If μ(w)=1 for all wW, then the μ is called a whole FS in W. The null FS and whole FS are usually denoted by 0 and 1 respectively.

    Definition 2.2. [61] The intersection and union of two fuzzy sets μ and γ in W are defined as follows:

    γμ=γ(w)μ(w),γμ=γ(w)μ(w),

    for all wW. Where and mean minimum andmaximum respectively.

    Definition 2.3. [61] The set μα={wW:μ(w)α} is known as the αcut of a FS μ in W. Where 1α0.

    Example 2.1. Let U={u1,u2,u3,u4,u5}, and the membership mapping μ:U[0,1] defined by μ=0.5u1+0.2u2+0.1u3+0.7u4+1u5 is called the FS in U.

    Let α=0.3. Then the set μα={u1,u4,u5} is known is α-cut or level set of FS μ in U.

    Definition 2.4. [37] The set {wW | [w]ψM} and {wW | [w]ψM} is known as the Pawlak lower, and upper approximations for any MW, we denoted by ψ_(M) and ¯ψ(M) respectively, where wpsi is the equivalence class of w w.r.t psi and psi is an equivalence relation on W. The set ¯ψ(M)ψ_(M), is called boundary region of M. If BNψ(M)= then we say that M is definable (exact). Otherwise, M is rough with respect to ψ. Define the accuracy measure by αψ(M)=|ψ_(M)||¯ψ(M)| and roughness measure by αψ(M)=1αψ(M) in order to determine how accurate a set M is.

    Qian et al. [39] enlarged the Pawlak RS model into an MGRS model, where the set approximations are establish by multi equivalence relations.

    Definition 2.5. [39] Let ˆψ1,ˆψ2,,ˆψj be j equivalence relations on a universal set W and MW. Then the lower approximation and upper approximation of M are defined as

    M_ji=1ˆψi={wW | [w]ˆψiM for some i,1ij},¯Mji=1ˆψi=(Mc_ji=1ˆψi)c.

    Definition 2.6. [33] A SS over W is defined as a pair (/psi,A) where /psi is a mapping with ψ:→P(W), W finite set, and AE(set of parameters).

    Definition 2.7. [14] A SS (ψ,A) over W×W. is called a SBr on W, and we denoted by SBr(W).

    Example 2.2. Let U={u1,u2,u3,u4,u5} represents some students and A={e1,ee} is the set of perimeters, where e1 represent math and e2 represent computer. Then the mapping ψ:AP(U) defined by ψ(e1)={u1,u4,u5} and ψ(e2)={u2,u3,u4}, is called soft set over U.

    Li et al. [23] present the notion of SBr in a more general form and define a GSBr from W to V, as follows.

    Definition 2.8. [23] If (ψ,A) is a SS over W×V, that is ψ:AP(W×V), then (ψ,A) is said to be a SBr (SB-relation) on W×V. and we denoted by SBr(W,V).

    Definition 2.9. [40] Let F(W) be the set of all FS on W. Then the pair (ψ,A) is known as FSS over W, where AE (set of parameters) and ψ:AF(W).

    Definition 2.10. [40] Let (ψ1,A),(ψ2,B) be two FSS over a common universe, (ψ1,A) is a FS subset of (ψ2,B) if BA and ψ1(e) is a FS subset of ψ2(e) for each eA. The FSS (ψ1,A) and (ψ2,B) are equal if and only if (ψ1,A) is a FS subset of (ψ2,B) and (ψ2,B) is a FS subset of (ψ1,A).

    This section examines the optimistic roughness of an FS utilising two SBr from U to V. We then utilize aftersets and foresets of SBr to approximation an FS of universe V in universe U and an FS of universe U in universe V, respectively. Because of this, we have two FSS, one for each FS in V(U).

    Definition 3.1. Let μ be a FS in V and ψ1 and ψ2, be SBr over U×v The optimistic lower approximation (OLAP) ψ1+ψ2_μo and optimistic upper approximation (OUAP) o¯ψ1+ψ2μ, of FS μ w.r.t aftersets of ψ1 and ψ2 are defined as:

    ψ1+ψ2_μo(e)(a)={{μ(b): b(aψ1(e)aψ2(e)),bV}, if aψ1(e)aψ2(e)0, otherwise.o¯ψ1+ψ2μ(e)(a)={{μ(b): b(aψ1(e)aψ2(e)),bV}, if aψ1(e)aψ2(e)0, otherwise.

    Where aψ1(e)={bV:(a,b)ψ1(e)},aψ2(e)={bV:(a,b)ψ2(e)} are aftersets of a for aU and eA. Obviously, (ψ1+ψ2_μo,A) and ( o¯ψ1+ψ2μ,A) are two FSS over U.

    Definition 3.2. Let γ be a FS in U, and ψ1 and ψ2, be SBr over U×v The optimistic lower approximation (OLAP) γψ1+ψ2_o and optimistic upper approximation (OUAP) γ¯ψ1+ψ2o, of FS γ w.r.t foresets of ψ1 and ψ2 are defined as:

    γψ1+ψ2_o(e)(b)={{γ(a) : a(ψ1(e)(b)ψ2(e)(b)),aU}, if ρ1(e)(b)ψ2(e)(b)0, otherwise.γ¯ψ1+ψ2o(e)(b)={{γ(a) : a(ψ1(e)(b)ψ2(e)(b)),aU}, if  ψ1(e)(b)ψ2(e)(b)0, otherwise.

    Where ψ1(e)b={aU:(a,b)ψ1(e)},ψ2(e)b={aU:(a,b)ψ2(e)} are foresets of b for bV and eA.

    Obviously, ( γψ1+ψ2_o,A) and ( γ¯ψ1+ψ2o,A) are two FSS over V.

    Moreover, ψ1+ψ2_λo:AF(U),o¯ψ1+ψ2λ:AF(U) and γψ1+ψ2_o:AF(V),γ¯ψ1+ψ2o:AF(V) and we say (U,V,{ψ1,ψ2}) a generalized Soft Approximation Space.

    Example 3.1. There are fifteen excellent allrounders who are eligible for the tournament, divided into the Platinum and Diamond categories. A franchise mathfrakXYZ wants to choose one of these players as their finest all-around player, the Platinum Group players are represented by the Set U={a1,a2,a3,a4,a5,a6,a7,a8} and the diamond Group players are represented by the Set V={b1,b2,b3,b4,b5,b6,b7}. Suppose A={e1, e2} is the set of parameters, where e1 stands for the batsman and e2 for the bowler. Let two distinct coaching teams evaluate and contrast these players based on how they performed in the various leagues they played in throughout the world, from these comparisons, we have,

    The firstteam coaches comparison, ψ1:A P(U×V), is represented by
    ψ1(e1)={(a1,b2),(a1,b3),(a2,b2),(a2,b5),(a3,b4),(a3,b5),(a4,b1),(a4,b3),(a5,b1),(a5,b6),(a7,b4)(a7,b7)},ψ1(e2)={(a1,b3),(a1,b6),(a2,b1),(a2,b4),(a3,b1),(a4,b5),(a4,b7),(a5,b2),(a5,b7),(a7,b3),(a7,b6),(a8,b1),(a8,b7)},

    where ψ1(e1) compare the batting performance of players and ψ1(e2) compare the bowling performance of players.

    The secondteam of coaches comparison, ψ2:AP(U×V), is represented by
    ψ2(e1)={(a1,b2),(a2,b3),(a2,b5),(a3,b4),(a4,b3),(a4,b5),(a4,b6),(a5,b4),(a6,b7),(a7,b3),(a7,b7)(a8,b2),(a8,b5)},ψ2(e2)={(a1,b3),(a1,b4),(a2,b3),(a2,b4),(a2,b7),(a3,b1),(a3,b6),(a4,b2),(a4,b4),(a5,b2),(a6,b5),(a7,b6),(a8,b1),(a8,b3)},

    where ψ1(e1) compare the batting performance of players and ψ1(e2) compare the bowling performance of players.

    We obtain two SBrs from U to V from these comparisons. Now the aftersets are

    a1ψ1(e1)={b2,b3},a1ψ1(e2)={b3,b6},a1ψ2(e1)={b2},a1ψ2(e2)={b3,b4}a2ψ1(e1)={b2,b5},a2ψ1(e2)={b1,b4},a2ψ2(e1)={b3,b5},a2ψ2(e2)={b3,b4,b7}a3ψ1(e1)={b4,b5},a3ψ1(e2)={b1},a3ψ2(e1)={b4},a3ψ2(e2)={b1,b6}a4ψ1(e1)={b1,b3},a4ψ1(e2)={b5,b7},a4ψ2(e1)={b3,b5,b6},a4ψ2(e2)={b2,b4}a5ψ1(e1)={b1,b6},a5ψ1(e2)={b2,b7},a5ψ2(e1)={b4},a5ψ2(e2)={b2}a6ψ1(e1)=,a6ψ1(e2)=,a6ψ2(e1)={b7},a6ψ2(e2)={b5}a7ψ1(e1)={b4,b7},a7ψ1(e2)={b3,b6},a7ψ2(e1)={b3,b7},a7ψ2(e2)={b6}a8ψ1(e1)=,a8ψ1(e2)={b1,b7},a8ψ2(e1)={b2,b5},a8ψ2(e2)={b1}.

    All the players in the diamond group whose batting performance is similar to ai are represented by aiψj(e1), and all the players in the diamond group whose bowling performance is similar to ai] are represented by aiψj(e2). And foresets are

    ψ1(e1)b1={a4,a5},ψ1(e2)b1={a2,a3,a8},ψ2(e1)b1=,ψ2(e2)b1={a3,a8}ψ1(e1)b2={a1,a2},ψ1(e2)b2={a5},ψ2(e1)b2={a8},ψ2(e2)b2={a4,a5}ψ1(e1)b3={a1,a4},ψ1(e2)b3={a7},ψ2(e1)b3={a2,a4,a7},ψ2(e2)b3={a1,a2}ψ1(e1)b4={a7},ψ1(e2)b4={a2},ψ2(e1)b4={a3,a5},ψ2(e2)b4={a1,a4}ψ1(e1)b5={a2,a3},ψ1(e2)b5={a4},ψ2(e1)b5={a2,a4,a8},ψ2(e2)b5={a6}ψ1(e1)b6={a5},ψ1(e2)b6={a1,a7},ψ2(e1)b6={a4},ψ2(e2)b6={a3,a7}ψ1(e1)b7={a7},ψ1(e2)b7={a4,a5,a8},ψ2(e1)b7={a6,a7},ψ2(e2)b7={a2}.

    All the players in the platinum group whose batting performance is similar to bi are represented by ψj(e1)bi, and all the players in the platinum group whose bowling performance is similar to bi are represented by ψj(e2)bi.

    Define μ:V[0,1], which represents the preference of the players given by franchise XYZ such that

    μ(b1)=0.9,μ(b2)=0.8,μ(b3)=0.4,μ(b4)=0,μ(b5)=0.3,μ(b6)=0.1,μ(b7)=1 and

    define γ:U[0,1], which represents the preference of the players given by franchise XYZ such that

    γ(a1)=0.2,γ(a2)=1,γ(a3)=0.5, γ(a4)=0.9,γ(a5)=0.6,γ(a6)=0.7, γ(a7)=0.1,γ(a8)=0.3.

    Therefore the optimistic lower and upper approximations of μ (with respect to the aftersets of ψ1 and ψ2) are:

    a1 a2 a3 a4 a5 a6 a7 a8
    ψ1+ψ2_μo(e1) 0.4 0.3 0 0.1 0 1 0 0.3
    o¯ψ1+ψ2μ(e1) 0.8 0.3 0 0.4 0 0 1 0
    ψ1+ψ2_μo(e2) 0 0 0.1 0 0.8 0.6 0.1 0.9
    o¯ψ1+ψ2μ(e2) 0.4 0 0.9 0 0.8 0 0.1 0.9

    Hence, ψ1+ψ2_μo(ei)(ai) provide the exact degree of the performance of the player ai to μ as a batsman and bowler and, o¯ψ1+ψ2μ(ei)(ai) provide the possible degree of the performance of the player ai to μ as a batsman and bowler w.r.t aftersets. And the (OLAP) and (OUAP) of γ (w.r.t the foresets of ψ1 and ψ2) are:

    b1 b2 b3 b4 b5 b6 b7
    γψ1+ψ2_o(e1) 0.6 0.2 0.1 0.1 0.3 0.6 0.1
    γ¯ψ1+ψ2o(e1) 0 0 0.9 0 1 0 0.1
    γψ1+ψ2_o(e2) 0.3 0.6 0.1 0.2 0.7 0.1 0.3
    γ¯ψ1+ψ2o(e2) 0.5 0.9 0 0 0 0.1 0

    Hence, γψ1+ψ2_o(ei)(bi) provide the exact degree of the performance of the player bi to γ as a batsman and bowler and, γ¯ψ1+ψ2o(e2)(bi) provide the possible degree of the performance of the player bi to γ as a batsman and bowler w.r.t foresets.

    The following result demonstrates a relationship between our proposed OMGFRS model and PMGFRS model proposed by Din et al. [10], which reflects that the proposed model is entirely different from Din et al's [10] approach.

    Proposition 3.1. Let ψ1 and ψ2, be two SBrs U×V, that is ψ1:AP(U×V) and ψ2:AP(U×V) and μF(V). Then the following hold w.r.t the aftersets.

    (1) ψ1+ψ2_μoψ1+ψ2_μp

    (2) o¯ψ1+ψ2μp¯ψ1+ψ2μ

    (3) ψ1+ψ2_μco=(p¯ψ1+ψ2μ)c

    (4) o¯ψ1+ψ2μc=(ψ1+ψ2_μp)c.

    Proof. (1) Consider ψ1+ψ2_μo(e)(a)={μ(b):baψ1aψ2}{μ(b):baψ1aψ2}=ψ1+ψ2_μp(e)(a). Hence ψ1+ψ2_μoψ1+ψ2_μp.

    (2) Consider o¯ψ1+ψ2μ(e)(a)={μ(b):baψ1aψ2}{μ(b):baψ1aψ2}=p¯ψ1+ψ2μ(e)(a). Hence o¯ψ1+ψ2μp¯ψ1+ψ2μ.

    (3) Consider ψ1+ψ2_μco(e)(a)={μc(b):baψ1aψ2}={(1μ)(b):baψ1aψ2} =1{μc(b):baψ1aψ2}=(p¯ψ1+ψ2μ(e)(a))c. Hence ψ1+ψ2_μco=(p¯ψ1+ψ2μ)c.

    (3) Consider o¯ψ1+ψ2μc(e)(a)={μc(b):baψ1aψ2}={(1μ)(b):baψ1aψ2}=1{μc(b):baψ1aψ2}=(ψ1+ψ2_μp(e)(a))c. Hence o¯ψ1+ψ2μc=(ψ1+ψ2_μp)c.

    Proposition 3.2. Let ψ1, and ψ2 be SBrs over U×V, that is ψ1:AP(U×V) and ψ2:AP(U×V) and γF(V). Then the following hold w.r.t the foresets.

    (1) γψ1+ψ2_oγψ1+ψ2_p

    (2) γ¯ψ1+ψ2oγ¯ψ1+ψ2p

    (3) γcψ1+ψ2_o=(γ¯ψ1+ψ2p)c

    (4) γc¯ψ1+ψ2o=(γψ1+ψ2_p)c.

    Proof. The proof is identical to the Proposition 3.1 proof.

    Proposition 3.3. Let ψ1, and ψ2 be SBrs over U×V, that is ψ1:AP(U×V) and ψ2:AP(U×V) and μF(V). Then the following hold w.r.t the aftersets.

    (1) ψ1+ψ2_μo ψ1_μψ2_μ

    (2) o¯ψ1+ψ2μ¯ψ1μ¯ψ2μ

    Proof. (1) Consider, ψ1+ψ2_μo(e)(a)={μ(b):b(aψ1(e)aψ2(e))}({μ(b):baψ1(e)})({μ(b):baψ2(e)})=ψ1_μ(e)(a)ψ2_μ(e)(a). Hence ψ1+ψ2_μoψ1_μψ2_μ.

    (2) Consider, o¯ψ1+ψ2μ(e)(a)={μ(b):b(aψ1(e)aψ2(e))} ({μ(b):baψ1(e)})({μ(b):baψ2(e)})=¯ψ1μ(e)(a)¯ψ2μ(e)(a). Hence o¯ψ1+ψ2μ¯ψ1μ¯ψ2μ.

    Proposition 3.4. Let ψ1 and ψ2 be SBr over U×v that is ψ1:AP(U×V) and ψ2:AP(U×V) and γF(V). Then the following hold w.r.t the foresets.

    (1) γψ1+ψ2_oγψ1_γψ2_

    (2) γ¯ψ1+ψ2oγ¯ψ1γ¯ψ2.

    Proof. The proof is identical to the Proposition 3.3 proof.

    Here's an example that proves the converse isn't true.

    Example 3.2. (Example 3.1 is continued). From Example 3.1, we have the following outcomes.

    ψ1_μ(e1)(a5)=0.1ψ2_μ(e1)(a5)=0¯ψ1μ(e1)(a2)=0.8¯ψ2μ(e1)(a2)=0.4.

    Hence,

    ψ1+ψ2_μo(e1)(a5)=00.1=ψ1_μ(e1)(a5)ψ2_μ(e1)(a5) ando¯ψ1+ψ2μ(e1)(a2)=0.30.4=¯ψ1μ(e1)(a2)ψ2_μ(e1)(a2).

    And

    γψ1_(e1)(b2)=0.2γψ2_(e1)(b2)=0.3γ¯ψ1(e1)(b2)=1γ¯ψ2(e1)(b2)=0.3.

    Hence,

    γψ1+ψ2_o(e1)(b1)=0.20.3=γψ1_(e1)(b1)γψ2_(e1)(b1) andγ¯ψ1+ψ2o(e1)(b2)=00.3=γ¯ψ1(e1)(b2)γψ2_(e1)(b2).

    Proposition 3.5. Let ψ1 and ψ2 be SBrs over U×V, that is ψ1:AP(U×V) and ψ2:AP(U×V). Then the following hold.

    (1) ψ1+ψ2_1o=1 for all eA if aψ1(e) or aψ2(e)

    (2) o¯ψ1+ψ21=1 for all eA if aψ1(e)aψ2(e)

    (3) ψ1+ψ2_0o=0= o¯ψ1+ψ20.

    Proof. (1) Consider, ψ1+ψ2_1o(e)(a)={1(b):baψ1(e)aψ2(e)}={1:baψ1(e)aψ2(e)}=1 because uψ1(e) or aψ2(e).

    (2) Consider, o¯ψ1+ψ21(e)(a)={1(b):baψ1(e)aψ2(e)}={1:baψ1(e)aψ2(e)}=1 because aψ1(e)aψ2(e).

    (3) Straightforward.

    Proposition 3.6. Let ψ1 and ψ2 be SBrs over U×V, that is ψ1:AP(U×V) and ψ2:AP(U×V). Then the following hold.

    (1) 1ψ1+ψ2_o=1 for all eA if ψ1(e)b or ψ2(e)b

    (2) 1¯ψ1+ψ2o=1 for all eA if ψ1(e)bψ2(e)b

    (3) 0ψ1+ψ2_o=0=0¯ψ1+ψ2o.

    Proof. The proof is identical to the Proposition 3.5 proof.

    Proposition 3.7. Let ψ1 and ψ2 be SBr over U×v that is ψ1:AP(U×V) and ψ2:AP(U×V) and μ,μ1,μ2F(V). Then the following properties for ψ1+ψ1_μo, o¯ψ1+ψ1μ hold w.r.t the aftersets.

    (1) If μ1μ2 then ψ1+ψ2_μ1oψ1+ψ2_μ2o,

    (2) If μ1μ2 then o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ2

    (3) ψ1+ψ2_μ1μ2o=ψ1+ψ2_μ1oψ1+ψ2_μ2o

    (4) ψ1+ψ2_μ1μ2oψ1+ψ2_μ1oψ1+ψ2_μ2o

    (5) o¯ψ1+ψ2μ1μ2= o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ2

    (6) o¯ψ1+ψ2μ1μ2 o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ2.

    Proof. (1) Since μ1μ2 so ψ1+ψ2_μ1o(e)(a)={μ1(b):baψ1(e)aψ2(e)}{μ2(b):baψ1(e)aψ2(e)}=ψ1+ψ2_μ2o(e)(a). Hence ψ1+ψ2_μ1oψ1+ψ2_μ2o.

    (2) Since μ1μ2, so o¯ψ1+ψ2μ1(e)(a)={μ1(b):baψ1(e)aψ2(e)}{μ2(b):baψ1(e)aψ2(e)}=o¯ψ1+ψ2μ2(e)(a). Hence o¯ψ1+ψ2μ1μ¯ψ1+ψ2μ2.

    (3) Consider, ψ1+ψ2_μ1μ2o(e)(a)={(μ1μ2)(b):baψ1(e)aψ2(e)}={μ1(b)μ2(b):baψ1(e)aψ2(e)}=({μ1(b):baψ1(e)aψ2(e)})({μ2(b):baψ1(e)aψ2(e)})=(ψ1+ψ2_μ1o(e)(a))(ψ1+ψ2_μ2o(e)(a)). Hence, ψ1+ψ2_μ1μ2o=ψ1+ψ2_μ1oψ1+ψ2_μ2o.

    (4) Since μ1μ1μ2 and μ2μ1μ2. By part (1) ψ1+ψ2_μ1oψ1+ψ2_μ1μ2o and ψ1+ψ2_μ2oψ1+ψ2_μ1μ2oψ1+ψ2_μ1oψ1+ψ2_μ2oψ1+ψ2_μ1μ2o.

    (5) Consider, o¯ψ1+ψ2μ1μ2(e)(a)={(μ1μ2)(b):baψ1(e)aψ2(e)}={μ1(b)μ2(b):baψ1(e)aψ2(e)}={{μ1(b):baψ1(e)aψ2(e)}}{{μ2(b):baψ1(e)aψ2(e)}}={ o¯ψ1+ψ2μ1(e)(a)}{ o¯ψ1+ψ2μ2(e)(a)}. Hence, o¯ψ1+ψ2μ1μ2= o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ2.

    (6) Since μ1μ1μ2 and μ2μ1μ2, we have by part (2) o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ1μ2 and o¯ψ1+ψ2μ2 o¯ψ1+ψ2μ1μ2  o¯ψ1+ψ2μ1 o¯ψ1+ψ2μ2 o¯ψ1+ψ2μ1μ2.

    Proposition 3.8. Let ψ1 and ψ2 be SBr over U×V that is ψ1:AP(U×V) and ψ2:AP(U×V) and γ,γ1,γ2F(U). Then the following properties for γψ1+ψ1_,γ¯ψ1+ψ1 hold w.r.t the foresets

    (1) If γ1γ2 then γ1ψ1+ψ2_oγ1ψ1+ψ2_o,

    (2) If γ1γ2 then γ1¯ψ1+ψ2oγ2¯ψ1+ψ2o

    (3) γ1γ2ψ1+ψ2_o=γ1ψ1+ψ2_oγ2ψ1+ψ2_o

    (4) γ1γ2ψ1+ψ2_oγ1ψ1+ψ2_oγ2ψ1+ψ2_o

    (5) γ1γ2¯ψ1+ψ2o=γ1¯ψ1+ψ2oγ2¯ψ1+ψ2o

    (6) γ1γ2¯ψ1+ψ2oγ1¯ψ1+ψ2oγ2¯ψ1+ψ2o.

    Proof. The proof is identical to the Proposition 3.7 proof.

    The example that follows shows that, typically, the equivalence does not true to parts (4) and (6) of Propositions 3.7 and 3.8.

    Example 3.3. Suppose U={a1,a2,a3,a4} and V={b1,b2,b3,b4} are universes, ψ1 and ψ2 are SBrs over U×V, with the following aftersets:

    a1ψ1(e1)={b1,b2,b4},a1ψ1(e2)={b2},a1ψ2(e1)={b2,b3,b4},a1ψ2(e2)={b1}a2ψ1(e1)={b2},a2ψ1(e2)={b4},a2ψ2(e1)={b2},a2ψ2(e2)={b2,b4}a3ψ1(e1)={b3,b4},a3ψ1(e2)={b1},a3ψ2(e1)={b4},a3ψ2(e2)={b2,b4}a4ψ1(e1)=,a4ψ1(e2)={b2},a4ψ2(e1)={b2,b3},a4ψ2(e2)={b1,b2}.

    And foresets are:

    ψ1(e1)b1={a1},ψ1(e2)b1={a3},ψ2(e1)b1=,ψ2(e2)b1={a1,a4}ψ1(e1)b2={a1,a2},ψ1(e2)b2={a1,a4},ψ2(e1)b2={a1,a2,a4},ψ2(e2)b2={a2,a3,a4}ψ1(e1)b3={a3},ψ1(e2)b3=,ψ2(e1)b3={a1,a4},ψ2(e2)b3=ψ1(e1)b4={a1,a3},ψ1(e2)b4={a2},ψ2(e1)b4={a1,a4},ψ2(e2)b4={a2,a3}.

    Let μ1,μ2,μ1μ2,μ1μ2F(V) be defined as follows:

    b4 b3 b2 b1
    μ1 0 0.3 0.7 0.2
    μ2 0.6 0 0.5 0.3
    μ1μ2 0.6 0.3 0.7 0.3
    μ1μ2 0 0 0.5 0.2

    And γ1,γ2,γ1γ2,γ1γ2F(U) are defined as follows:

    a4 a3 a2 a1
    γ1 0.5 0.3 0.2 0.1
    γ2 0 0.3 0 0.5
    γ1γ2 0.5 0.3 0.2 0.5
    γ1γ2 0 0.3 0 0.1

    Then,

    a1 a2 a3 a4
    ψ1+ψ2_μ1o(e1) 0 0.7 0 0.3
    o¯ψ1+ψ2μ1(e1) 0.7 0.7 0 0
    ψ1+ψ2_μ2o(e1) 0 0.5 0 0
    o¯ψ1+ψ2μ2(e1) 0.6 0.5 0.6 0
    ψ1+ψ2_μ1μ2o(e1) 0.3 0.7 0.3 0.3
    o¯ψ1+ψ2μ1μ2(e1) 0.5 0.5 0 0

    And

    b1 b2 b3 b4
    γ1ψ1+ψ2_o(e1) 0.1 0.1 0.1 0.1
    γ1¯ψ1+ψ2o(e1) 0 0.2 0 0.1
    γ2ψ1+ψ2_o(e1) 0.5 0 0 0
    γ2¯ψ1+ψ2o(e1) 0 0.5 0 0.5
    γ1γ2ψ1+ψ2_o(e1) 0.5 0.2 0.3 0.3
    γ1γ2¯ψ1+ψ2o(e1) 0 0.1 0 0.1

    Hence,

    ψ1+ψ2_μ1o(e1)(a1)ψ1+ψ2_μ2o(e1)(a1)=00.3=ψ1+ψ2_μ1μ2o(e1)(a1)o¯ψ1+ψ2μ1(e1)(a1) o¯ψ1+ψ2μ2(e1)(a1)=0.70.6=0.60.5= o¯ψ1+ψ2μ1μ2(e1)(a1).

    And

    γ1ψ1+ψ2_o(e1)(b2) γ2ψ1+ψ2_o(e1)(b2)=0.10=0.10.2= γ1γ2ψ1+ψ2_o(e1)(b2)γ1¯ψ1+ψ2o(e1)(b2) γ2¯ψ1+ψ2o(e1)(b1)=0.20.5=0.20.1= γ1γ2¯ψ1+ψ2o(e1)(b2).

    The level set or α-cut of the lower approximation ψ1+ψ2_oμ(e) and upper approximation o¯ψ1+ψ2μ(e). rea defined in the following definitions. Definitions 3.1 and 3.2 represent approximations as pairs of FSS. We can describe the lower approximation (ψ1+ψ2_μo(e))α and upper approximation ( o¯ψ1+ψ2μ(e))α, if we associate the FS's α cut.

    Definition 3.3. Let U and V be two non-empty universal sets, and μF(V). Let ψ1 and ψ2 be SBrs over U×V. For any 1α>0, the level set for ψ1+ψ2_μo and o¯ψ1+ψ2μ of μ are defined, respectively as follows:

    (ψ1+ψ2_μo(e))α={aU:ψ1+ψ2_μo(e)(a)α}(o¯ψ1+ψ2μ(e))α={aU:o¯ψ1+ψ2μ(e)(a)α}.

    Definition 3.4. Let U and V be two non-empty universal aets, and γF(U). Let ψ1 and ψ2 be SBr over U×v. For any 1β>0, the level set for γψ1+ψ2_o and γ¯ψ1+ψ2o of μ are defined, respectively as follows:

    (γψ1+ψ2_o(e))α={bV: γψ1+ψ2_o(e)(b)α}(γ¯ψ1+ψ2o(e))α={bV: γ¯ψ1+ψ2o(e)(b)α}.

    Proposition 3.9. Let ψ1 and ψ2 be SBrs over U×V, μF(V) and 1α>0. Then, the following properties hold w.r.t aftersets:

    (1) ψ1+ψ2_(μα)o(e)=(ψ1+ψ2_μo(e))α

    (2) o¯ψ1+ψ2(μα)(e)=(o¯ψ1+ψ2μ(e))α.

    Proof. (1) Let μF(V) and 1α>0. For the crisp set μα, we have

    ψ1+ψ2_(μα)o(e)={aU:aψ1aψ2μα}={aU: μ(b)α baψ1(e)aψ2(e),bV}={aU: {μ(b)α: baψ1(e)aψ2(e),bV}}=(ψ1+ψ2_μo(e))α.

    (2) Let μF(V) and 1α>0. For the crisp set μα, we have

    o¯ψ1+ψ2(μα)(e)={aU:(aψ1aψ2)μα}={aU: μ(b)α baψ1(e)aψ2(e),bV}={aU: {μ(b)α: baψ1(e)aψ2(e),bV}}=( o¯ψ1+ψ2μ(e))α.

    Proposition 3.10. Let ψ1 and ψ2 be SBrs over U×V, γF(U) and 1α>0. Then, the following properties hold w.r.t foresets:

    (1) (γα)ψ1+ψ2_o(e)=(γψ1+ψ2_o(e))α

    (2) (γα)¯ψ1+ψ2o(e)=((γ¯ψ1+ψ2o(e))α.

    Proof. The proof is identical to the Proposition 3.9 proof.

    The notion of optimistic multigranulation roughness of a fuzzy set based on two soft binary relations is generalized in this section to optimistic multigranulation based on multiple SBrs.

    Definition 4.1. Let there be two non-empty finite universes: U and V. θ is a family of SBrs that over U×V. Hence we say a multigranulation generalised soft approximation space (MGGSAS) across two universes is (U,V,θ). The multigranulation generalise soft approximation space (MGGSAS) (U,V,θ) is a generalisation of soft approximation space over dual universes, as is apparent. (U,V,ψ).

    Definition 4.2. Let (U,V,θ) be a MGGSAS over two universes and μ be a FS over V. The OLAP mj=1ψj_μo and OUAP o¯mj=1ψjμ, of FS μ w.r.t aftersets of SBrs (ψj,A)θ are given by

    mj=1ψj_μo(e)(a)={{μ(b):bmj=1aψj(e),bV}, if mj=1aψj(e)0, otherwise.o¯mj=1ψjμ(e)(a)={{μ(b):bmj=1aψj(e),bV}, if mj=1aψj(e)0,otherwise.

    Where aψj(e)={bV:(a,b)ψj(e)}, are aftersets of a for aU and eA.

    Obviously (mj=1ψj_μo,A) and ( o¯mj=1ψjμ,A) are two FSS over U.

    Definition 4.3. Let (U,V,θ) be a MGGSAS over dual universes and γ be a FS over U. The OLAP γmj=1ψj_o and OUAP γ¯mj=1ψjo, of FS γ w.r.t the foresets of SBrs (ψj,A)θ are given by

    γmj=1ψj_o(e)(b)={{γ(a):amj=1ψj(e)(b),aU}, if mj=1ψj(e)(b)0, otherwise.γ¯mj=1ψjo(e)(b)={{γ(a):amj=1ψj(e)(b),aU}, if mj=1ψj(e)(b)0,otherwise.

    Where ψj(e)b={aU:(a,b)ψj(e)} are foresets of b for bV and eA.

    Obviously, ( γmj=1ψj_o,A) and ( γ¯mj=1ψjo,A) are two FSS over V.

    Moreover, mj=1ψj_μo:AF(U),o¯mj=1ψjμ:AF(U) and γmj=1ψj_o:AF(V),γ¯mj=1ψjo:AF(V).

    Proposition 4.1. Let (U,V,θ) be MGGSAS over two universes and μF(V). Then the following properties for mj=1ψj_μo,o¯mj=1ψjμ hold w.r.t the aftersets.

    (1) mj=1ψj_μmj=1ψj_μo

    (2) mj=1¯ψjμo¯mj=1ψjμ.

    Proof. The proof is identical to the Proposition 3.3 proof.

    Proposition 4.2. Let (U,V,θ) be MGGSAS over dual universes and γF(U). Then the following properties for γmj=1ψj_o,γ¯mj=1ψjo hold w.r.t the foresets.

    (1) γmj=1ψj_omi=1γψj_

    (2) γ¯mj=1ψjomj=1γ¯ψj.

    Proof. The proof is identical to the Proposition 3.3 proof.

    Proposition 4.3. Let (U,V,θ) be MGGSAS over dual universes. Then the following hold w.r.t the aftersets.

    (1) mj=1ψj_1o=1eA if aψj(e) for some jm

    (2) o¯mj=1ψj1=1eA if nj=1aψj(e)

    (3) mj=1ψj_0o=0=o¯mj=1ψj0.

    Proof. The proof is identical to theProposition 3.5 proof.

    Proposition 4.4. Let (U,V,θ) be MGGSAS over dual universes. Then the following hold w.r.t the forersets.

    (1) 1mj=1ψj_o=1 for all eA if ψj(e)b for some jm

    (2) 1¯mj=1ψjo=1eA, if nj=1ψj(e)b

    (3) 0mj=1ψj_o=0= 0¯mj=1ψjo.

    Proof. The Proof is identical to the Proposition 3.5 proof.

    Proposition 4.5. Let (U,V,θ) be a MGGSAS over dual universes and μ,μ1,μ2F(V), Then the following properties for mj=1ψj_μo,o¯mj=1ψjμ hold w.r.t the aftersets.

    (1) If μ1μ2 then mj=1ψj_μ1omj=1ψj_μ2o,

    (2) If μ1μ2 then o¯mj=1ψjμ1o¯mj=1ψjμ2

    (3) mj=1ψj_μ1μ2o=mj=1ψj_μ1omj=1ψj_μ2o

    (4) mj=1ψj_μ1μ2omj=1ψj_μ1omj=1ψj_μ2o

    (5) o¯mj=1ψjμ1μ2= o¯mj=1ψjμ1 o¯mj=1ψjμ2

    (6) o¯mj=1ψjμ1μ2 o¯mj=1ψjμ1 o¯mj=1ψjμ2.

    Proof. The proof is identical to the Proposition 3.7 proof.

    Proposition 4.6. Let (U,V,θ) be a MGGSAS over dual universes and γ,γ1,γ2F(U). Then the following properties for γmj=1ψj_o,γ¯mj=1ψjo hold w.r.t the foresets.

    (1) If γ1γ2 then γ1mj=1ψj_oγ2mj=1ψj_o,

    (2) If γ1γ2 then, γ1¯mj=1ψjoγ2¯mj=1ψjo

    (3) γ1γ2mj=1ψj_o=γ1mj=1ψj_o γ2mj=1ψj_o

    (4) γ1γ2mj=1ψj_o γ1mj=1ψj_o γ2mj=1ψj_o

    (5) γ1γ2¯mj=1ψjo=γ1¯mj=1ψjo γ2¯mj=1ψjo

    (6) γ1γ2¯mj=1ψjo γ1¯mj=1ψjo γ2¯mj=1ψjo.

    Proof. The proof is identical to the Proposition 3.7 proof.

    Proposition 4.7. Let (U,V,θ) be a MGGSAS over dual universes and μ1,μ2,μ3,μnF(V), and μnμ3μ2⊇⊆μ1. Then the following properties hold w.r.t the aftersets.

    (1) mj=1ψj_μ1omj=1ψj_μ2omj=1ψj_μ3omj=1ψj_μno

    (2) o¯mj=1ψjμ1 o¯mj=1ψjμ2 o¯mj=1ψjμ3 o¯mj=1ψjμn.

    Proof. Straightforward.

    Proposition 4.8. Let (U,V,θ) be MGGSAS over dual universes and γ1,γ2,γ3,γnF(U), and γnγ3γ2⊆⊇γ1. Then the following properties hold w.r.t the foresets.

    (1) γ1mj=1ψj_oγ2mj=1ψj_oγ3mj=1ψj_oγnmj=1ψj_o

    (2) γ1¯mj=1ψjoγ2¯mj=1ψjoγ3¯mj=1ψjoγn¯mj=1ψjo.

    Proof. Straightforward.

    Definition 4.4. Let (U,V,θ) be a MGGSAS over dual universes, μF(V). For any 1α0, the level set for mj=1ψj_μo and ¯mj=1ψjμ of μ are defined, respectively as follows:

    (mj=1ψj_μo(e))α={aU:mj=1ψj_μo(e)(a)α}(o¯mj=1ψjμ(e))α={aU:o¯mj=1ψjμ(e)(a)α}.

    Definition 4.5. Let (U,V,θ) be MGGSAS over dual universes, μF(U). For any 1α0, the level set for γmj=1ψj_o and γ¯mj=1ψjo of μ are defined, respectively as follows:

    (γmj=1ψj_o(e))α={bV: γmj=1ψj_o(e)(b)α}(γ¯mj=1ψjo(e))α={bV: γ¯mj=1ψjo(e)(a)α}.

    Proposition 4.9. Let (U,V,θ) be MGGSAS over dual universes, μF(V). For any 1α>0. The following properties hold w.r.t aftersets:

    (1) mj=1ψj_(μα)o(e)=(mj=1ψj_μo(e))α

    (2) o¯mj=1ψj(μα)(e)=(o¯mj=1ψjμ(e))α.

    Proof. The proof is identical to the Proposition 3. proof.

    Proposition 4.10. Let (U,V,θ) be MGGSAS over dual universes, μF(V). For any 1α>0. The following properties hold w.r.t foresets:

    (1) (γα)mj=1ψj_o(e)=(γmj=1ψj_o(e))α

    (2) (γα)¯mj=1ψjo(e)=((γ¯mj=1ψjo(e))α.

    Proof. The proof is identical to the Proposition 3.9 proof.

    In this section, we describe the accuracy measurements, rough measure, and example of MGRFS with respect to aftersets and foresets.

    Definition 5.1. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V and 1αβ0. Then the accuracy measures (or Degree of accuracy) of membership μF(V), with respect to β,α and w.r.t aftersets of ψ1, ψ2 are defined as

    OA(ψ1+ψ2μ(ei))(α,β)=|(ψ1+ψ2_μo(ei))α||( o¯ψ1+ψ2μ(ei))β|for all eiA

    where |.| means the cardinality, where OA, means optimistic accuracy measures. It is obvious that 0OA(ψ1+ψ2μ(ei))(α,β)1. When OA(ψ1+ψ2μ(ei))(α,β)=1, then the fuzzy set μF(V) is definable with respect to aftersets. And the optimistic rough measure are defined as

    OR(ψ1+ψ2μ(ei))(α,β)=1OA(ψ1+ψ2μ(ei))(α,β).

    Definition 5.2. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V and 1αβ0. The accuracy measures (or Degree of accuracy) of membership γF(U), with respect to β,α and w.r.t foresets of ψ1, ψ2 are defined as

    OA(γψ1+ψ2(ei))(α,β)=|(γψ1+ψ2_o(ei))α||( γ¯ψ1+ψ2o(ei))β|eiA

    where |.| means the cardinality, where OA, means optimistic accuracy measures. It is obvious that 0OA(γψ1+ψ2(ei))(α,β)1. When, OA(γψ1+ψ2(ei))(α,β)=1, then the fuzzy set μF(V) is definable with respect to aforesets. And the optimistic rough measure are defined as

    OR(γψ1+ψ2(ei))(α,β)=1OA(γψ1+ψ2(ei))(α,β).

    Example 5.1. (Example 3.1 is Continued) Let ψ1 and ψ2 be two SBrs from a non empty universal set U to V as given in Example 3.1. Then for μF(V) defined in Example 3.1 and β=0.2 and α=0.4 the α cut sets w.r.t aftersets are as follows respectively.

    (ψ1+ψ2_oμ(e1))0.4={a1,a6}(ψ1+ψ2_oμ(e2))0.4={a5,a6,a7}.
    (o¯ψ1+ψ2μ(e1))0.2={a1,a2,a4,a7}(o¯ψ1+ψ2μ(e2))0.2={a1,a3,a5,a8}.

    Then the accuracy measures for μF(V) with respect to β=0.2 and α=0.4 and w.r.t aftersets of SBrs ψ1,ψ2 are calculated as

    OA(ψ1+ψ2μ(e1))(α,β)=|(ψ1+ψ2_oμ(e1))0.4||(o¯ψ1+ψ2μ(e1))0.2|=24=0.5,OA(ψ1+ψ2μ(e2))(α,β)=|(ψ1+ψ2_oμ(e2))0.4||(o¯ψ1+ψ2μ(e2))0.2|=34=0.75.

    Hence, OA(ψ1+ψ2μ(ei))(α,β) shows the degree to which the FS μF(V) is accurate constrained to the parameters β=0.2 and α=0.4 for i=1,2 w.r.t aftersets. Similarly for γF(U) defined in Example 3.1, β=0.2, and α=0.4. Then α cut sets w.r.t foresets are as follows respectively.

    (γψ1+ψ2_o(e1))0.4={b1,b6}(γψ1+ψ2_o(e2))0.4={b2,b5}.

    And

    (γ¯ψ1+ψ2o(e1))0.2={b3,b5}(γ¯ψ1+ψ2o(e2))0.2={b1,b2}.

    Then the accuracy measures for γF(U) with respect to β=0.2 and α=0.4 and w.r.t foresets of SBrs ψ1,ψ2 are calculated as

    OA(γψ1+ψ2(e1))(α,β)=|(γψ1+ψ2_o(e1))0.4||(γ¯ψ1+ψ2o(e1))0.2|=22=1,OA(γψ1+ψ2(e2))(α,β)=|(γψ1+ψ2_o(e2))0.4||(γ¯ψ1+ψ2o(e2))0.2|=22=1.

    Hence, OA(γψ1+ψ2(ei))(α,β) shows the degree to which the fuzzy set γF(U) is accurate constrained to the parameters β=0.2 and α=0.4 for i=1,2 w.r.t foresets.

    Proposition 5.1. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V, μF(V) and 1αβ>0. Then

    (1) OA(ψ1+ψ2μ(ei))(α,β) increases with the increase in β, if α stands fixed.

    (2) OA(ψ1+ψ2μ(ei))(α,β) decrease with the increase in α, if β stands fixed.

    Proof.

    (1) Let α stands fixed and 0<β1β21. Then we have |(o¯ψ1+ψ2μ(ei))β2||(o¯ψ1+ψ2μ(ei))β1|. This implies that |(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β1||(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β2|, that is OA(ψ1+ψ2μ(ei))(α,β1)OA(ψ1+ψ2μ(ei))(α,β2). This shows that OA(ψ1+ψ2μ(ei))(α,β) increases with the increase in βeiA.

    (2) Let β stands fixed and 0<α1α21. Then we have |(ψ1+ψ2_μo(ei))α2||(¯ψ1+ψ2μo(ei))α1|. This implies that |(ψ1+ψ2_μo(ei))α2||(o¯ψ1+ψ2μ(ei))β||(ψ1+ψ2_μo(ei))α1||(o¯ψ1+ψ2μ(ei))β|, that is OA(ψ1+ψ2μ(ei))(α2,β)OA(ψ1+ψ2μ(ei))(α1,β). This shows that OA(ψ1+ψ2μ(ei))(α,β) increases with the increase in αeiA.

    Proposition 5.2. Let ψ1 and ψ2 be two SBrs from a non-empty universe U to V,γF(U) and 1αβ>0. Then

    (1) OA(γψ1+ψ2(ei))(α,β) increases with the increase in β, if α stands fixed.

    (2) OA(γψ1+ψ2(ei))(α,β) decrease with the increase α, if β stands fixed.

    Proof. The proof is identical to the Proposition 5.1 proof.

    Proposition 5.3. Let ψ1 and ψ2 be SBrs from a non-empty universe U to V,1αβ>0 and μ,μF(V), with μμ. Then the following properties hold w.r.t aftersets.

    (1) OA(ψ1+ψ2μ(ei))(α,β)OA(ψ1+ψ2μ(ei))(α,β), whenever (o¯ψ1+ψ2μo)β=(o¯ψ1+ψ2μ)β.

    (2) OA(ψ1+ψ2μ(ei))(α,β)OA(ψ1+ψ2μ(ei))(α,β), whenever (ψ1+ψ2_μo)α=(ψ1+ψ2_μo)α.

    Proof.

    (1) Let 1αβ>0 and μ,μF(V) be such that μμ. Then ψ1+ψ2_μo(ei)ψ1+ψ2_μo(ei)), that is |(ψ1+ψ2_μo(ei))α||(ψ1+ψ2_μo(ei))α|. This implies that |(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β||(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β|. Hence OA(ψ1+ψμ2(ei))(α,β)OA(ψ1+ψμ2(ei))(α,β)eiA.

    (2) Let 1αβ>0 and μ,μF(V) be such that μμ. Then o¯ψ1+ψ2μ(ei) o¯ψ1+ψ2μ(ei), that is |(o¯ψ1+ψ2μ(ei))β||(o¯ψ1+ψ2μ(ei))β|. This implies that |(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β||(ψ1+ψ2_μo(ei))α||(o¯ψ1+ψ2μ(ei))β|. Hence OA(ψ1+ψμ2(ei))(α,β)OA(ψ1+ψμ2(ei))(α,β)eiA.

    Proposition 5.4. Let ψ1 and ψ2 be SBrs from a non-empty universe U to V,1αβ>0 and γ,δF(U), with δγ. Then the following properties hold w.r.t foresets.

    (1) OA(γψ1+ψ2(ei))(α,β)OA(ψ1+ψ2μ(ei))(α,β), whenever (o¯ψ1+ψ2μo)β=(o¯ψ1+ψ2μ)β.

    (2) OA(ψ1+ψ2μ(ei))(α,β)OA(ψ1+ψ2μ(ei))(α,β), whenever (ψ1+ψ2_μo)α=(ψ1+ψ2_μo)α.

    Proof. The proof is identical to the Proposition 5.3 proof.

    Firstly soft sets were applied in DM problems by Maji et al. [31], but this DM deal with problems based on a crisp SS to cope with an FSS based on DM problems. FSS can solve the problems of decision-making in real life. It deals with uncertainties and the vagueness of data. There are several techniques of using fuzzy soft sets to solve decision-making challenges. Roy and Maji [40] presented a novel method of object recognition from inaccurate multi-observer data. The limitations in Roy and Maji [40] are overcome by Feng et al.[17], Hou [18] made use of grey relational analysis to take care of the issues of problems in making decisions. The DM methods by multi-SBr are proposed in this section following the FSS theory. The majority of FSS-based approaches to DM have choice values of "Ck", therefore it makes sense to choose the objects with the highest choice value as the best option.

    There are two closest approximations to universes: the lower and upper approximations. As a result, we are able to determine the two values nj=1ψj_μ(ei)(al) and ¯nj=1ψjμ(ei)(al) that are most closely related to the afterset to the decision alternative aiU using the FSLAP and FSUAP of an FS μF(V). To address DM issues based on RFSS, we therefore redefine the choice value Cl for the decision alternative al of the universe U.

    For the proposed model, we present two algorithms, each of which consists of the actions outlined below.

    Algorithm 1: The algorithm for solving a DM problem using aftersets is as follows.

    Step 1: Compute the lower MGFSS approximation nj=1ψj_μ and upper MGFSS approximation ¯nj=1ψjμ, of fuzzy set μ w.r.t aftersets.

    Step 2: Compute the sum of lower MGFSS approximation ni=1(nj=1ψj_μ(ei)(al)) and the sum of upper MGFSS approximation ni=1(¯nj=1ψjμ(ei)(al)), corresponding to j w.r.t aftersets.

    Step 3: Compute the choice value Cl=ni=1(nj=1ψj_μ(ei)(al))+ni=1(¯nj=1ψjμ(ei)(al)), alU w.r.t aftersets.

    Step 4: The preferred decision isa

    akU if Ck=max|U|l=1Cl.

    Step 5: The decision that is the worst is akU if Ck=min|U|l=1Cl.

    Step 6: If k has more than one valve, then any one of ak may be chosen.

    Algorithm 2: The following is an algorithm for approaching a DM problem w.r.t foresets.

    Step 1: Compute the lower MGFSS approximation γnj=1ψj_ and upper MGFSS approximation γ¯nj=1ψj, of fuzzy set γ with respect to foresets.

    Step 2: Compute the sum of lower MGFSS approximations ni=1(γnj=1ψj_(ei)(bl)) and the sum of upper MGFSS approximation ni=1(γ¯nj=1ψj(ei)(bl)), corresponding to j w.r.t foresets.

    Step 3: Compute the choice value Cl=ni=1(γnj=1ψj_(ei)(bl))+ni=1(γ¯nj=1ψj(ei)(bl)), blV w.r.t foresets.

    Step 4: The preferred decision is bkV if Ck=max|V|l=1Cl.

    Step 5: The decision that is the worst is bkV if Ck=min|V|l=1Cl.

    Step 6: If k has more than one value, then any one of bk may be chosen.

    An application of the decision-making approach

    Example 6.1. (Example 3.1 Continued) Consider the SBrs of Example 3.1 again where a franchise XYZ wants to pick a best player foreign allrounder for their team from Platinum and Diamond categories.

    Define μ:V[0,1], which represent the preference of the player given by franchise XYZ such thatμ=0.9b1+0.8b2+0.4b3+0.3b5+0.1b61b7.AndDefine γ:U[0,1], which represent the preference of the player given by franchise XYZ such thatγ=0.2a1+1a2+0.5a3+0.9a4+0.6a5+0.7a6+0.1a7+0.3a8.

    Consider Tables 1 and 2 after applying the above algorithms.

    Table 1.  The optimistic result of the decision algorithm with respect to aftersets.
    ψ1+ψ2_μo(e1) ψ1+ψ2_μo(e2) o¯ψ1+ψ2μ(e1) o¯ψ1+ψ2μ(e2) Choice value Ck
    a1 0.4 0 0.8 0.4 1.6
    a2 0.3 0 0.3 0 0.6
    a3 0 0.1 0 0.9 1.0
    a4 0.1 0 0.4 0 0.5
    a5 0 0.8 0 0.8 1.6
    a6 1 0.6 0 0 1.6
    a7 0 0.1 1 0.1 1.2
    a8 0.3 0.9 0 0.9 2.1

     | Show Table
    DownLoad: CSV
    Table 2.  The optimistic result of the decision algorithm with respect to foresets.
    γψ1+ψ2_o(e1) γψ1+ψ2_o(e2) γ¯ψ1+ψ2p(e1) γ¯ψ1+ψ2p(e2) Choice value Ck
    b1 0.6 0.3 0 0.5 1.6
    b2 0.2 0.6 0 0.9 1.7
    b3 0.1 0.1 0.9 0 1.1
    b4 0.1 0.2 0 0 0.3
    b5 0.3 0.7 1 0 2
    b6 0.6 0.1 0 0.1 0.8
    b7 0.1 0.3 0.1 0 0.5

     | Show Table
    DownLoad: CSV

    Here the choice value Cl=nj=1(ni=1ψi_μ(ej)(al))+nj=1(¯ni=1ψiμ(ej)(al)), alU w.r.t aftersets and Cl=nj=1(γni=1ψi_(ej)(bl))+nj=1(γ¯ni=1ψi(ej)(bl)), blV w.r.t foresets.

    From Table 1 it is clear that the maximum choice-value Ck=2.1=C8 scored by the player a8 and the decision is in the favor of selecting the player a8. Moreover, player a4 is ignored. Hence franchise XYZ will choose the player a8 from the platinum category w.r.t aftersets. Similarly from Table 2 the maximum choice-value Ck=2=C5 scored by the player b5 and the decision is in the favor of selecting the player b5. Moreove, player b4 is ignored. Hence franchise XYZ will choose the player b5 from the diamond category w.r.t aforesets.

    In this section, we will analyze the effectiveness of our method comparatively. To deal with incompleteness and vagueness, an MGRS model is proposed in terms of multiple equivalence relations by Qian et al. [39], which is better than RS. Xu et al. [57] fostered the model of MGFRS by unifying MGRS theory and FSs. However, in most of daily life, the satiation decision-making process might depend on the possibility of two or more universes. Sun and Ma [47] initiated the notion of MGRS over two universes with good modeling capabilities to overcome this satiation. To make the equivalence relation more flexible, the conditions had To be relaxed, Shabir et al. [43] presented the MGRS of a crisp set based on soft binary relations and its application in data classification, and Ayub et al. [4] introduced SMGRS which is the particular case of MGRS [43]. An FS is better than a crisp set to cope the uncertainty. Here, we have a novel hybrid model of OPMGFRS by using multi-soft binary relations. Our suggested model is more capable of capturing the uncertainty because of its parametrization of binary relations in a multigarnulation environment. Moreover, in our proposed OMGFRS model, we replace an FS with a crisp set. A crisp set can not address the uncertainty and vagueness in our actual salutation. The main advantage of this model is to approximate a fuzzy set in universe U(V) an anther universe V(U), and we acquire a fuzzy with respect to each parameter which is a fuzzy soft set over V(U). Hence the fuzzy soft set is more capable than the crisp and fuzzy sets of addressing the uncertainty.

    The MGR of an FS based on SBr is investigated in this article over dual universes. We first defined the roughness of an FS with respect to the aftersets and foresets of two SBr, and then we used the aftersets and foresets to approximate an FS μF(V) in universe U, and an FS γF(U) in universe V. From which, we obtained two FSS of U and V, with respect to aftersets and foresets. We also look into the essential properties of the MGR of an FS. Then we generalized this definition to MGRFS based on SBr. For this proposed multigranulation roughness, we also define the accuracy and roughness measures. Moreover, we provided two decision-making algorithms with respect to aftersest and forests, as well as an example of use in decision-making problems. The vital feature of this method is that it allows us to approximate a fuzzy set of the universe in another universe, and we can section an object from a universe and another universe's information based. Future research will concentrate on how the proposed method might be used to solve a wider variety of selection problems in different fields like medical science, social science, and management science.

    The authors declare no conflict of interest.



    [1] J. Abrevaya, W. Jiang, A nonparametric approach to measuring and testing curvature, J. Bus. Econ. Stat., 23 (2005), 1–19. https://doi.org/10.1198/073500104000000316 doi: 10.1198/073500104000000316
    [2] H. Akaike, An approximation to the density function, Ann. Inst. Stat. Math., 6 (1954), 127–132. https://doi.org/10.1007/BF02900741 doi: 10.1007/BF02900741
    [3] I. M. Almanjahie, S. Bouzebda, Z. C. Elmezouar, A. Laksaci, The functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors, Statist. Risk Model., 38 (2022), 47–63. https://doi.org/10.1515/strm-2019-0029 doi: 10.1515/strm-2019-0029
    [4] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [5] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, The local linear functional kNN estimator of the conditional expectile: Uniform consistency in number of neighbors, Metrika, 2024 (2024), 1–24. https://doi.org/10.1007/s00184-023-00942-0 doi: 10.1007/s00184-023-00942-0
    [6] G. Aneiros, R. Cao, R. Fraiman, C. Genest, P. Vieu, Recent advances in functional data analysis and high-dimensional statistics, J. Multivariate Anal., 170 (2019), 3–9. https://doi.org/10.1016/j.jmva.2018.11.007 doi: 10.1016/j.jmva.2018.11.007
    [7] A. Araujo, E. Giné, The central limit theorem for real and Banach valued random variables, New York: John Wiley & Sons, 1980.
    [8] M. A. Arcones, B. Yu. Central limit theorems for empirical and U-processes of stationary mixing sequences, J. Theor. Probab., 7 (1994), 47–71. https://doi.org/10.1007/BF02213360 doi: 10.1007/BF02213360
    [9] M. A. Arcones, A Bernstein-type inequality for U-statistics and U-processes, Stat. Probabil. Lett., 22 (1995), 239–247. https://doi.org/10.1016/0167-7152(94)00072-G doi: 10.1016/0167-7152(94)00072-G
    [10] M. A. Arcones, E. Giné, Limit theorems for U-processes, Ann. Probab., 21 (1993), 1494–1542. https://doi.org/10.1214/aop/1176989128 doi: 10.1214/aop/1176989128
    [11] M. A. Arcones, Y. Wang, Some new tests for normality based on U-processes, Stat. Probabil. Lett., 76 (2006), 69–82. https://doi.org/10.1016/j.spl.2005.07.003 doi: 10.1016/j.spl.2005.07.003
    [12] M. Attouch, A. Laksaci, F. Rafaa, On the local linear estimate for functional regression: uniform in bandwidth consistency, Commun. Stat. Theor. M., 48 (2019), 1836–1853. https://doi.org/10.1080/03610926.2018.1440308 doi: 10.1080/03610926.2018.1440308
    [13] A. K. Basu, A. Kundu, Limit distribution for conditional U-statistics for dependent processes, Calcutta Statistical Association Bulletin, 52 (2002), 381–407. https://doi.org/10.1177/0008068320020522 doi: 10.1177/0008068320020522
    [14] D. Z. Bello, M. Valk, G. B. Cybis, Towards U-statistics clustering inference for multiple groups, J. Stat. Comput. Sim., 94 (2024), 204–222. https://doi.org/10.1080/00949655.2023.2239978. doi: 10.1080/00949655.2023.2239978
    [15] N. Berrahou, S. Bouzebda, L. Douge, Functional uniform-in-bandwidth moderate deviation principle for the local empirical processes involving functional data, Math. Methods Statist., 33 (2024), 1–43.
    [16] P. K. Bhattachary, Y. P. Mack, Weak convergence of k-NN density and regression estimators with varying k and applications, Ann. Statist., 15 (1987), 976–994. https://doi.org/10.1214/aos/1176350487 doi: 10.1214/aos/1176350487
    [17] G. Biau, L. Devroye, Lectures on the nearest neighbor method, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-25388-6
    [18] V. I. Bogachev, Gaussian measures (Mathematical surveys and monographs), Providence: American Mathematical Society, 1998.
    [19] E. Bolthausen, The Berry-Esseen theorem for functionals of discrete Markov chains, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 54 (1980), 59–73. https://doi.org/10.1007/BF00535354 doi: 10.1007/BF00535354
    [20] Y. V. Borovskikh, U-Statistics in Banach spaces, Boston: De Gruyter, 1996. https://doi.org/10.1515/9783112313954
    [21] D. Bosq, Linear processes in function spaces, New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4612-1154-9
    [22] B. Feriel, O. S. Elias, Nonparametric local linear estimation of the relative error regression function for twice censored data, Stat. Probabil. Lett., 178 (2021), 109185. https://doi.org/10.1016/j.spl.2021.109185 doi: 10.1016/j.spl.2021.109185
    [23] F. Bouhadjerad, E. O. Saïd, Strong consistency of the local linear relative regression estimator for censored data, Opuscula Math., 42 (2022), 805–832. https://doi.org/10.7494/OpMath.2022.42.6.805 doi: 10.7494/OpMath.2022.42.6.805
    [24] F. Bouhadjera, M. Lemdani, E, O. Saïd, Strong uniform consistency of the local linear relative error regression estimator under left truncation, Stat. Papers, 64 (2023), 421–447. https://doi.org/10.1007/s00362-022-01325-9 doi: 10.1007/s00362-022-01325-9
    [25] S. Bouzebda, On the strong approximation of bootstrapped empirical copula processes with applications, Math. Meth. Stat., 21 (2012), 153–188. https://doi.org/10.3103/S1066530712030015 doi: 10.3103/S1066530712030015
    [26] S. Bouzebda, Asymptotic properties of pseudo maximum likelihood estimators and test in semi-parametric copula models with multiple change points, Math. Meth. Stat., 23 (2014), 38–65. https://doi.org/10.3103/S1066530714010037 doi: 10.3103/S1066530714010037
    [27] S. Bouzebda, B. Nemouchi, Central limit theorems for conditional empirical and conditional U-processes of stationary mixing sequences, Math. Meth. Stat., 28 (2019), 169–207. https://doi.org/10.3103/S1066530719030013 doi: 10.3103/S1066530719030013
    [28] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency with rates for conditional U-statistics estimators with general kernels on manifolds, Math. Meth. Stat., 33 (2024), 1–55.
    [29] S. Bouzebda, T. Zari, Strong approximation of multidimensional P-P plots processes by Gaussian processes with applications to statistical tests, Math. Meth. Stat., 23 (2014), 210–238. https://doi.org/10.3103/S1066530714030041 doi: 10.3103/S1066530714030041
    [30] S. Bouzebda, M. Chaouch, N. Laïb, Limiting law results for a class of conditional mode estimates for functional stationary ergodic data, Math. Meth. Stat., 25 (2016), 168–195. https://doi.org/10.3103/S1066530716030029. doi: 10.3103/S1066530716030029
    [31] S. Bouzebda, Strong approximation of the smoothed Q-Q processes, Far East Journal of Theoretical Statistics, 31 (2010), 169–191.
    [32] S. Bouzebda, General tests of independence based on empirical processes indexed by functions, Stat. Methodol., 21 (2014), 59–87. https://doi.org/10.1016/j.stamet.2014.03.001 doi: 10.1016/j.stamet.2014.03.001
    [33] S. Bouzebda, On the weak convergence and the uniform-in-bandwidth consistency of the general conditional U-processes based on the copula representation: multivariate setting, Hacet. J. Math. Stat., 52 (2023), 1303–1348. https://doi.org/10.15672/hujms.1134334 doi: 10.15672/hujms.1134334
    [34] S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3
    [35] S. Bouzebda, M. Chaouch, Uniform limit theorems for a class of conditional Z-estimators when covariates are functions, J. Multivariate Anal., 189 (2022), 104872. https://doi.org/10.1016/j.jmva.2021.104872 doi: 10.1016/j.jmva.2021.104872
    [36] K. Chokri, S. Bouzebda, Uniform-in-bandwidth consistency results in the partially linear additive model components estimation, Commun. Stat. Theor. M., 2023 (2023), 2153605. https://doi.org/10.1080/03610926.2022.2153605 doi: 10.1080/03610926.2022.2153605
    [37] S. Bouzebda, I. Elhattab, A strong consistency of a nonparametric estimate of entropy under random censorship, CR Math., 347 (2009), 821–826. https://doi.org/10.1016/j.crma.2009.04.021 doi: 10.1016/j.crma.2009.04.021
    [38] S. Bouzebda, I. Elhattab, Uniform-in-bandwidth consistency for kernel-type estimators of Shannon's entropy, Electron. J. Stat., 5 (2011), 440–459. https://doi.org/10.1214/11-EJS614 doi: 10.1214/11-EJS614
    [39] S. Bouzebda, A. A. Ferfache, Asymptotic properties of M-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 124883. https://doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883
    [40] S. Bouzebda, A. A. Ferfache, Functional central limit theorems for triangular arrays of function-indexed U-processes under uniformly integrable entropy conditions, submitted for publication.
    [41] S. Bouzebda, A. A. Ferfache, Asymptotic properties of semiparametric M-estimators with multiple change points, Phys. A, 609 (2023), 128363. https://doi.org/10.1016/j.physa.2022.128363 doi: 10.1016/j.physa.2022.128363
    [42] S. Bouzebda, B. Nemouchi, Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data, J. Nonparametr. Stat., 32 (2020), 452–509. https://doi.org/10.1080/10485252.2020.1759597 doi: 10.1080/10485252.2020.1759597
    [43] S. Bouzebda, B. Nemouchi, Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data, Stat. Inference Stoch. Process., 26 (2023), 33–88. https://doi.org/10.1007/s11203-022-09276-6 doi: 10.1007/s11203-022-09276-6
    [44] S. Bouzebda, A. Nezzal, Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data, Jpn. J. Stat. Data Sci., 5 (2022), 431–533. https://doi.org/10.1007/s42081-022-00161-3 doi: 10.1007/s42081-022-00161-3
    [45] S. Bouzebda, A. Nezzal, Asymptotic properties of conditional U-statistics using delta sequences, Commun. Stat. Theor. M., 2023 (2023), 2179887. https://doi.org/10.1080/03610926.2023.2179887 doi: 10.1080/03610926.2023.2179887
    [46] S. Bouzebda, I. Soukarieh, Renewal type bootstrap for U-process Markov chains, Markov Process. Relat., 28 (2022), 673–735.
    [47] S. Bouzebda, I. Soukarieh, Non-parametric conditional U-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 11 (2023), 16. https://doi.org/10.3390/math11010016. doi: 10.3390/math11010016
    [48] S. Bouzebda, I. Soukarieh, Limit theorems for a class of processes generalizing the U-empirical process, in press.
    [49] S. Bouzebda, N. Taachouche, On the variable bandwidth kernel estimation of conditional U-statistics at optimal rates in sup-norm, Phys. A, 625 (2023), 129000. https://doi.org/10.1016/j.physa.2023.129000. doi: 10.1016/j.physa.2023.129000
    [50] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds, Math. Meth. Stat., 32 (2023), 27–80. https://doi.org/10.3103/s1066530723010027. doi: 10.3103/s1066530723010027
    [51] S. Bouzebda, I. Elhattab, C. T. Seck, Uniform in bandwidth consistency of nonparametric regression based on copula representation, Stat. Probabil. Lett., 137 (2018), 173–182. https://doi.org/10.1016/j.spl.2018.01.021 doi: 10.1016/j.spl.2018.01.021
    [52] S. Bouzebda, I. Elhattab, B. Nemouchi, On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation, J. Nonparametr. Stat., 33 (2021), 321–358. https://doi.org/10.1080/10485252.2021.1937621 doi: 10.1080/10485252.2021.1937621
    [53] S. Bouzebda, A. Laksaci, M. Mohammedi, Single index regression model for functional quasi-associated time series data, REVSTAT-Stat. J., 20 (2022), 605–631. https://doi.org/10.57805/revstat.v20i5.391 doi: 10.57805/revstat.v20i5.391
    [54] S. Bouzebda, T. El-hadjali, A. A. Ferfache, Uniform in bandwidth consistency of conditional U-statistics adaptive to intrinsic dimension in presence of censored data, Sankhya A, 85 (2023), 1548–1606. https://doi.org/10.1007/s13171-022-00301-7 doi: 10.1007/s13171-022-00301-7
    [55] S. Bouzebda, A. Laksaci, M. Mohammedi, The k-nearest neighbors method in single index regression model for functional quasi-associated time series data, Rev. Mat. Complut., 36 (2023), 361–391. https://doi.org/10.1007/s13163-022-00436-z doi: 10.1007/s13163-022-00436-z
    [56] S. Bouzebda, A. Nezzal, T. Zari, Uniform consistency for functional conditional U-statistics using delta-sequences, Mathematics, 11 (2023), 161. https://doi.org/10.3390/math11010161 doi: 10.3390/math11010161
    [57] J. Bretagnolle, Lois limites du bootstrap de certaines fonctionnelles, Ann. I. H. Poincare-PR., 19 (1983), 281–296.
    [58] F. Burba, F. Ferraty, P. Vieu, k-Nearest neighbour method in functional nonparametric regression, J. Nonparametr. Stat., 21 (2009), 453–469. https://doi.org/10.1080/10485250802668909 doi: 10.1080/10485250802668909
    [59] L. Chen, A. T. K. Wan, S. Zhang, Y. Zhou, Distributed algorithms for U-statistics-based empirical risk minimization, J. Mach. Learn. Res., 24 (2023), 1–43.
    [60] Z. Chikr-Elmezouar, I. M. Almanjahie, A. Laksaci, M. Rachdi, FDA: strong consistency of the kNN local linear estimation of the functional conditional density and mode, J. Nonparametr. Stat., 31 (2019), 175–195. https://doi.org/10.1080/10485252.2018.1538450 doi: 10.1080/10485252.2018.1538450
    [61] J. A. Clarkson, C. R. Adams, On definitions of bounded variation for functions of two variables, T. Am. Math. Soc., 35 (1933), 824–854. https://doi.org/10.2307/1989593 doi: 10.2307/1989593
    [62] S. Clémençon, G. Lugosi, N. Vayatis, Ranking and empirical minimization of U-statistics, Ann. Statist., 36 (2008), 844–874. https://doi.org/10.1214/009052607000000910 doi: 10.1214/009052607000000910
    [63] S. Clémençon, I. Colin, A. Bellet, Scaling-up empirical risk minimization: optimization of incomplete U-statistics, J. Mach. Learn. Res., 17 (2016), 76.
    [64] G. Collomb, Estimation de la régression par la méthode des k points les plus proches avec noyau: quelques propriétés de convergence ponctuelle, In: Statistique non paramétrique asymptotique, Berlin: Springer, 1980,159–175. https://doi.org/10.1007/BFb0097428
    [65] G. B. Cybis, M. Valk, S. R. C. Lopes, Clustering and classification problems in genetics through U-statistics, J. Stat. Comput. Sim., 88 (2018), 1882–1902. https://doi.org/10.1080/00949655.2017.1374387 doi: 10.1080/00949655.2017.1374387
    [66] Y. A. Davydov, Mixing conditions for Markov chains, Theor. Probab. Appl., 18 (1974), 321–338. https://doi.org/10.1137/1118033 doi: 10.1137/1118033
    [67] V. H. de la Peña, Decoupling and Khintchine's inequalities for U-statistics, Ann. Probab., 20 (1992), 1877–1892. https://doi.org/10.1214/aop/1176989533 doi: 10.1214/aop/1176989533
    [68] V. H. de la Peña, E. Giné, Decoupling, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-0537-1
    [69] J. Dedecker, S. Louhichi, Maximal inequalities and empirical central limit theorems, In: Empirical process techniques for dependent data, Boston: Birkhäuser, 2002,137–159. https://doi.org/10.1007/978-1-4612-0099-4_3
    [70] P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation, Kybernetika (Prague), 47 (2011), 855–865.
    [71] P. Deheuvels, D. M. Mason, General asymptotic confidence bands based on kernel-type function estimators, Stat. Infer. Stoch. Pro., 7 (2004), 225–277. https://doi.org/10.1023/B:SISP.0000049092.55534.af doi: 10.1023/B:SISP.0000049092.55534.af
    [72] H. Dehling, M. Wendler, Central limit theorem and the bootstrap for U-statistics of strongly mixing data, J. Multivariate Anal., 101 (2010), 126–137. https://doi.org/10.1016/j.jmva.2009.06.002 doi: 10.1016/j.jmva.2009.06.002
    [73] K. Dehnad, Density estimation for statistics and data analysis, Technometrics, 29 (1987), 495–495. https://doi.org/10.1080/00401706.1987.10488295 doi: 10.1080/00401706.1987.10488295
    [74] J. Demongeot, A. Hamie, A. Laksaci, M. Rachdi, Relative-error prediction in nonparametric functional statistics: theory and practice, J. Multivariate Anal., 146 (2016), 261–268. https://doi.org/10.1016/j.jmva.2015.09.019 doi: 10.1016/j.jmva.2015.09.019
    [75] L. Devroye, A course in density estimation, Boston: Birkhäuser Boston Inc., 1987.
    [76] L. Devroye, G. Lugosi, Combinatorial methods in density estimation, New York: Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4613-0125-7
    [77] L. Devroye, L. Györfi, A. Krzyzak, G. Lugosi, On the strong universal consistency of nearest neighbor regression function estimates, Ann. Statist., 22 (1994), 1371–1385. https://doi.org/10.1214/aos/1176325633 doi: 10.1214/aos/1176325633
    [78] J. Dony, U. Einmahl, Uniform in bandwidth consistency of kernel regression estimators at a fixed point, Inst. Math. Stat. (IMS) Collect., 2009 (2009), 308–325. https://doi.org/10.1214/09-IMSCOLL520 doi: 10.1214/09-IMSCOLL520
    [79] J. Dony, D. M. Mason, Uniform in bandwidth consistency of conditional U-statistics, Bernoulli, 14 (2008), 1108–1133. https://doi.org/10.3150/08-BEJ136 doi: 10.3150/08-BEJ136
    [80] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal., 1 (1967), 290–330. https://doi.org/10.1016/0022-1236(67)90017-1 doi: 10.1016/0022-1236(67)90017-1
    [81] R. M. Dudley, A course on empirical processes, In: École d'été de probabilités de Saint-Flour, XII-1982, Berlin: Springer, 1984, 1–142. https://doi.org/10.1007/BFb0099432
    [82] R. M. Dudley, Uniform central limit theorems, Cambridge: Cambridge University Press, 1999. https://doi.org/10.1017/CBO9780511665622
    [83] E. B. Dynkin, A. Mandelbaum, Symmetric statistics, poisson point processes, and multiple wiener integrals, Ann. Statist., 11 (1983), 739–745. https://doi.org/10.1214/aos/1176346241 doi: 10.1214/aos/1176346241
    [84] E. Eberlein, Weak convergence of partial sums of absolutely regular sequences, Stat. Probabil. Lett., 2 (1984), 291–293. https://doi.org/10.1016/0167-7152(84)90067-1 doi: 10.1016/0167-7152(84)90067-1
    [85] S. Efromovich, Nonparametric curve estimation, New York: Springer, 1999. https://doi.org/10.1007/b97679
    [86] P. P. B. Eggermont, V. N. LaRiccia, Maximum penalized likelihood estimation, New York: Springer, 2001. https://doi.org/10.1007/978-1-0716-1244-6
    [87] U. Einmahl, D. M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theor. Probab., 13 (2000), 1–37. https://doi.org/10.1023/A:1007769924157. doi: 10.1023/A:1007769924157
    [88] U. Einmahl, D. M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist., 33 (2005), 1380–1403. https://doi.org/10.1214/009053605000000129 doi: 10.1214/009053605000000129
    [89] M. Ezzahrioui, E. Ould-Saïd, Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data, J. Nonparametr. Stat., 20 (2008), 3–18. https://doi.org/10.1080/10485250701541454 doi: 10.1080/10485250701541454
    [90] L. Faivishevsky, J. Goldberger, ICA based on a smooth estimation of the differential entropy, In: Proceedings of the 21st international conference on neural information processing systems, New York: Curran Associates, Inc., 2008,433–440.
    [91] F. Ferraty, P. Vieu, Nonparametric functional data analysis, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [92] F. Ferraty, A. Mas, P. Vieu, Nonparametric regression on functional data: inference and practical aspects, Aust. N. Z. J. Stat., 49 (2007), 267–286. https://doi.org/10.1111/j.1467-842X.2007.00480.x doi: 10.1111/j.1467-842X.2007.00480.x
    [93] F. Ferraty, A. Laksaci, A. Tadj, P. Vieu, Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Infer., 140 (2010), 335–352. https://doi.org/10.1016/j.jspi.2009.07.019 doi: 10.1016/j.jspi.2009.07.019
    [94] A. A. Filippova, Mises theorem on the limit behaviour of functionals derived from empirical distribution functions, Dokl. Akad. Nauk SSSR, 129 (1959), 44–47. https://doi.org/10.1137/1107003 doi: 10.1137/1107003
    [95] E. Fix, J. L. J. Hodges, Discriminatory analysis-nonparametric discrimination: consistency properties, Technical Report Project 21-49-004, Report 4, USAF School of Aviation Medicine, Randolph Field, Texas, 1951.
    [96] E. Fix, J. L. J. Hodges, Discriminatory analysis–nonparametric discrimination: consistency properties, Int. Stat. Rev., 57 (1989), 238–247. https://doi.org/10.2307/1403797 doi: 10.2307/1403797
    [97] E. W. Frees, Infinite order U-statistics, Scand. J. Stat., 16 (1989), 29–45.
    [98] K.-A. Fu, An application of U-statistics to nonparametric functional data analysis, Commun. Stat. Theor. M., 41 (2012), 1532–1542. https://doi.org/10.1080/03610926.2010.526747 doi: 10.1080/03610926.2010.526747
    [99] T. Gasser, P. Hall, B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. R. Stat. Soc. B, 60 (1998), 681–691. https://doi.org/10.1111/1467-9868.00148 doi: 10.1111/1467-9868.00148
    [100] S. Ghosal, A. Sen, A. W. van der Vaart, Testing monotonicity of regression, Ann. Statist., 28 (2000), 1054–1082. https://doi.org/10.1214/aos/1015956707 doi: 10.1214/aos/1015956707
    [101] E. Giné, D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theor. Probab., 20 (2007), 457–485. https://doi.org/10.1007/s10959-007-0067-0 doi: 10.1007/s10959-007-0067-0
    [102] E. Giné, J. Zinn, Some limit theorems for empirical processes, Ann. Probab., 12 (1984), 929–989. https://doi.org/10.1214/aop/1176993138 doi: 10.1214/aop/1176993138
    [103] H. L. Gray, N.-F. Zhang, W. A. Woodward, On generalized fractional processes, J. Time Ser. Anal., 10 (1989), 233–257. https://doi.org/10.1111/j.1467-9892.1989.tb00026.x doi: 10.1111/j.1467-9892.1989.tb00026.x
    [104] L. Györfi, The rate of convergence of k-nn regression estimation and classification, IEEE T. Inform. Theory, 27 (1981), 362–364. https://doi.org/10.1109/TIT.1981.1056344 doi: 10.1109/TIT.1981.1056344
    [105] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 67 (1984), 175–196. https://doi.org/10.1007/BF00535267 doi: 10.1007/BF00535267
    [106] P. R. Halmos, The theory of unbiased estimation, Ann. Math. Statist., 17 (1946), 34–43. https://doi.org/10.1214/aoms/1177731020 doi: 10.1214/aoms/1177731020
    [107] F. Han, An exponential inequality for U-statistics under mixing conditions, J. Theor. Probab., 31 (2018), 556–578. https://doi.org/10.1007/s10959-016-0722-4 doi: 10.1007/s10959-016-0722-4
    [108] W. Härdle, Applied nonparametric regression, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CCOL0521382483
    [109] W. Härdle, J. S. Marron, Optimal bandwidth selection in nonparametric regression function estimation, Ann. Statist., 13 (1985), 1465–1481. https://doi.org/10.1214/aos/1176349748 doi: 10.1214/aos/1176349748
    [110] G. H. Hardy, On double fourier series and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. Math, 37 (1905), 53–79.
    [111] M. Harel, M. L. Puri, Conditional U-statistics for dependent random variables, J. Multivariate Anal., 57 (1996), 84–100. https://doi.org/10.1006/jmva.1996.0023 doi: 10.1006/jmva.1996.0023
    [112] C. Heilig, D. Nolan, Limit theorems for the infinite-degree U-process, Stat. Sinica, 11 (2001), 289–302.
    [113] L. Heinrich, Bounds for the absolute regularity coefficient of a stationary renewal process, Yokohama Math. J., 40 (1992), 25–33.
    [114] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series. Vol. II, New York: Dover Publications, Inc., 1958.
    [115] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19 (1948), 293–325. https://doi.org/10.1214/aoms/1177730196 doi: 10.1214/aoms/1177730196
    [116] L. Horváth, P. Kokoszka, Inference for functional data with applications, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3655-3
    [117] P. J. Huber, Robust estimation of a location parameter, Ann. Math. Statist., 35 (1964), 73–101. https://doi.org/10.1214/aoms/1177703732 doi: 10.1214/aoms/1177703732
    [118] I. A. Ibragimov, V. N. Solev, A condition for regularity of a Gaussian stationary process, Soviet Math. Dokl., 10 (1969), 371–375.
    [119] S. Jadhav, S. Ma, An association test for functional data based on Kendall's Tau, J. Multivariate Anal., 184 (2021), 104740. https://doi.org/10.1016/j.jmva.2021.104740 doi: 10.1016/j.jmva.2021.104740
    [120] S. Janson, A functional limit theorem for random graphs with applications to subgraph count statistics, Random Struct. Algor., 1 (1990), 15–37. https://doi.org/10.1002/rsa.3240010103 doi: 10.1002/rsa.3240010103
    [121] S. Janson, Asymptotic normality for m-dependent and constrained U-statistics, with applications to pattern matching in random strings and permutations, Adv. Appl. Probab., 55 (2023), 841–894. https://doi.org/10.1017/apr.2022.51 doi: 10.1017/apr.2022.51
    [122] E. Joly, G. Lugosi, Robust estimation of U-statistics, Stoch. Proc. Appl., 126 (2016), 3760–3773. https://doi.org/10.1016/j.spa.2016.04.021 doi: 10.1016/j.spa.2016.04.021
    [123] M. C. Jones, H. Park, K. Shin, S. K. Vines, S. Jeong, Relative error prediction via kernel regression smoothers, J. Stat. Plan. Infer., 138 (2008), 2887–2898. https://doi.org/10.1016/j.jspi.2007.11.001 doi: 10.1016/j.jspi.2007.11.001
    [124] L. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven kNN estimation in nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188. https://doi.org/10.1016/j.jmva.2016.09.016 doi: 10.1016/j.jmva.2016.09.016
    [125] L. Kara-Zaitri, A. Laksaci, M. Rachdi, P. Vieu, Uniform in bandwidth consistency for various kernel estimators involving functional data, J. Nonparametr. Stat., 29 (2017), 85–107. https://doi.org/10.1080/10485252.2016.1254780 doi: 10.1080/10485252.2016.1254780
    [126] H. A. Karlsen, D. Tjøstheim, Nonparametric estimation in null recurrent time series, Ann. Statist., 29 (2001), 372–416. https://doi.org/10.1214/aos/1009210546 doi: 10.1214/aos/1009210546
    [127] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93. https://doi.org/10.2307/2332226 doi: 10.2307/2332226
    [128] I. Kim, A. Ramdas, Dimension-agnostic inference using cross U-statistics, Bernoulli, 30 (2024), 683–711. https://doi.org/10.3150/23-bej1613 doi: 10.3150/23-bej1613
    [129] R. Koenker, G. Bassett, Regression quantiles, Econometrica, 46 (1978), 33–50. https://doi.org/10.2307/1913643 doi: 10.2307/1913643
    [130] P. Kokoszka, M. Reimherr, Introduction to functional data analysis, Boca Raton: Chapman and Hall/CRC Press, 2017. https://doi.org/10.1201/9781315117416
    [131] A. N. Kolmogorov, V. M. Tikhomirov, ε-entropy and ε-capacity of sets in function spaces, Uspekhi Mat. Nauk, 14 (1959), 3–86.
    [132] M. R. Kosorok, Introduction to empirical processes and semiparametric inference, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-74978-5
    [133] M. Krause, Über mittelwertsätze im Gebiete der doppelsummen und doppelintegrale, Leipz. Ber., 55 (1903), 239–263.
    [134] N. L. Kudraszow, P. Vieu, Uniform consistency of kNN regressors for functional variables, Stat. Probabil. Lett., 83 (2013), 1863–1870. https://doi.org/10.1016/j.spl.2013.04.017 doi: 10.1016/j.spl.2013.04.017
    [135] T. Laloë, A k-nearest neighbor approach for functional regression, Stat. Probabil. Lett., 78 (2008), 1189–1193. https://doi.org/10.1016/j.spl.2007.11.014 doi: 10.1016/j.spl.2007.11.014
    [136] T. L. Minh, U-statistics on bipartite exchangeable networks, ESAIM Probab. Stat., 27 (2023), 576–620. https://doi.org/10.1051/ps/2023010 doi: 10.1051/ps/2023010
    [137] L. LeCam, A remark on empirical measures, In: A Festschrift for Erich Lehmann in honor of his sixty-fifth birthday, Belmont: Wadsworth, 1983,305–327.
    [138] A. J. Lee, U-statistics, New York: Marcel Dekker, Inc., 1990.
    [139] W. V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Handbook of Statistics, 19 (2001), 533–597. https://doi.org/10.1016/S0169-7161(01)19019-X doi: 10.1016/S0169-7161(01)19019-X
    [140] F. Lim, V. M. Stojanovic, On U-statistics and compressed sensing Ⅰ: Non-asymptotic average-case analysis, IEEE T. Signal Proces., 61 (2013), 2473–2485. https://doi.org/10.1109/TSP.2013.2247598 doi: 10.1109/TSP.2013.2247598
    [141] N. Ling, S. Meng, P. Vieu, Uniform consistency rate of kNN regression estimation for functional time series data, J. Nonparametr. Stat., 31 (2019), 451–468. https://doi.org/10.1080/10485252.2019.1583338 doi: 10.1080/10485252.2019.1583338
    [142] N. Ling, G. Aneiros, P. Vieu, kNN estimation in functional partial linear modeling, Stat. Papers, 61 (2020), 423–444. https://doi.org/10.1007/s00362-017-0946-0 doi: 10.1007/s00362-017-0946-0
    [143] Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, The 33rd International Conference on Machine Learning, New York, USA, 2016,276–284.
    [144] D. O. Loftsgaarden, C. P. Quesenberry, A nonparametric estimate of a multivariate density function, Ann. Math. Statist., 36 (1965), 1049–1051. https://doi.org/10.1214/aoms/1177700079 doi: 10.1214/aoms/1177700079
    [145] Y. P. Mack, Local properties of k-nn regression estimates, SIAM Journal on Algebraic Discrete Methods, 2 (1981), 311–323. https://doi.org/10.1137/0602035 doi: 10.1137/0602035
    [146] D. M. Mason, Proving consistency of non-standard kernel estimators, Stat. Inference Stoch. Process., 15 (2012), 151–176. https://doi.org/10.1007/s11203-012-9068-4 doi: 10.1007/s11203-012-9068-4
    [147] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stoch. Proc. Appl., 115 (2005), 155–177. https://doi.org/10.1016/j.spa.2004.07.006 doi: 10.1016/j.spa.2004.07.006
    [148] E. Mayer-Wolf, O. Zeitouni, The probability of small Gaussian ellipsoids and associated conditional moments, Ann. Probab., 21 (1993), 14–24.
    [149] F. Merlevède, M. Peligrad, E. Rio, A Bernstein type inequality and moderate deviations for weakly dependent sequences, Probab. Theory Relat. Fields, 151 (2011), 435–474. https://doi.org/10.1007/s00440-010-0304-9 doi: 10.1007/s00440-010-0304-9
    [150] M. Mohammedi, S. Bouzebda, A. Laksaci, On the nonparametric estimation of the functional expectile regression, CR Math., 358 (2020), 267–272. https://doi.org/10.5802/crmath.27 doi: 10.5802/crmath.27
    [151] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivariate Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [152] M. Mohammedi, S. Bouzebda, A. Laksaci, O. Bouanani, Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data, Commun. Stat. Theor. M., 2022 (2022), 2150823. https://doi.org/10.1080/03610926.2022.2150823 doi: 10.1080/03610926.2022.2150823
    [153] E. A. Nadaraja, On estimate regression, Theor. Probab. Appl., 9 (1964), 141–142.
    [154] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, Netherlands: Kluwer Academic Publishers, 1989. https://doi.org/10.1007/978-94-009-2583-0
    [155] W. K. Newey, J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55 (1987), 819–847. https://doi.org/10.2307/1911031 doi: 10.2307/1911031
    [156] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1992. https://doi.org/10.1137/1.9781611970081
    [157] D. Nolan, D. Pollard, U-processes: rates of convergence, Ann. Statist., 15 (1987), 780–799. https://doi.org/10.1214/aos/1176350374 doi: 10.1214/aos/1176350374
    [158] S. Novo, G. Aneiros, P. Vieu, Automatic and location-adaptive estimation in functional single-index regression, J. Nonparametr. Stat., 31 (2019), 364–392. https://doi.org/10.1080/10485252.2019.1567726 doi: 10.1080/10485252.2019.1567726
    [159] H. Park, L. A. Stefanski, Relative-error prediction, Stat. Probabil. Lett., 40 (1998), 227–236. https://doi.org/10.1016/S0167-7152(98)00088-1 doi: 10.1016/S0167-7152(98)00088-1
    [160] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065–1076. https://doi.org/10.1214/aoms/1177704472 doi: 10.1214/aoms/1177704472
    [161] W. Peng, T. Coleman, L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Statist., 16 (2022), 232–292. https://doi.org/10.1214/21-ejs1958 doi: 10.1214/21-ejs1958
    [162] N. Phandoidaen, S. Richter, Empirical process theory for locally stationary processes, Bernoulli, 28 (2022), 453–480. https://doi.org/10.3150/21-bej1351 doi: 10.3150/21-bej1351
    [163] D. Pollard, Convergence of stochastic processes, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-5254-2
    [164] W. Polonik, Q. Yao, Set-indexed conditional empirical and quantile processes based on dependent data, J. Multivariate Anal., 80 (2002), 234–255. https://doi.org/10.1006/jmva.2001.1988 doi: 10.1006/jmva.2001.1988
    [165] B. L. S. P. Rao, A. Sen, Limit distributions of conditional U-statistics, J. Theoret. Probab., 8 (1995), 261–301. https://doi.org/10.1007/BF02212880 doi: 10.1007/BF02212880
    [166] M. Rachdi, P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Infer., 137 (2007), 2784–2801. https://doi.org/10.1016/j.jspi.2006.10.001 doi: 10.1016/j.jspi.2006.10.001
    [167] J. O. Ramsay, B. W. Silverman. Applied functional data analysis, New York: Springer, 2002. https://doi.org/10.1007/b98886
    [168] J. O. Ramsay, B. W. Silverman, Functional data analysis, New York: Springer, 2 Eds., 2005. https://doi.org/10.1007/b98888
    [169] P. M. Robinson, Large-sample inference for nonparametric regression with dependent errors, Ann. Statist., 25 (1997), 2054–2083. https://doi.org/10.1214/aos/1069362387 doi: 10.1214/aos/1069362387
    [170] M. Rosenblatt, A central limit theorem and a strong mixing condition, P. Nat. Acad. Sci. USA, 42 (1956), 43–47. https://doi.org/10.1073/pnas.42.1.43 doi: 10.1073/pnas.42.1.43
    [171] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., 27 (1956), 832–837. https://doi.org/10.1214/aoms/1177728190 doi: 10.1214/aoms/1177728190
    [172] H. Rubin, R. A. Vitale, Asymptotic distribution of symmetric statistics, Ann. Statist., 8 (1980), 165–170.
    [173] A. Schick, Y. Wang, W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Stat. Probabil. Lett., 81 (2011), 337–343. https://doi.org/10.1016/j.spl.2010.10.022 doi: 10.1016/j.spl.2010.10.022
    [174] D. W. Scott, Multivariate density estimation: theory, practice, and visualization, New York: John Wiley & Sons Inc., 1992. https://doi.org/10.1002/9780470316849
    [175] A. Sen, Uniform strong consistency rates for conditional U-statistics, Sankhyā Ser. A, 56 (1994), 179–194.
    [176] R. J. Serfling, Approximation theorems of mathematical statistics, New York: John Wiley & Sons, Inc., 1980. https://doi.org/10.1002/9780470316481
    [177] R. P. Sherman, Maximal inequalities for degenerate U-processes with applications to optimization estimators, Ann. Statist., 22 (1994), 439–459. https://doi.org/10.1214/aos/1176325377 doi: 10.1214/aos/1176325377
    [178] Y. Song, X. Chen, K. Kato. Approximating high-dimensional infinite-order U-statistics: statistical and computational guarantees, Electron. J. Statist., 13 (2019), 4794–4848. https://doi.org/10.1214/19-EJS1643 doi: 10.1214/19-EJS1643
    [179] I. Soukarieh, S. Bouzebda, Exchangeably weighted bootstraps of general markov U-process, Mathematics, 10 (2022), 3745. https://doi.org/10.3390/math10203745 doi: 10.3390/math10203745
    [180] I. Soukarieh, S. Bouzebda. Renewal type bootstrap for increasing degree U-process of a Markov chain, J. Multivariate Anal., 195 (2023), 105143. https://doi.org/10.1016/j.jmva.2022.105143 doi: 10.1016/j.jmva.2022.105143
    [181] I. Soukarieh, S. Bouzebda, Weak convergence of the conditional U-statistics for locally stationary functional time series, Stat. Inference Stoch. Process., 2023 (2023), 1–78. https://doi.org/10.1007/s11203-023-09305-y doi: 10.1007/s11203-023-09305-y
    [182] W. Stute, Conditional U-statistics, Ann. Probab., 19 (1991), 812–825.
    [183] W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist., 21 (1993), 146–156. https://doi.org/10.1214/aos/1176349019 doi: 10.1214/aos/1176349019
    [184] W. Stute, Lp-convergence of conditional U-statistics, J. Multivariate Anal., 51 (1994), 71–82. https://doi.org/10.1006/jmva.1994.1050 doi: 10.1006/jmva.1994.1050
    [185] W. Stute, Universally consistent conditional U-statistics, Ann. Statist., 22 (1994), 460–473. https://doi.org/10.1214/aos/1176325378 doi: 10.1214/aos/1176325378
    [186] W. Stute, Symmetrized NN-conditional U-statistics, In: Research developments in probability and statistics, VSP, Utrecht, 1996,231–237.
    [187] J. Su, Z. Yao, C. Li, Y. Zhang. A statistical approach to estimating adsorption-isotherm parameters in gradient-elution preparative liquid chromatography, Ann. Appl. Stat., 17 (2023), 3476–3499. https://doi.org/10.1214/23-aoas1772 doi: 10.1214/23-aoas1772
    [188] K. K. Sudheesh, S. Anjana, M. Xie. U-statistics for left truncated and right censored data, Statistics, 57 (2023), 900–917. https://doi.org/10.1080/02331888.2023.2217314 doi: 10.1080/02331888.2023.2217314
    [189] O. Toussoun, Mémoire sur l'histoire du nil, In: Mémoires de l'Institut d'Egypte, Cairo: Institut d'Egypte, 1925.
    [190] A. W. van der Vaart, Asymptotic statistics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511802256
    [191] A. van der Vaart, The statistical work of Lucien Le Cam. Ann. Statist., 30 (2002), 631–682. https://doi.org/10.1214/aos/1028674836 doi: 10.1214/aos/1028674836
    [192] A. van der Vaart, H. van Zanten, Bayesian inference with rescaled Gaussian process priors, Electron. J. Statist., 1 (2007), 433–448. https://doi.org/10.1214/07-EJS098 doi: 10.1214/07-EJS098
    [193] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-2545-2
    [194] V. N. Vapnik, A. Ja. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theor. Probab. Appl., 16 (1971), 264–279.
    [195] G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali, Atti Accad. Sci. Torino, 43 (1908), 75–92.
    [196] A. G. Vituškin, O mnogomernyh variaciyah, Gostehisdat: Moskva, 1955.
    [197] V. Volkonski, Y. Rozanov, Some limit theorems for random functions. Ⅰ, Theor. Probab. Appl., 4 (1959), 178–197. https://doi.org/10.1137/1104015 doi: 10.1137/1104015
    [198] R. von Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statist., 18 (1947), 309–348. https://doi.org/10.1214/aoms/1177730385 doi: 10.1214/aoms/1177730385
    [199] M. P. Wand, M. C. Jones, Kernel smoothing, New York: Chapman and Hall/CRC Press, 1994. https://doi.org/10.1201/b14876
    [200] G. S. Watson, Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 26 (1964), 359–372.
    [201] C. Xu, Y. Zhang, Estimating the memory parameter for potentially non-linear and non-Gaussian time series with wavelets, Inverse Probl., 38 (2022), 035004. https://doi.org/10.1088/1361-6420/ac48ca doi: 10.1088/1361-6420/ac48ca
    [202] Y. Yajima, On estimation of a regression model with long-memory stationary errors, Ann. Statist., 16 (1988), 791–807. https://doi.org/10.1214/aos/1176350837 doi: 10.1214/aos/1176350837
    [203] K. Yoshihara, Limiting behavior of U-statistics for stationary, absolutely regular processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 35 (1976), 237–252. https://doi.org/10.1007/BF00532676 doi: 10.1007/BF00532676
    [204] Y. Zhang, C. Chen, Stochastic asymptotical regularization for linear inverse problems, Inverse Probl., 39 (2023), 015007. https://doi.org/10.1088/1361-6420/aca70f doi: 10.1088/1361-6420/aca70f
    [205] Y. Zhang, Z. Yao, P. Forssén, T. Fornstedt, Estimating the rate constant from biosensor data via an adaptive variational Bayesian approach, Ann. Appl. Stat., 13 (2019), 2011–2042. https://doi.org/10.1214/19-aoas1263 doi: 10.1214/19-aoas1263
  • This article has been cited by:

    1. Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad, Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators, 2023, 8, 2473-6988, 30374, 10.3934/math.20231551
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1457) PDF downloads(103) Cited by(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog