Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

An efficient numerical scheme in reproducing kernel space for space fractional partial differential equations

  • Received: 29 September 2024 Revised: 09 November 2024 Accepted: 15 November 2024 Published: 22 November 2024
  • MSC : 35A40, 65N35, 65R20

  • A numerical approach is proposed for space fractional partial differential equations by the reproducing kernel approach. Some procedures are presented for improving the existing methods. The presented method is easy to accomplish. Approximate solutions and their partial derivatives are shown to converge to exact solutions, respectively. Experiments show that the presented technique is efficient, and that high-precision global approximate solutions can be obtained.

    Citation: Boyu Liu, Wenyan Wang. An efficient numerical scheme in reproducing kernel space for space fractional partial differential equations[J]. AIMS Mathematics, 2024, 9(11): 33286-33300. doi: 10.3934/math.20241588

    Related Papers:

    [1] Siyu Tian, Boyu Liu, Wenyan Wang . A novel numerical scheme for reproducing kernel space of 2D fractional diffusion equations. AIMS Mathematics, 2023, 8(12): 29058-29072. doi: 10.3934/math.20231488
    [2] Yassamine Chellouf, Banan Maayah, Shaher Momani, Ahmad Alawneh, Salam Alnabulsi . Numerical solution of fractional differential equations with temporal two-point BVPs using reproducing kernal Hilbert space method. AIMS Mathematics, 2021, 6(4): 3465-3485. doi: 10.3934/math.2021207
    [3] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [4] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [5] Zhi-Yuan Li, Mei-Chun Wang, Yu-Lan Wang . Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function. AIMS Mathematics, 2022, 7(7): 12935-12951. doi: 10.3934/math.2022716
    [6] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
    [7] Fethi Bouzeffour . Inversion formulas for space-fractional Bessel heat diffusion through Tikhonov regularization. AIMS Mathematics, 2024, 9(8): 20826-20842. doi: 10.3934/math.20241013
    [8] Shiyv Wang, Xueqin Lv, Songyan He . The reproducing kernel method for nonlinear fourth-order BVPs. AIMS Mathematics, 2023, 8(11): 25371-25381. doi: 10.3934/math.20231294
    [9] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [10] Ali Akgül, Esra Karatas Akgül, Sahin Korhan . New reproducing kernel functions in the reproducing kernel Sobolev spaces. AIMS Mathematics, 2020, 5(1): 482-496. doi: 10.3934/math.2020032
  • A numerical approach is proposed for space fractional partial differential equations by the reproducing kernel approach. Some procedures are presented for improving the existing methods. The presented method is easy to accomplish. Approximate solutions and their partial derivatives are shown to converge to exact solutions, respectively. Experiments show that the presented technique is efficient, and that high-precision global approximate solutions can be obtained.



    Fractional differential equations (FDEs) can describe various practical problems, but due to the non-locality of fractional operators, their numerical methods and theoretical analysis are in the early stage of development, which brings challenges to the acquisition of exact solutions. Therefore, the search for numerical solutions to these equations is difficult and urgent. FDEs have been widely applied in ecology, medicine, physics, hydrology, and other fields [1,2,3,4,5,6]. For example, space FDEs have been applied in image denoising and enhancement, and have important application value in medical images, transportation, remote sensing images, and other fields [7,8,9].

    The theoretical study for FDEs has been developed rapidly [10,11,12,13,14,15,16]. Luchko [17] established the unique existence for solutions to time FDEs. Sakamoto and Yamamoto [18] proved the unique existence for solutions to space FDEs. Cheng et al. [19] studied the uniqueness for inverse problems to FDEs. Li et al. [20] established the stability for FDEs with non-instantaneous integral pulses and multi-point boundary conditions.

    In terms of numerical methods, references are growing rapidly [21,22,23,24,25]. Qazza, Saadeh, and Salah [26] proposed a direct power series method for FDEs. Hashemi et al. [27] applied shifted Chebyshev polynomials to time-fractional diffusion-wave equations. Peykrayegan et al. [28] proposed the Jacobi-Gauss collocation approach to approximate fractional singular delay integro-differential problems. Turkyilmazoglu [29] applied the adomian decomposition method to FDEs. Shikrani et al. [30] used the hybrid B-spline collocation approach to solve the space FDEs. Jiang and Lin [31] used the reproducing kernel (RK) approach to approximate fractional advection-dispersion equations.

    The following space FDEs [30] are considered in this article:

    u(x,t)t=c(x,t)u(x,t)x+d(x,t)αu(x,t)xα+f(x,t), (x,t)D[0,L]×[0,T], (1.1)
    u(x,0)=ϑ(x),u(L,t)=θ2(t),u(0,t)=θ1(t),t[0,T],x[0,L]. (1.2)

    Here, T>0 and L>0 are fixed, c(x,t),ϑ(x),d(x,t),θ1(t),f(x,t), and θ2(t) are known functions that are smooth enough. The Riemann-Liouville derivative for 2>α>1 is shown in [9] by

    αu(x,t)xα=1Γ(2α)x02η2u(η,t)(xη)α1dη.  (1.3)

    We aim to establish a numerical scheme for space FDEs by the RK method. In addition, the advantages of this approach are as follows:

    1) The high-precision global approximate solution to the equation is obtained.

    2) The numerical calculation program is simple.

    3) Smaller errors can occur when larger step sizes are used. Therefore, high precision approximate solutions can be obtained in a very short time.

    RK functions in Hilbert Spaces and their related theories are widely used in digital image processing, neural network modeling, and numerical simulations [32,33,34,35]. In practical applications, the RK method is widely applied to solve various integral and differential equations because of its global nature and high precision [36,37,38]. Within the last ten years, more scholars have used the RK approach to solve various FDEs [39,40,41,42]. The literature proves that the RK approach has many advantages and deserves further study.

    In this paper, the approximate solution to Eqs (1.1) and (1.2) is given in RK space. Driven by [43], a procedure is presented for improving the existing approach, bypassing the Gram-Schmidt orthogonal (GSO) process proposed in [31], which has lower accuracy and slower operation speed under the same conditions. Subsequently, enlightened by [44], a simpler RK than [45] is applied, promoting greater acceleration of the calculation and further improvements in accuracy [43,46].

    In order to solve Eqs (1.1) and (1.2) in the RK space, the conditions (1.2) need to be homogenized. For convenience, the solution to the new equations is expressed by u(x,t), so,

    Lu(x,t)u(x,t)tc(x,t)u(x,t)xd(x,t)αu(x,t)xα=F(x,t),  (x,t)D, (1.4)
    u(x,0)=0,   u(L,t)=0,   u(0,t)=0,t[0,T],x[0,L], (1.5)

    where L:W(D)˜W(D), W(D) and ˜W(D) will be given in the following sections.

    In this section, RK space W(D) is constructed from [44] as a premier book about numerical approaches of RK spaces, which constructs a much simpler RK than [45].

    First, the RK spaces W1[0,T], W2[0,L] and W3[0,L] are introduced as follows.

    Definition 2.1. W1[0,T]={ν|ν is a real-valued function that is absolutely continuous in [0,T], ν(0)=0, νL2[0,T]}. Its inner product in W1[0,T] is defined by

    ν,ωW1=T0ν(x)ω(x) dx+ν(0)ω(0). (2.1)

    Definition 2.2. W2[0,L]={ν|ν is a real-valued function that is absolutely continuous in [0,L], ν(L)=0, ν(0)=0, νL2[0,L]}. Its inner product in W2[0,L] is defined as

    ν,ωW2=L0ν(x) ω(x)dx+ν(0)ω(0). (2.2)

    Definition 2.3. W3[0,L]={ν|ν is a real-valued function that is absolutely continuous in [0,L], νL2[0,L]}. Its inner product in W3[0,L] is defined as:

    ν,ωW3=L0ν(x) ω(x)dx+ν(0)ω(0). (2.3)

    The norms are defined by νWk=ν,νWk for k=1,2,3. It is shown that W1[0,T], W2[0,L] and W3[0,L] are all RK spaces, whose RKs

    K1(t,τ)={tτ+12tτ216τ3,τ (2.4)
    K2\left( {x, \varsigma } \right) = \left\{ {\begin{array}{*{20}{l}} {\frac{{(L - x)\varsigma (120Lx - 120x\varsigma + 6{L^2}{x^2}\varsigma - 4L{x^3}\varsigma + {x^4}\varsigma - 5Lx{\varsigma ^3} + L{\varsigma ^4} + x{\varsigma ^4})}}{{120{L^2}}}, }&{\varsigma \leqslant x, } \\ {\frac{{x(L - \varsigma )(L{x^4} + 120L\varsigma - 120x\varsigma - 5L{x^3}\varsigma + {x^4}\varsigma + 6{L^2}x{\varsigma ^2} - 4Lx{\varsigma ^3} + x{\varsigma ^4})}}{{120{L^2}}}, }&{\varsigma > x, } \end{array}} \right. (2.5)
    K3(x, \zeta ) = \left\{ {\begin{array}{*{20}{c}} {1 + \zeta , }&{\zeta \leqslant x, } \\ {1 + x, }&{\zeta > x, } \end{array}} \right. (2.6)

    which are given by (9) and (11) in [31] and [47], respectively.

    Definition 2.4. W\left(D \right) = \left\{ \nu \right.|\frac{{{\partial ^3}\nu }}{{\partial {x^2}\partial t}} is a real-valued function that is absolutely continuous in D , \nu \left({x, 0} \right) = 0, \nu \left({L, t} \right) = 0, \nu \left({0, t} \right) = 0, \frac{{{\partial ^5}\nu }}{{\partial {x^3}\partial {t^2}}} \in \left. {{L^2}\left(D \right)} \right\} . Its norm and inner product in W\left(D \right) are respectively defined as

    {\left\| \nu \right\|_{W\left( D \right)}} = \sqrt {{{\left\langle {\nu , \nu } \right\rangle }_{W(D)}}} , (2.7)
    \begin{array}{l} {\left\langle {\nu , u} \right\rangle _{W\left( D \right)}} = {\left\langle {\frac{{\partial \nu \left( {x, 0} \right)}}{{\partial t}}, \frac{{\partial u\left( {x, 0} \right)}}{{\partial t}}} \right\rangle _{{W_2}}} + \int_0^T {\frac{{{\partial ^3}\nu \left( {0, t} \right)}}{{\partial {t^2}\partial x}}} \frac{{{\partial ^3}u\left( {0, t} \right)}}{{\partial {t^2}\partial x}}dt \hfill \\ \quad \quad \quad \quad \ \;\, + \int_0^T {\int_0^L {\frac{{{\partial ^5}\nu \left( {x, t} \right)}}{{\partial {x^3}\partial {t^2}}}\frac{{{\partial ^5}u\left( {x, t} \right)}}{{\partial {x^3}\partial {t^2}}}dxdt} } , \hfill \end{array} (2.8)

    with reference to [38], W\left(D \right) is an RK space, and its RK is

    K\left( {x, \varsigma , t, \tau } \right) = K1\left( {t, \tau } \right)K2\left( {x, \varsigma } \right). (2.9)

    Here, K1\left({ \cdot, \cdot } \right) and K2\left({ \cdot, \cdot } \right) are respectively shown by (2.4) and (2.5).

    Similarly, \tilde W\left(D \right) is an RK space, and its RK is

    \tilde K\left( {x, \varsigma , t, \tau } \right) = K3\left( {t, \tau } \right)K3\left( {x, \varsigma } \right). (2.10)

    Here, K3\left({ \cdot, \cdot } \right) is given by (2.6).

    The series form for the numerical solution of Eqs (1.4) and (1.5) and its implementation in the RK space W\left(D \right) are given in this section.

    In (1.4) and (1.5), L:W\left(D \right) \to \tilde W\left(D \right) is a linear bounded operator because F\left(x, t\right), c\left({x, t} \right) and d\left({x, t} \right) are smooth enough. A countable dense subset {\left\{ {\left({{x_l}, {t_l}} \right)} \right\}_{l \in \mathbb{N}}} \subset D is chosen. Put {\varphi _l}(x, t) = \tilde K\left({x, {x_l}, t, {t_l}} \right) and {\phi _l}(x, t) = {L^ * }{\varphi _l}(x, t). Here \tilde K is the RK for \tilde W\left(D \right), {L^ * } is the adjoint operator for L . Define

    \begin{array}{l} {\phi _l}\left( {x, t} \right) = {L_{\left( {\varsigma , \tau } \right)}}{\left. {K\left( {x, \varsigma , t, \tau } \right)} \right|_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}} \hfill \\ \ \ \ \ \ \ \ \ \ \ \ \ = {\left. {\left( {\frac{{\partial K\left( {x, \varsigma , t, \tau } \right)}}{{\partial \tau }} - c\left( {\varsigma , \tau } \right)\frac{{\partial K\left( {x, \varsigma , t, \tau } \right)}}{{\partial \varsigma }} - d\left( {\varsigma , \tau } \right)\frac{{{\partial ^\alpha }K\left( {x, \varsigma , t, \tau } \right)}}{{\partial {\varsigma ^\alpha }}}} \right)} \right|_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}}, \ \ l \in \mathbb{N}. \hfill \end{array} (3.1)

    Here, K\left({x, \varsigma, t, \tau } \right) is the RK in W\left(D \right) , denoted by (2.9).

    Theorem 3.1. If D is closed, then {\varphi }_{l}\in W\left(D\right), l\in \mathbb{N}.

    Proof: By Definition 2.4, it is first shown that \partial _{{x^3}{t^2}}^5{\phi _l} \in {L^2}\left(D \right) and that \partial _{{x^2}t}^3{\phi _l} is absolutely continuous in D .

    From (2.9) and (3.1),

    \begin{array}{l} {\phi _l}\left( {x, t} \right) = K2\left( {x, {x_l}} \right){\left. {{\partial _\tau }K1\left( {t, \tau } \right)} \right|_{\tau = {t_l}}} - c\left( {{x_l}, {t_l}} \right)K1\left( {t, {t_l}} \right){\left. {{\partial _\varsigma }K2\left( {x, \varsigma } \right)} \right|_{\varsigma = {x_l}}} \hfill \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - d\left( {{x_l}, {t_l}} \right)\frac{{K1\left( {t, {t_l}} \right)}}{{\Gamma \left( {2 - \alpha } \right)}}\int_0^{{x_l}} {\frac{{\partial _{{\varsigma ^2}}^2K2\left( {x, \varsigma } \right)}}{{{{\left( {{x_l} - \varsigma } \right)}^{\alpha - 1}}}}} d\varsigma . \hfill \end{array} (3.2)

    Then,

    \begin{array}{l} \left| {\partial _{{x^3}{t^2}}^5{\phi _l}\left( {x, t} \right)} \right| = \left| {\partial _{{x^3}}^3K2\left( {x, {x_l}} \right){{\left. {\partial _{\tau {t^2}}^3K1\left( {t, \tau } \right)} \right|}_{\tau = {t_l}}} - c\left( {{x_l}, {t_l}} \right)\partial _{{t^2}}^2K1\left( {t, {t_l}} \right){{\left. {\partial _{\varsigma {x^3}}^4K2\left( {x, \varsigma } \right)} \right|}_{\varsigma = {x_l}}}} \right. \hfill \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left. { - d\left( {{x_l}, {t_l}} \right)\frac{{\partial _{{t^2}}^2K1\left( {t, {t_l}} \right)}}{{\Gamma \left( {2 - \alpha } \right)}}\int_0^{{x_l}} {\frac{{\partial _{{\varsigma ^2}{x^3}}^5K2\left( {x, \varsigma } \right)}}{{{{\left( {{x_l} - \varsigma } \right)}^{\alpha - 1}}}}} d\varsigma } \right|. \hfill \end{array} (3.3)

    In view of the Definitions 2.1 and 2.2 and expressions (2.4) and (2.5) of K1\left({t, \tau } \right) and K2\left({x, \varsigma } \right) , there are normal numbers {N_1} , {N_2} , and {N_3} such that

    \begin{array}{c} \left| {\partial _{{x^3}}^3K2\left( {x, {x_l}} \right){{\left. {\partial _{\tau {t^2}}^3K1\left( {t, \tau } \right)} \right|}_{\tau = {t_l}}}} \right| \leqslant {N_1}, \\ \left| {c\left( {{x_l}, {t_l}} \right)\partial _{{t^2}}^2K1\left( {t, {t_l}} \right){{\left. {\partial _{\varsigma {x^3}}^4K2\left( {x, \varsigma } \right)} \right|}_{\varsigma = {x_l}}}} \right| \leqslant {N_2}, \\ \left| {\frac{{d\left( {{x_l}, {t_l}} \right)\partial _{{t^2}}^2K1\left( {t, {t_l}} \right)\partial _{{\varsigma ^2}{x^3}}^5K2\left( {x, \varsigma } \right)}}{{\Gamma \left( {2 - \alpha } \right)}}} \right| \leqslant {N_3}, \end{array} (3.4)

    for (x, t) \in D and \tau \in [0, T]. Thus,

    \begin{array}{l} \left| {\partial _{{x^3}{t^2}}^5{\phi _l}\left( {x, t} \right)} \right| \leqslant {N_1} + {N_2} + {N_3}\int_0^{{x_l}} {{{\left( {{x_l} - \varsigma } \right)}^{1 - \alpha }}} d\varsigma \hfill \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \, \, \leqslant {N_1} + {N_2} + \frac{{{N_4}}}{{2 - \alpha }}, \hfill \end{array} (3.5)

    where {N_4} is a normal number. Thus, \partial _{{x^3}{t^2}}^5{\phi _l} \in {L^2}\left(D \right). Since D is closed, \partial _{{x^2}t}^3{\phi _l} is absolutely continuous in D .

    Then, it is proved that {\phi _l}(x, t) satisfies (1.5). Note that K1\left({t, \tau } \right) \in {W_1}\left[{0, T} \right] with respect to \tau \in [0, T], K2\left({x, \varsigma } \right) \in {W_2}\left[{0, L} \right] with respect to \varsigma \in [0, L], and \partial _{{\varsigma ^2}}^2K2\left({L, \varsigma } \right) = 0, \partial _{{\varsigma ^2}}^2K2\left({0, \varsigma } \right) = 0, {\partial _\tau }K1\left({0, \tau } \right) = 0, K2\left({L, \varsigma } \right) = 0, K2\left({0, \varsigma } \right) = 0, K1\left({0, \tau } \right) = 0.

    By (3.2), {\phi _l}\left({x, 0} \right) = 0 , {\phi _l}\left({0, t} \right) = 0 , {\phi _l}\left({L, t} \right) = 0, l \in \mathbb{N} .

    Therefore, {\varphi }_{l}\in W(D), l\in \mathbb{N} by Definition 2.4.

    The proof methods for the following theorems are similar to those of [43,46].

    Theorem 3.2. Assume the uniqueness of Eqs (1.4) and (1.5). Then in W(D), system {\left\{ {{\phi _l}} \right\}_{l \in \mathbb{N}}} is complete.

    Proof: By Theorem 3.1, {\varphi }_{l}\in W(D), l\in \mathbb{N}. For each u \in W(D) , set {\left\langle {{\phi _l}, u} \right\rangle _{W(D)}} = 0, \; \; l \in \mathbb{N}, which means that

    \begin{array}{l} \;\;\, {\kern 1pt} {\left\langle {{{\left. {{L_{\left( {\varsigma , \tau } \right)}}K\left( {x, \varsigma , t, \tau } \right)} \right|}_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}}, u(x, t)} \right\rangle _{W(D)}} = \;{\left. {{{\left\langle {{L_{\left( {\varsigma , \tau } \right)}}K\left( {x, \varsigma , t, \tau } \right), u(x, t)} \right\rangle }_{W(D)}}} \right|_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}} \hfill \\ = {\left. {\left( {{L_{\left( {\varsigma , \tau } \right)}}{{\left\langle {K\left( {x, \varsigma , t, \tau } \right), u(x, t)} \right\rangle }_{W(D)}}} \right)} \right|_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}} = {\left. {\left( {Lu(\varsigma , \tau )} \right)} \right|_{\left( {\varsigma , \tau } \right) = \left( {{x_l}, {t_l}} \right)}} = Lu({x_l}, {t_l}) = 0. \hfill \end{array} (3.6)

    In D, Lu(x, t) = 0 because {\left\{ {\left({{x_l}, {t_l}} \right)} \right\}_{l \in \mathbb{N}}} is dense. Because of the uniqueness for Eqs (1.4) and (1.5), u(x, t) \equiv 0.

    The orthonormal system {\left\{ {{{\bar \phi }_l}} \right\}_{l \in \mathbb{N}}} in W(D) can be obtained by the GSO process of {\left\{ {{\phi _l}} \right\}_{l \in \mathbb{N}}},

    {\bar \phi _l}\left( {x, t} \right) = \sum\limits_{j = 1}^l {{\lambda _{lj}}{\phi _j}\left( {x, t} \right), \ \ } {\lambda _{ll}} > 0, \ \ l \in \mathbb{N}. (3.7)

    Theorem 3.3. In W(D), the unique solution for Eqs (1.4) and (1.5) is represented by

    u\left( {x, t} \right) = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } . (3.8)

    Proof: In W(D), u\left({x, t} \right) is expanded to a Fourier series by the orthonormal basis {\bar \phi _l}\left({x, t} \right) :

    \begin{array}{l} u\left( {x, t} \right) = \sum\limits_{l = 1}^\infty {{{\left\langle {{{\bar \phi }_l}\left( {x, t} \right), u\left( {x, t} \right)} \right\rangle }_{W(D)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {{{\left\langle {\sum\limits_{j = 1}^l {{\lambda _{lj}}{\phi _j}\left( {x, t} \right), u\left( {x, t} \right)} } \right\rangle }_{W(D)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} {{\left\langle {{L_{\left( {\varsigma , \tau } \right)}}{{\left. {K\left( {x, \varsigma , t, \tau } \right)} \right|}_{\left( {\varsigma , \tau } \right) = \left( {{x_j}, {t_j}} \right)}}, u\left( {x, t} \right)} \right\rangle }_{W(D)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} {{\left. {{{\left\langle {{L_{\left( {\varsigma , \tau } \right)}}K\left( {x, \varsigma , t, \tau } \right), u\left( {x, t} \right)} \right\rangle }_{W(D)}}} \right|}_{\left( {\varsigma , \tau } \right) = \left( {{x_j}, {t_j}} \right)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} {L_{\left( {\varsigma , \tau } \right)}}{{\left. {{{\left\langle {K\left( {x, \varsigma , t, \tau } \right), u\left( {x, t} \right)} \right\rangle }_{W(D)}}} \right|}_{\left( {\varsigma , \tau } \right) = \left( {{x_j}, {t_j}} \right)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} {{\left. {\left( {Lu\left( {\varsigma , \tau } \right)} \right)} \right|}_{\left( {\varsigma , \tau } \right) = \left( {{x_j}, {t_j}} \right)}}{{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} Lu\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} \hfill \\ \quad \quad \ \;\;\, = \sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}} F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} .\; \hfill \end{array} (3.9)

    Thus, the approximate solution {u_n}\left({x, t} \right) is acquired by

    {u_n}\left( {x, t} \right) = \sum\limits_{l = 1}^n {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } . (3.10)

    Theorem 3.4. Suppose u is the exact solution to (1.4) and (1.5), {u_n} = {P_n}u, in which {P_n} is the orthogonal projection of W\left(D \right) to Span{\left\{ {{{\bar \phi }_l}} \right\}_{l \in \mathbb{N}}}, then

    L{u_n}\left( {{x_l}, {t_l}} \right) = F\left( {{x_l}, {t_l}} \right), \ \ l = 1, 2, ..., n. (3.11)

    Proof:

    \begin{array}{l} L{u_n}\left( {{x_l}, {t_l}} \right) = \left\langle {L{u_n}, {\varphi _l}} \right\rangle = \left\langle {{u_n}, {L^ * }{\varphi _l}} \right\rangle = \left\langle {{P_n}u, {\phi _l}} \right\rangle \hfill \\ \quad \quad \quad \quad \ \, {\kern 1pt} = \left\langle {u, {P_n}{\phi _l}} \right\rangle = \left\langle {u, {\phi _l}} \right\rangle = \left\langle {Lu, {\varphi _l}} \right\rangle = Lu\left( {{x_l}, {t_l}} \right) = F\left( {{x_l}, {t_l}} \right), \ \ l = 1, 2, ..., n.\; \hfill \end{array} (3.12)

    From (3.7) and (3.10),

    {u_n}\left( {x, t} \right) = \sum\limits_{l = 1}^n {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } = \sum\limits_{l = 1}^n {\sum\limits_{j = 1}^l {\sum\limits_{k = 1}^l {{\lambda _{lj}}{\lambda _{lk}}F\left( {{x_j}, {t_j}} \right){\phi _k}\left( {x, t} \right)} } } . (3.13)

    Let {\overline C _l} = \mathop \sum \limits_{j = 1}^l {\lambda _{lj}}F\left({{x_j}, {t_j}} \right). Then,

    \begin{array}{l} {u_n} = \mathop \sum \limits_{l = 1}^n \mathop \sum \limits_{k = 1}^l {\lambda _{lk}}{\phi _k}{\overline C _l} \hfill \\ \quad {\kern 1pt} = {\phi _1}{\lambda _{11}}{\overline C _1} + {\phi _1}{\lambda _{21}}{\overline C _2} + {\phi _2}{\lambda _{22}}{\overline C _2} + {\phi _1}{\lambda _{31}}{\overline C _3} + {\phi _2}{\lambda _{32}}{\overline C _3} + {\phi _3}{\lambda _{33}}{\overline C _3} \hfill \\ \quad \;\;\, {\kern 1pt} + \cdots + {\phi _1}{\lambda _{n1}}{\overline C _n} + {\phi _2}{\lambda _{n2}}{\overline C _n} + {\phi _3}{\lambda _{n3}}{\overline C _n} + \cdots + {\phi _n}{\lambda _{nn}}{\overline C _n} \hfill \\ \quad = \mathop \sum \limits_{l = 1}^n {\phi _l}\left( {\mathop \sum \limits_{k = l}^n {\lambda _{kl}}{{\overline C }_k}} \right) = \mathop \sum \limits_{l = 1}^n {\phi _l}\left( {\mathop \sum \limits_{k = l}^n {\lambda _{kl}}\mathop \sum \limits_{j = 1}^k {\lambda _{kj}}F({x_j}, {t_j})} \right) = \mathop \sum \limits_{l = 1}^n {\phi _l}{C_l}, \hfill \end{array} (3.14)

    where {C_l} = \sum\limits_{k = l}^n {{\lambda _{kl}}} \sum\limits_{j = 1}^k {{\lambda _{kj}}F\left({{x_j}, {t_j}} \right)}.

    According to Theorem 3.4,

    L{u_n}({x_j}, {t_j}) = \mathop \sum \limits_{l = 1}^n {C_l}L{\phi _l}\left( {{x_j}, {t_j}} \right) = F\left( {{x_j}, {t_j}} \right), \quad j = 1, 2, \cdots , n, (3.15)

    where functions L, \; F and {\phi _l} are defined in (1.4) and (3.1), respectively.

    In short, the main steps of the approach presented in this article are as follows:

    1) From Eq (3.15), {C_l}, {\text{ }}l = 1, 2, ..., n can be obtained.

    2) By substituting the above {C_l}, {\text{ }}l = 1, 2, ..., n into Eq (3.14), the numerical solution of Eqs (1.4) and (1.5) can be obtained.

    The above calculation steps show that the current numerical algorithm bypasses the GSO procedure used in [31] (the GSO step is required only for proof, not for numerical calculations) Therefore, compared with [31], this method has higher precision and less computation time [43,46]. This approach can solve some model problems efficiently and can obtain the global approximate solution with high precision.

    {u_n}\left({x, t} \right) and u\left({x, t} \right) are respectively approximate and exact solutions to Eqs (1.4) and (1.5). Set {\left\| u \right\|_C} \triangleq \mathop {\max }\limits_{\left({x, t} \right) \in D} \left| {u\left({x, t} \right)} \right|. Similar to [43], the coming theorem can be found.

    Theorem 4.1. Suppose u \in W\left(D \right) . Then,

    1) {\left\| {u - {u_n}} \right\|_{W\left(D \right)}} \to 0, n \to \infty . Furthermore, {\left\| {u - {u_n}} \right\|_{W\left(D \right)}} decreases monotonously with n .

    2) {\left\| {\frac{{{\partial ^{i + k}}u}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}}}{{\partial {x^i}{t^k}}}} \right\|_C} \to 0 , n \to \infty ; k = 0, 1 ; i = 0, 1, 2 ; i + k = 0, 1, 2.

    Proof: 1) From (3.8) and (3.10),

    \begin{array}{l} {\left\| {u - {u_n}} \right\|_{W(D)}} = {\left\| {\sum\limits_{l = 1}^\infty {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } - \sum\limits_{l = 1}^n {\sum\limits_{j = 1}^l {{\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\bar \phi }_l}\left( {x, t} \right)} } } \right\|_{_{W(D)}}} \hfill \\ \quad \quad \quad \quad \ \ \ \ \, \, {\kern 1pt} \, = {\left\| {\mathop \sum \limits_{l = n + 1}^\infty \mathop \sum \limits_{j = 1}^l {\lambda _{lj}}F\left( {{x_j}, {t_j}} \right){{\overline \phi }_l}\left( {x, t} \right)} \right\|_{_{W(D)}}}. \hfill \end{array} (4.1)

    Thus,

    {\left\| {u - {u_n}} \right\|_{W(D)}} \to 0, \quad n \to \infty . (4.2)

    Furthermore,

    \begin{array}{l} \left\| {u - {u_n}} \right\|_{W(D)}^2 = \left\| {\mathop \sum \limits_{l = n + 1}^\infty \mathop \sum \limits_{j = 1}^l {\lambda _{lj}}{{\overline \phi }_l}\left( {x, t} \right)F\left( {{x_j}, {t_j}} \right)} \right\|_{W(D)}^2 \hfill \\ \quad \quad \quad \quad \ \ \ \ \;\;{\kern 1pt} = \mathop \sum \limits_{l = n + 1}^\infty {\left( {\mathop \sum \limits_{j = 1}^l {\lambda _{lj}}F\left( {{x_j}, {t_j}} \right)} \right)^2}. \hfill \end{array} (4.3)

    Clearly, {\left\| {u - {u_n}} \right\|_{W(D)}} decreases monotonically with n.

    2) With reference to the properties of RK K\left({x, \varsigma, t, \tau } \right) in [44],

    \frac{{{\partial ^{i + k}}u(x, t)}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}(x, t)}}{{\partial {x^i}\partial {t^k}}} = \left\langle {u(\varsigma , \tau ) - {u_n}(\varsigma , \tau ), \frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\rangle , (4.4)

    According to (2.9), Definitions 2.1 and 2.2, and expressions (2.4) and (2.5) of K1\left({t, \tau } \right) and K2\left({x, \varsigma } \right) , there are normal numbers {C_l}, \; l = 1, 2, \cdots, 5 such that

    {\left\| {\frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\|_{W(D)}} \leqslant {C_l}. (4.5)

    To all (x, t) \in D,

    \begin{array}{l} \left| {\frac{{{\partial ^{i + k}}u(x, t)}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}(x, t)}}{{\partial {x^i}\partial {t^k}}}} \right| = \left| {\left\langle {u(\varsigma , \tau ) - {u_n}(\varsigma , \tau ), \frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\rangle } \right| \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;{\kern 1pt} \leqslant {\left\| {u - {u_n}} \right\|_{W(D)}}{\left\| {\frac{{{\partial ^{i + k}}K(x, \varsigma , t, \tau )}}{{\partial {x^i}\partial {t^k}}}} \right\|_{W(D)}} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \;\;\;{\kern 1pt} \leqslant {C_l}{\left\| {u - {u_n}} \right\|_{W(D)}}.\quad \quad \hfill \end{array} (4.6)

    Hence,

    {\left\| {\frac{{{\partial ^{i + k}}u}}{{\partial {x^i}\partial {t^k}}} - \frac{{{\partial ^{i + k}}{u_n}}}{{\partial {x^i}\partial {t^k}}}} \right\|_C} \to 0, n \to \infty ;k = 0, 1;i = 0, 1, 2;i + k = 0, 1, 2. (4.7)

    Numerical experiments verify the effectiveness and reliability for the presented approach in this section. All numerical calculations were performed using Mathematica 13.0 software. D is separated into {m_1} \times {m_2} grids with steps 1/{m_1} and 1/{m_2} in the x and t directions. Here, {m_1}, {m_2} \in \mathbb{N}.

    Example 5.1. Consider Eqs (1.1) and (1.2) under the following conditions [30]:

    \left\{ \begin{array}{l} c\left( {x, t} \right) = 0, {\text{ }}d\left( {x, t} \right) = \Gamma \left( {3 - \alpha } \right){x^\alpha }/2, \hfill \\ u\left( {1, t} \right) = \cos \left( { - t} \right), \ \ u\left( {0, t} \right) = 0, \ \ u\left( {x, 0} \right) = {x^2}, \hfill \\ f\left( {x, t} \right) = \sin \left( { - t} \right){x^2} - \cos \left( { - t} \right){x^2}. \hfill \end{array} \right. (5.1)

    The exact solution is

    u\left( {x, t} \right) = {x^2}\cos \left( { - t} \right). (5.2)

    According to steps 1) and 2) in Section 3, 50 \times 50 points that are the same as [30] are selected on D , the absolute errors of the proposed method and [30] are shown in Tables 13. As can be seen from the tables, the accuracy for the proposed approach is high, and the results obtained using the proposed approach are better than [30].

    Table 1.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.2 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.214500E-6 8.19791E-7 1.264265E-4 2.66663E-6 6.186622E-4 3.99230E-6
    0.4 1.683760E-5 9.79366E-7 5.044576E-4 3.58987E-6 2.424003E-3 5.75924E-6
    0.6 3.786940E-5 7.15178E-7 1.125615E-3 3.25967E-6 4.742281E-3 6.25942E-6
    0.8 6.729740E-5 3.11357E-7 1.797010E-3 2.09928E-6 6.271795E-3 5.01380E-6
    1.0 9.311570E-5 0 2.060472E-3 0 6.707507E-3 0

     | Show Table
    DownLoad: CSV
    Table 2.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.4 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.212000E-6 1.14526E-6 1.262725E-4 2.44965E-6 6.147080E-4 2.67096E-6
    0.4 1.683260E-5 1.39628E-6 5.030643E-4 3.03668E-6 2.256320E-3 3.47873E-6
    0.6 3.786180E-5 1.04843E-6 1.081010E-3 2.45192E-6 4.044128E-3 3.71983E-6
    0.8 6.703560E-5 4.65691E-7 1.614415E-3 1.38966E-6 5.201407E-3 2.99390E-6
    1.0 8.856190E-5 0 1.817044E-3 0 5.555100E-3 0

     | Show Table
    DownLoad: CSV
    Table 3.  Absolute errors with the proposed method (PM) and [30] for {m_1} = {m_2} = 50 and \alpha = 1.6 in Example 5.1.
    x t = 0.1 t = 0.5 t = 1.0
    [30] PM [30] PM [30] PM
    0.2 4.209500E-6 1.98759E-6 1.260839E-4 1.71001E-6 5.968458E-4 3.74175E-6
    0.4 1.682760E-5 2.56234E-6 4.941251E-4 2.03502E-6 2.000868E-3 6.47819E-6
    0.6 3.784650E-5 2.08248E-6 1.002314E-3 2.08562E-6 3.397228E-3 6.72774E-6
    0.8 6.588950E-5 1.00788E-6 1.430260E-3 1.62926E-6 4.305544E-3 4.38889E-6
    1.0 8.337810E-5 0 1.590903E-3 0 4.595036E-3 0

     | Show Table
    DownLoad: CSV

    Subsequently, root-mean-square errors for u\left({x, t} \right) are given in Table 4, which verifies that the proposed method can achieve a smaller error with a larger step size, and the accuracy increases with the decrease of step size.

    Table 4.  Root-mean-square errors for u\left({x, t} \right) with the proposed method in Example 5.1.
    {m_1} \times {m_2} \alpha = 1.2 \alpha = 1.4 \alpha = 1.6
    5 \times 5 2.96508E-5 5.79045E-5 1.42992E-4
    10 \times 10 1.09202E-5 1.60912E-5 3.68855E-5
    20 \times 20 3.95733E-6 4.67874E-6 9.92730E-6
    30 \times 30 1.97875E-6 2.20781E-6 4.38702E-6
    40 \times 40 1.24741E-6 1.06673E-6 2.40257E-6

     | Show Table
    DownLoad: CSV

    In addition, errors \left| {u - {u_{20 \times 20}}} \right|, \left| {u - {u_{30 \times 30}}} \right|, \left| {u - {u_{40 \times 40}}} \right|:\alpha = 1.2, \alpha = 1.4, \alpha = 1.6 are shown in Figures 13, respectively, which proves that the presented approach provides high-precision global approximate solutions.

    Figure 1.  Errors \left| {u - {u_{20 \times 20}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.
    Figure 2.  Errors \left| {u - {u_{30 \times 30}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.
    Figure 3.  Errors \left| {u - {u_{40 \times 40}}} \right|: \alpha = 1.2, \alpha = 1.4, \alpha = 1.6 in Example 5.1.

    The approach proposed in this paper is successfully applied to space FDEs. Based on RK space, this method improves the method [31,45], avoids the GSO process [31], and obtains a simpler RK than [45]. This approach can improve accuracy and greatly reduce run time. Numerical results verify that the approach has high computational accuracy, and the error to the approximate solution tends to monotonously decrease. According to [46], in which the RK method is extended from one-dimensional to two-dimensional, the proposed approach in this paper is applicable to two-dimensional FDEs, which will be discussed in a later article.

    Boyu Liu: conceptualization, formal analysis, software, writing-original draft preparation; Wenyan Wang: conceptualization, methodology, validation, reviewing and editing, funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors thank the anonymous reviewers and the members of the management editorial board for their valuable comments. This study was funded by Fundamental Research Funds for the Central Universities of China (No. 2572023DJ05), Innovative Training Plan Program for College Students funded by Northeast Forestry University (No. 202410225451) and National Nature Science Foundation of China (No. 11401086).

    All authors declare no conflicts of interest in this paper.



    [1] T. Alodat, Q. T. L. Gia, I. H. Sloan, On approximation for time-fractional stochastic diffusion equations on the unit sphere, J. Comput. Appl. Math., 446 (2024), 115863. https://doi.org/10.1016/j.cam.2024.115863 doi: 10.1016/j.cam.2024.115863
    [2] N. Ullah, M. I. Asjad, J. Awrejcewicz, T. Muhammad, D. Baleanu, On soliton solutions of fractional-order nonlinear model appears in physical sciences, AIMS Mathematics, 7 (2022), 7421–7440. https://doi.org/10.3934/math.2022415 doi: 10.3934/math.2022415
    [3] K. Manikandan, N. Serikbayev, D. Aravinthan, K. Hosseini, Solitary wave solutions of the conformable space-time fractional coupled diffusion equation, Partial Differential Equations in Applied Mathematics, 9 (2024), 100630. https://doi.org/10.1016/j.padiff.2024.100630 doi: 10.1016/j.padiff.2024.100630
    [4] Shyamsunder, S. Bhatter, K. Jangid, S. D. Purohit, Fractionalized mathematical models for drug diffusion, Chaos Soliton. Fract., 165 (2022), 112810. https://doi.org/10.1016/j.chaos.2022.112810 doi: 10.1016/j.chaos.2022.112810
    [5] L. W. Sun, H. Qiu, C. H. Wu, J. Niu, B. X. Hu, A review of applications of fractional advection-dispersion equations for anomalous solute transport in surface and subsurface water, WIREs Water, 7 (2020), e1448. https://doi.org/10.1002/wat2.1448 doi: 10.1002/wat2.1448
    [6] A. P. Jayaraj, K. N. Gounder, J. Rajagopal, Optimizing signal smoothing using HERS algorithm and time fractional diffusion equation, Expert Syst. Appl., 238 (2024), 122250. https://doi.org/10.1016/j.eswa.2023.122250 doi: 10.1016/j.eswa.2023.122250
    [7] W. D. Xue, F. Q. Zhao, Haze image enhancement based on space fractional-order partial differential equation, Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 2017, 104202N. https://doi.org/10.1117/12.2281752
    [8] S. D. Oloniiju, S. P. Goqo, P. Sibanda, A pseudo-spectral method for time distributed order two-sided space fractional differential equations, Taiwanese J. Math., 25 (2021), 959–979. https://doi.org/10.11650/tjm/210501 doi: 10.11650/tjm/210501
    [9] Z. Q. Ding, A. G. Xiao, M. Li, Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math., 233 (2010), 1905–1914. https://doi.org/10.1016/j.cam.2009.09.027 doi: 10.1016/j.cam.2009.09.027
    [10] J. J. Liu, M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89 (2010), 1769–1788. https://doi.org/10.1080/00036810903479731 doi: 10.1080/00036810903479731
    [11] X. Xu, J. Cheng, M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355–1371. https://doi.org/10.1080/00036811.2010.507199 doi: 10.1080/00036811.2010.507199
    [12] Y. Zhang, X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Probl., 27 (2011), 035010. https://doi.org/10.1088/0266-5611/27/3/035010 doi: 10.1088/0266-5611/27/3/035010
    [13] H. G. Fan, J. H. Tang, K. B. Shi, Y. Zhao, Hybrid impulsive feedback control for drive–response synchronization of fractional-order multi-link memristive neural networks with multi-delays, Fractal Fract., 7 (2023), 495. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495
    [14] H. G. Fan, Y. Rao, K. B. Shi, H. Wen, Global synchronization of fractional-order multi-delay coupled neural networks with multi-link complicated structures via hybrid impulsive control, Mathematics, 11 (2023), 3051. https://doi.org/10.3390/math11143051 doi: 10.3390/math11143051
    [15] H. Y. Yuan, Q. X. Zhu, Some stabilities of stochastic differential equations with delay in the G-framework and Euler–Maruyama method, J. Comput. Appl. Math., 446 (2024), 115856. https://doi.org/10.1016/j.cam.2024.115856 doi: 10.1016/j.cam.2024.115856
    [16] H. Y. Yuan, Q. X. Zhu, Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques, Chaos Soliton. Fract., 183 (2024), 114920. https://doi.org/10.1016/j.chaos.2024.114920 doi: 10.1016/j.chaos.2024.114920
    [17] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl., 59 (2010), 1766–1772. https://doi.org/10.1016/j.camwa.2009.08.015 doi: 10.1016/j.camwa.2009.08.015
    [18] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
    [19] J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Probl., 25 (2009), 115002. https://doi.org/10.1088/0266-5611/25/11/115002 doi: 10.1088/0266-5611/25/11/115002
    [20] G. D. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng, 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [21] J. Wen, Y. P. Wang, Y. X. Wang, Y. Q. Wang, The quasi-reversibility regularization method for backward problem of the multi-term time-space fractional diffusion equation, Commun. Nonlinear Sci., 131 (2024), 107848. https://doi.org/10.1016/j.cnsns.2024.107848 doi: 10.1016/j.cnsns.2024.107848
    [22] Y. B. Jiang, H. Chen, T. Sun, C. B. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609
    [23] S. Arshad, I. Saleem, A. Akgül, J. F. Huang, Y. F. Tang, S. M. Eldin, A novel numerical method for solving the Caputo-Fabrizio fractional differential equation, AIMS Mathematics, 8 (2023), 9535–9556. https://doi.org/10.3934/math.2023481 doi: 10.3934/math.2023481
    [24] I. Talib, M. N. Alam, D. Baleanu, D. Zaidi, A. Marriyam, A new integral operational matrix with applications to multi-order fractional differential equations, AIMS Mathematics, 6 (2021), 8742–8771. https://doi.org/10.3934/math.2021508 doi: 10.3934/math.2021508
    [25] M. H. Heydari, S. Zhagharian, M. Razzaghi, Jacobi polynomials for the numerical solution of multi-dimensional stochastic multi-order time fractional diffusion-wave equations, Comput. Math. Appl., 152 (2023), 91–101. https://doi.org/10.1016/j.camwa.2023.10.010 doi: 10.1016/j.camwa.2023.10.010
    [26] A. Qazza, R. Saadeh, E. Salah, Solving fractional partial differential equations via a new scheme, AIMS Mathematics, 8 (2023), 5318–5337. https://doi.org/10.3934/math.2023267 doi: 10.3934/math.2023267
    [27] M. S. Hashemi, M. Mirzazadeh, M. Bayram, S. M. E. Din, Numerical approximation of the Cauchy non-homogeneous time-fractional diffusion-wave equation with Caputo derivative using shifted Chebyshev polynomials, Alex. Eng. J., 81 (2023), 118–129. https://doi.org/10.1016/j.aej.2023.09.010 doi: 10.1016/j.aej.2023.09.010
    [28] N. Peykrayegan, M. Ghovatmand, M. H. N. Skandari, D. Baleanu, An approximate approach for fractional singular delay integro-differential equations, AIMS Mathematics, 7 (2022), 9156–9171. https://doi.org/10.3934/math.2022507 doi: 10.3934/math.2022507
    [29] M. Turkyilmazoglu, An efficient computational method for differential equations of fractional type, CMES-Comp. Model. Eng., 133 (2022), 47–65. https://doi.org/10.32604/cmes.2022.020781 doi: 10.32604/cmes.2022.020781
    [30] R. Shikrani, M. S. Hashmi, N. Khan, A. Ghaffar, K. S. Nisar, J. Singh, et al., An efficient numerical approach for space fractional partial differential equations, Alex. Eng. J., 59 (2020), 2911–2919. https://doi.org/10.1016/j.aej.2020.02.036 doi: 10.1016/j.aej.2020.02.036
    [31] W. Jiang, Y. Z. Lin, Approximate solution of the fractional advection–dispersion equation, Comput. Phys. Commun., 181 (2010), 557–561. https://doi.org/10.1016/j.cpc.2009.11.004 doi: 10.1016/j.cpc.2009.11.004
    [32] B. Chen, S. Coppieters, Meshfree digital image correlation using reproducing kernel particle method and its degenerate derivations, Measurement, 226 (2024), 114112. https://doi.org/10.1016/j.measurement.2023.114112 doi: 10.1016/j.measurement.2023.114112
    [33] M. G. Cui, Z. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Anal.-Real, 8 (2007), 1096–1112. https://doi.org/10.1016/j.nonrwa.2006.06.004 doi: 10.1016/j.nonrwa.2006.06.004
    [34] A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858–863. https://doi.org/10.1080/16583655.2019.1651988 doi: 10.1080/16583655.2019.1651988
    [35] W. Themistoclakis, M. V. Barel, A new kernel method for the uniform approximation in reproducing kernel Hilbert spaces, Appl. Math. Lett., 153 (2024), 109052. https://doi.org/10.1016/j.aml.2024.109052 doi: 10.1016/j.aml.2024.109052
    [36] J. Zhang, J. J. Hou, J. Niu, R. F. Xie, X. F. Dai, A high order approach for nonlinear Volterra-Hammerstein integral equations, AIMS Mathematics, 7 (2022), 1460–1469. https://doi.org/10.3934/math.2022086 doi: 10.3934/math.2022086
    [37] H. Du, G. L. Zhao, C. Y. Zhao, Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity, J. Comput. Appl. Math., 255 (2014), 122–132. https://doi.org/10.1016/j.cam.2013.04.006 doi: 10.1016/j.cam.2013.04.006
    [38] A. Alvandi, M. Paripour, The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel, Appl. Math. Comput., 355 (2019), 151–160. https://doi.org/10.1016/j.amc.2019.02.023 doi: 10.1016/j.amc.2019.02.023
    [39] N. Attia, A. Akgül, D. Seba, A. Nour, M. B. Riaz, Reproducing kernel Hilbert space method for solving fractal fractional differential equations, Results Phys., 35 (2022), 105225. https://doi.org/10.1016/j.rinp.2022.105225 doi: 10.1016/j.rinp.2022.105225
    [40] Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Mathematics, 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716
    [41] X. Y. Li, B. Y. Wu, Reproducing kernel functions-based meshless method for variable order fractional advection-diffusion-reaction equations, Alex. Eng. J., 59 (2020), 3181–3186. https://doi.org/10.1016/j.aej.2020.07.034 doi: 10.1016/j.aej.2020.07.034
    [42] O. Saldlr, M. G. Sakar, F. Erdogan, Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate, Comp. Appl. Math., 38 (2019), 198. https://doi.org/10.1007/s40314-019-0979-1 doi: 10.1007/s40314-019-0979-1
    [43] W. Y. Wang, B. Han, M. Yamamoto, Inverse heat problem of determining time-dependent source parameter in reproducing kernel space, Nonlinear Anal.-Real, 14 (2013), 875–887. https://doi.org/10.1016/j.nonrwa.2012.08.009 doi: 10.1016/j.nonrwa.2012.08.009
    [44] M. G. Cui, Y. Z. Lin, Nonlinear numerical analysis in reproducing kernel space, New York: Nova Science Publishers, 2009.
    [45] M. G. Cui, F. Z. Geng, A computational method for solving one-dimensional variable-coeffificient Burgers equation, Appl. Math. Comput., 188 (2007), 1389–1401. https://doi.org/10.1016/j.amc.2006.11.005 doi: 10.1016/j.amc.2006.11.005
    [46] W. Y. Wang, M. Yamamoto, B. Han, Two-dimensional parabolic inverse source problem with final overdetermination in reproducing kernel space, Chin. Ann. Math. Ser. B, 35 (2014), 469–482. https://doi.org/10.1007/s11401-014-0831-2 doi: 10.1007/s11401-014-0831-2
    [47] W. Y. Wang, M. G. Cui, B. Han, A new method for solving a class of singular two-point boundary value problems, Appl. Math. Comput., 206 (2008), 721–727. https://doi.org/10.1016/j.amc.2008.09.019 doi: 10.1016/j.amc.2008.09.019
  • This article has been cited by:

    1. Ahmed. M. Zabel, Areej A. Almoneef, Ayat Nassar, Abd-Allah Hyder, Conditional Exponential Convex Functions on White Noise Spaces, 2025, 14, 2075-1680, 223, 10.3390/axioms14030223
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(464) PDF downloads(33) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog