Research article Special Issues

A novel method for Mannheim curves in the Galilean $3-$space $G_3$

  • Received: 04 August 2024 Revised: 14 October 2024 Accepted: 28 October 2024 Published: 04 November 2024
  • MSC : 51A05, 53A35

  • This research presents a novel method for Mannheim curves in three-dimensional Galilean space $ G_3$. Using this method, the necessary and sufficient conditions, along with the established results, must be satisfied for a curve in $ G_3$ to qualify as a Mannheim curve. Furthermore, relevant examples and graphs are provided to demonstrate how Mannheim curves and their partners can correspond to Salkowski and anti-Salkowski curves. Finally, in $ G_3$, the Mannheim partner curves are described.

    Citation: Mervat Elzawy, Safaa Mosa. A novel method for Mannheim curves in the Galilean $3-$space $G_3$[J]. AIMS Mathematics, 2024, 9(11): 31239-31251. doi: 10.3934/math.20241506

    Related Papers:

  • This research presents a novel method for Mannheim curves in three-dimensional Galilean space $ G_3$. Using this method, the necessary and sufficient conditions, along with the established results, must be satisfied for a curve in $ G_3$ to qualify as a Mannheim curve. Furthermore, relevant examples and graphs are provided to demonstrate how Mannheim curves and their partners can correspond to Salkowski and anti-Salkowski curves. Finally, in $ G_3$, the Mannheim partner curves are described.



    加载中


    [1] A. T. Ali, Position vectors of curves in the Galilean space $G_3$, Matematički Vesnik, 64 (2012), 200–210.
    [2] M. Akyigit, A. Z. Azak, M. Tosun, Admissible Mannheim curves in Pseudo-Galilean space $G_3^1$, Afr. Diaspora J. Math., 10 (2010), 58–65.
    [3] J. Bertrand, Mémoire sur la théorie des courbes à double courbure, Journal de mathématiques pures et appliquées, 15 (1850), 332–350.
    [4] A. Elsharkawy, A. M. Elshenhab, Mannheim curves and their prtner curves in Minkowski 3-Space $E_1^3$, Demonstr. Math., 55 (2022), 798–811. http://doi.org/10.1515/dema-2022-0163 doi: 10.1515/dema-2022-0163
    [5] M. Elzawy, S. Mosa, Characterizations of Frenet curves in Galilean 3-space, J. Math. Comput. Sci., 12 (2022), 179. http://doi.org/10.28919/jmcs/7458 doi: 10.28919/jmcs/7458
    [6] S. Ersoy, M. Akyigit, M. Tosun. A Note on admissible Mannheim curves in Galilean space $G_3$, Int. J. Math. Combin., 1 (2011), 88–93.
    [7] M. A. Gungor, M. Tosun, A study on dual Mannheim partner curves, International Mathematical Forum, 5 (2010), 2319–2330.
    [8] S. Honda, M. Takahashi, H. Yu, Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space, J. Geom., 114 (2023), 12. http://doi.org/10.1007/s00022-023-00673-7 doi: 10.1007/s00022-023-00673-7
    [9] M. K. Karacan, Weakened Mannheim curves, Int. J. Phys. Sci., 6 (2011), 4700–4705.
    [10] M. K. Karacan, Y. Tuncer, Characterization of slant helix in Galilean and Pseudo-Galilean spaces, SAÜ Fen Edebiyat Dergisi, 12 (2010), 43–53.
    [11] A. O. Ogrenmis, E. Ergut, M. Bektas, On the helices in the Galilean space $G_3$, Iran. J. Sci. Technol., 31 (2007), 177–181. http://doi.org/10.22099/ijsts.2007.2327 doi: 10.22099/ijsts.2007.2327
    [12] K. Orbay, E. Kasap, On Mannheim partner curves in $E^3$, J. Phys. Sci., 4 (2009), 261–264.
    [13] S. Özkaldi, K. Ilarslan, Y. Yayli, On Mannheim partner curve in dual space, An. St. Univ. Ovidius Constant, 17 (2009), 131–142.
    [14] H. Öztekin, M. Ergüt, Null Mannheim curves in the Minkowski 3-space $E_1^3$, Turk. J. Math., 35 (2011), 107–114. http://doi.org/10.3906/mat-0907-105 doi: 10.3906/mat-0907-105
    [15] S. Tarla, H. Oztekin, On generalized Mannheim curves in the equiform geometry of the Galilean 4-Space, Turk. J. Sci. Technol., 16 (2021), 197–204.
    [16] A. Ucum, C. Camci, K. İlarslan, A new approach to Mannheim curve in Euclidean 3-Space, Tamkang J. Math., 54 (2023), 93–106. https://doi.org/10.5556/j.tkjm.54.2023.4085 doi: 10.5556/j.tkjm.54.2023.4085
    [17] H. Liu, F. Wang, Mannheim partner curves in 3-Space, J. Geom., 88 (2008), 120–126. http://doi.org/10.1007/s00022-007-1949-0 doi: 10.1007/s00022-007-1949-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(239) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog