Research article Special Issues

Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor

  • Received: 05 September 2024 Revised: 16 October 2024 Accepted: 23 October 2024 Published: 24 October 2024
  • MSC : 39A28, 39A30, 65P30

  • This study focused on the dynamical behavior analysis of a discrete fractional Leslie-Gower model incorporating antipredator behavior and a Holling type Ⅱ functional response. Initially, we analyzed the existence and stability of the model's positive equilibrium points. For the interior positive equilibrium points, we investigated the parameter conditions leading to period-doubling bifurcation and Neimark-Sacker bifurcation using the center manifold theorem and bifurcation theory. To effectively control the chaos resulting from these bifurcations, we proposed two chaos control strategies. Numerical simulations were conducted to validate the theoretical results. These findings may contribute to the improved management and preservation of ecological systems.

    Citation: Yao Shi, Zhenyu Wang. Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor[J]. AIMS Mathematics, 2024, 9(11): 30298-30319. doi: 10.3934/math.20241462

    Related Papers:

  • This study focused on the dynamical behavior analysis of a discrete fractional Leslie-Gower model incorporating antipredator behavior and a Holling type Ⅱ functional response. Initially, we analyzed the existence and stability of the model's positive equilibrium points. For the interior positive equilibrium points, we investigated the parameter conditions leading to period-doubling bifurcation and Neimark-Sacker bifurcation using the center manifold theorem and bifurcation theory. To effectively control the chaos resulting from these bifurcations, we proposed two chaos control strategies. Numerical simulations were conducted to validate the theoretical results. These findings may contribute to the improved management and preservation of ecological systems.



    加载中


    [1] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
    [2] P. H. Leslie, J. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [3] S. Hsu, T. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/S0036139993253201 doi: 10.1137/S0036139993253201
    [4] Y. J. Li, M. X. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect, Math. Comput. Simulation, 201 (2022), 417–439. https://doi.org/10.1016/j.matcom.2022.05.017 doi: 10.1016/j.matcom.2022.05.017
    [5] M. He, Z. Li, Dynamics of a Leslie-Gower predator-pery model with square root response function and generalist predator, Appl. Math. Lett., 157 (2024), 109193. https://doi.org/10.1016/j.aml.2024.109193 doi: 10.1016/j.aml.2024.109193
    [6] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [7] S. K. Sasmal, Population dynamics with multiple Allee effects induced by fear facotrs-A mathematical study on prey-predator interactions, Appl. Math. Model., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
    [8] H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [9] Y. Xue, Impact of both-density-dependent fear effect in a Leslie-Gower predator-prey model with Beddington-DeAngelis functional response, Chaos Soliton. Fract., 185 (2024), 115055. https://doi.org/10.1016/j.chaos.2024.115055 doi: 10.1016/j.chaos.2024.115055
    [10] R. K. Ghaziani, J. Alidousti, A. B. Eshkaftaki, Stability and dynamics of a fractional order Leslie-Gower prey-predator model, Appl. Math. Model., 40 (2016), 2075–2086. https://doi.org/10.1016/j.apm.2015.09.014 doi: 10.1016/j.apm.2015.09.014
    [11] C. Maji, Impact of fear effect in a fractional-order predator-prey system incorporating constant prey refuge, Nonlinear Dyn., 107 (2022), 1329–1342. https://doi.org/10.1007/s11071-021-07031-9 doi: 10.1007/s11071-021-07031-9
    [12] G. R. Kumar, K. Ramesh, A. Khan, K. Lakshminarayan, T. Abdeljawad, Dynamical study of fractional order Leslie-Gower model of predator-prey with fear, Allee effect, and inter-species rivalry, Res. Control Optim., 14 (2024), 100403. https://doi.org/10.1016/j.rico.2024.100403 doi: 10.1016/j.rico.2024.100403
    [13] H. Zhang, A. Muhammadhaji, Dynamics of a delayed fractional-order predator-prey model with cannibalism and disease in prey, Fractal Fract., 8 (2024), 333. https://doi.org/10.3390/fractalfract8060333 doi: 10.3390/fractalfract8060333
    [14] M. Awadalla, J. Alahmadi, K. R. Cheneke, S. Qureshi, Fractional optimal control model and bifurcation analysis of human syncytial respiratory virus transmission dynamics, Fractal Fract., 8 (2024), 44. https://doi.org/10.3390/fractalfract8010044 doi: 10.3390/fractalfract8010044
    [15] I. Podlubny, Fractional differential equations, London: Academic Peress, 1999.
    [16] Y. Shi, Y. Q. Ma, X. Ding, Dynamical behaviors in a discrete fractional-order predator-prey system, Filomat, 32 (2018), 5857–5874. https://doi.org/10.2298/FIL1817857S doi: 10.2298/FIL1817857S
    [17] B. Wang, X. Li, Modeling and dynamical analysis of a fractional-order predator-prey system with anti-predator behavior and a Holling type Ⅳ functional response, Fractal Fract., 7 (2023), 722. https://doi.org/10.3390/fractalfract7100722 doi: 10.3390/fractalfract7100722
    [18] A. Singh, V. S. Sharma, Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-Ⅱ functional response and prey refuge, J. Comput. Appl. Math., 418 (2023), 114666. https://doi.org/10.1016/j.cam.2022.114666 doi: 10.1016/j.cam.2022.114666
    [19] M. Berkal, M. B. Almatrafi, Bifurcation and stability of two-dimensional activator-inhibitor model with fractional-order derivative, Fractal Fract., 7 (2023), 344. https://doi.org/10.3390/fractalfract7050344 doi: 10.3390/fractalfract7050344
    [20] R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, G. Grassi, The fractional discrete predator-prey model: Chaos, control and synchronization, Fractal Fract., 7 (2023), 120. https://doi.org/10.3390/fractalfract7020120 doi: 10.3390/fractalfract7020120
    [21] Q. Din, R. A. Naseem, M. S. Shabbir, Predator-prey interaction with fear effects: Stability, bifurcation and two-parameter analysis incorporating complex and fractal behavior, Fractal Fract., 8 (2024), 221. https://doi.org/10.3390/fractalfract8040221 doi: 10.3390/fractalfract8040221
    [22] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
    [23] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56 (2018), 904–931. https://doi.org/10.1007/s10910-017-0839-4 doi: 10.1007/s10910-017-0839-4
    [24] Q. Din, W. Ishaque, M.A. Iqbal, U. Saeed, Modification of Nicholson-Bailey model under refuge effects with stability, bifurcation, and chaos control, J. Vib. Control, 28 (2022), 3524–3538. https://doi.org/10.1177/10775463211034021 doi: 10.1177/10775463211034021
    [25] W. Ishaque, Q. Din, K. Khan, R. Mabela, Dynamics of predator-prey model based on fear effect with bifurcation analysis and chaos control, Qual. Theory Dyn. Syst., 23 (2024), 26. https://doi.org/10.1007/s12346-023-00878-w doi: 10.1007/s12346-023-00878-w
    [26] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, 2 Eds., New York: Springer New York, 2003. https://doi.org/10.1007/b97481
    [27] H. Fan, J. Tang, K. Shi, Y. Zhao, Hybrid impulsive feedback control for drive-response synchronization of fractional-order multi-link Memristive neural networks with multi-delays, Fractal Fract., 7 (2023), 495. https://doi.org/10.3390/fractalfract7070495 doi: 10.3390/fractalfract7070495
    [28] K. Ding, Q. Zhu, Intermittent static output feedback control for stochastic delayed-switched positive systems with only partially measurable information, IEEE Trans. Autom. Control, 68 (2023), 8150–8157. https://doi.org/10.1109/TAC.2023.3293012 doi: 10.1109/TAC.2023.3293012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(337) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog