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Abstract: This study focused on the dynamical behavior analysis of a discrete fractional Leslie-
Gower model incorporating antipredator behavior and a Holling type II functional response. Initially,
we analyzed the existence and stability of the model’s positive equilibrium points. For the interior
positive equilibrium points, we investigated the parameter conditions leading to period-doubling
bifurcation and Neimark-Sacker bifurcation using the center manifold theorem and bifurcation theory.
To effectively control the chaos resulting from these bifurcations, we proposed two chaos control
strategies. Numerical simulations were conducted to validate the theoretical results. These findings
may contribute to the improved management and preservation of ecological systems.
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1. Introduction

The well-known Leslie-Gower model with a Holling II functional response is expressed as follows:
dx
dt

= rx
(
1 −

x
K

)
−

bxy
a + x

,

dy
dt

= sy
(
1 −

y
x

)
,

(1.1)

where the biological interpretation of each parameter is provided in Table 1. It is noteworthy that
the Leslie-Gower model incorporates a response function indicating the predator’s carrying capacity,
which is proportional to the prey population, a feature absent in the Lotka-Volterra model. This
distinction has been extensively investigated in many references, such as [1–5].
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Table 1. Biological meaning of parameters in model (1.1).

Parameter Interpretation
x prey population density
y predator population density
r intrinsic growth rate of the prey
K maximum prey carrying capacity of the environment
b maximum predation rate when prey is abundant
a prey population at which predator attack capability saturates
s intrinsic growth rate of the predator

Previous studies predominantly focused on direct predation effects. In 2016, Wang et al. [6]
demonstrated through experiments that predator-induced fear (indirect effects) in prey leads to a
reduction in prey birth rates. They introduced the fear factor F(k, y) = 1

1+ky , where k represents the
intensity of fear driving antipredator behavior. To further investigate the influence of fear on population
dynamics, we enhance the system (1.1) by incorporating the fear factor F(k, y). The modified model is
formulated as follows: 

dx
dt

=
rx

1 + ky

(
1 −

x
K

)
−

bxy
a + x

,

dy
dt

= sy
(
1 −

y
x

)
.

(1.2)

For additional significant findings on the impact of fear in predator-prey models, refer to [7–9].
There has been increasing recognition that traditional integer-order differential equations may not

sufficiently capture the complexity of biological systems [10–14]. In reality, the behaviors of most
organisms in nature are influenced by their historical context. Fractional-order derivatives, which
extend the concept of integer-order differentiation, offer a more flexible and accurate framework for
modeling memory and hereditary properties in population dynamics. Therefore, the authors of this
paper aim to apply the Caputo fractional derivative to (1.2), thereby extending it into a fractional
model. The Caputo fractional derivative of a function u(t) of order α ∈ (0, 1] is given in [15] as follows

Dα
t u(t) =

1
Γ(1 − α)

∫ t

0

u′(τ)
(t − τ)α

dτ,

where Γ is the Gamma function. By replacing the integer-order derivative with the Caputo fractional
derivative, the following model is obtained:

Dα
t x =

rx
1 + ky

(
1 −

x
K

)
−

bxy
a + x

,

Dα
t y = sy

(
1 −

y
x

)
.

(1.3)

Specifically, when α = 1, the fractional-order model (1.3) reduces to the integer-order model (1.2),
demonstrating that the fractional-order model serves as a generalization of the integer-order model.
Moreover, in fractional calculus, the rate of change at any given moment, expressed by the fractional-
order derivative, depends on the population density over a specified time interval. This feature gives
the fractional-order model (1.3) a distinct advantage in capturing memory effects within populations.
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When studying populations with nonoverlapping generations or small sizes, mathematical models
are often expressed in discrete terms. Although some variables may change continuously in real-
world scenarios, the recording of these changes typically happens at specific time intervals during
data collection. Thus, employing discrete systems to examine the dynamic behavior of biological
populations is highly practical and significant. In references [16, 17], the authors employed the
piecewise constant approximation method to discretize continuous fractional predator-prey models
and explored their dynamical properties. Singh and Sharma [18] examine a discrete prey-predator
model with Holling type II functional response and prey refuge, identifying bifurcations and controlling
chaos through state feedback, pole placement, and hybrid techniques. Berkal and Almatrafi [19] used
the exponential piecewise constant argument to discretize continuous fractional activator-inhibitor
system. Their analysis includes stability assessments, investigations of Neimark-Sacker and period-
doubling bifurcations, and numerical simulations that validate the theoretical findings on the system’s
dynamics. For a more comprehensive exploration of discrete model studies, readers are advised to
consult references [20–25] and the related literature cited therein. However, current literature lacks
studies on fractional discrete-time predator-prey Leslie-Gower systems that incorporate the fear effect
in prey population. Using the same method as in references [16, 17] to discretize model (1.3), we can
obtain the following discrete model:


xn+1 = xn +

hα

Γ(α + 1)

[
rxn

1 + kyn

(
1 −

xn

K

)
−

bxnyn

a + xn

]
,

yn+1 = yn +
hα

Γ(α + 1)

[
syn

(
1 −

yn

xn

)]
.

(1.4)

Here h > 0 represents the time interval of production.

Furthermore, the key contributions and findings of this study are summarized as follows:

• The Caputo fractional derivative of order (0, 1] is utilized to incorporate the memory effect into
the dynamical behavior of the proposed model.
• The existence and stability of fixed points are investigated.
• Conditions for the occurrence and direction of period-doubling bifurcation and Neimark–Sacker

bifurcation at the positive fixed point are established.
• State feedback and hybrid control strategies are employed to manage bifurcations and chaotic

behavior in the model.
• To validate the accuracy of our theoretical findings, numerical examples for the fractional-order

discrete-time Leslie-Gower model with a fear factor are provided.

The remainder of this paper is structured as follows: In Section 2, we investigate the existence
and stability of the equilibrium points of model (1.4). Section 3 analytically demonstrates that
model (1.4), under specific parametric conditions, undergoes period-doubling or Neimark-Sacker
bifurcation. Section 4 explores the control of chaos toward an unstable equilibrium point using
feedback control or hybrid control approaches. Section 5 presents a quantitative analysis of the
dynamics of model (1.4) to validate our analytical findings. Finally, Section 6 offers brief conclusions.
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2. Existence and stability of the equilibrium points

This section explores the existence of equilibrium points in model (1.4) and assesses their stability
by evaluating the eigenvalues of the Jacobian matrix at these points. The following definition and
lemma are introduced to assist in this stability analysis of equilibrium points.

Definition 1. [26] Let λ1 and λ2 denote the two roots of the characteristic equation F(λ) = λ2+pλ+q =

0 associated with the Jacobian matrix J(x, y). The equilibrium point (x, y) is termed
(1) sink if |λ1| < 1 and |λ2| < 1, and the sink is locally asymptotically stable;
(2) source if |λ1| > 1 and |λ2| > 1, and the source is locally unstable;
(3) saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1);
(4) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Lemma 1. [26] Let F(1) > 0 in F(λ) = λ2 − Mλ + N, where λ1, λ2 are the two roots of F(λ) = 0.
Then, the following results hold true:
(1) |λ1| < 1 and |λ2| < 1 if, and only if, F(−1) > 0 and N < 1;
(2) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if, and only if, F(−1) < 0;
(3) |λ1| > 1 and |λ2| > 1 if, and only if, F(−1) > 0 and N > 1;
(4) λ1 = −1 and |λ2| , 1 if, and only if, F(−1) = 0 and M , 0,−2;
(5) λ1 and λ2 are conjugate complex and |λ1,2| = 1 if, and only if, M2 < 4N and N = 1.

2.1. Existence of equilibrium points

It is evident that the equilibrium points of model (1.4) satisfy the following equations:
x = x +

hα

Γ(α + 1)

[
rx

1 + ky

(
1 −

x
K

)
−

bxy
a + x

]
,

y = y +
hα

Γ(α + 1)

[
sy

(
1 −

y
x

)]
.

This algebraic system is satisfied if x = K and y = 0, indicating that the model (1.4) has a boundary
equilibrium point E0(K, 0) for all model parameters. To find the interior equilibrium point E1, we will
solve the following system simultaneously:

r
1 + ky

(
1 −

x
K

)
−

by
a + x

= 0, s
(
1 −

y
x

)
= 0.

From the second equation, we find y = x. Substituting y = x into the first equation yields:( r
K

+ bk
)

x2 +

(ar
K

+ b − r
)

x − ar = 0,

Given that all model parameters are positive, we obtain the following results through direct
calculations.

Theorem 1. The model (1.4) always has a boundary equilibrium point E0(K, 0) and a positive
equilibrium point E1 = (x∗, y∗), where

x∗ = y∗ =
−

(
ar
K + b − r

)
+

√(
ar
K + b − r

)2
+ 4ar

(
r
K + bk

)
2
(

r
K + bk

) .
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2.2. Stability of equilibrium points

The Jacobian matrix of model (1.4) evaluated at any point (x, y) is as follows:

J(x, y) =

 1 + hα
Γ(α+1)

[
r

1+ky

(
1 − 2x

K

)
−

aby
(a+x)2

]
− hα

Γ(α+1)

[
rkx

(1+ky)2

(
1 − x

K

)
+ bx

a+x

]
hα

Γ(α+1)
sy2

x2 1 + hα
Γ(α+1)

(
s − 2sy

x

)  . (2.1)

Theorem 2. The boundary equilibrium point E0(K, 0) exhibits the following behaviors:
(1) It is a source point if r > 2Γ(α+1)

hα ;
(2) It is a saddle point if 0 < r < 2Γ(α+1)

hα ;
(3) It is a non-hyperbolic point if r =

2Γ(α+1)
hα .

Proof. The Jacobian matrix (2.1) evaluated at the boundary equilibrium point E0(K, 0) is given by:

J(E0) =

[
1 − hαr

Γ(α+1) −
hα

Γ(α+1)
bK

a+K
0 1 + hαs

Γ(α+1)

]
.

The eigenvalues of J(E0) are λ1 = 1 − hαr
Γ(α+1) and λ2 = 1 + hαs

Γ(α+1) . Clearly, |λ2| > 1 and:

|λ1| =


< 1 if r > 2Γ(α+1)

hα ,

> 1 if 0 < r < 2Γ(α+1)
hα ,

= 1 if r =
2Γ(α+1)

hα .

By applying Definition 1, the proof is complete. �

Next, we analyze the local dynamics of model (1.4) at the positive equilibrium point E1(x∗, y∗). The
Jacobian matrix (2.1) evaluated at E1(x∗, y∗) is expressed as:

J(E1) =

(
1 + Aa11 Aa12

As 1 − As

)
, (2.2)

where

A =
hα

Γ(α + 1)
, a11 =

r
1 + kx∗

(
1 −

2x∗

K

)
−

abx∗

(a + x∗)2 ,

a12 = −
rkx∗

(1 + kx∗)2

(
1 −

x∗

K

)
−

bx∗

a + x∗
.

The characteristic equation of J(E1) is given by:

λ2 − Mλ + N = 0, (2.3)

where
M = 2 + (a11 − s)A, N = 1 + (a11 − s)A − (a11 + a12)sA2.

Let F(λ) = λ2 − Mλ + N, then:

F(0) = N, F(−1) = 1 + M + N, F(1) = 1 − M + N.

As a result, we establish the following theorem.
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Theorem 3. Let E1 be the unique positive equilibrium point of model (1.4). Then:
(1) E1 is a sink point if |M| < 1 + N < 2;
(2) E1 is a source point if |M| < |1 + N| and |N | > 1;
(3) E1 is a saddle point if M2 > 4N and |M| > |1 + N|;
(4) E1 is non-hyperbolic if |M| = |1 + N| or N = 1 and |M| < 2.

Proof. (1) According to Lemma 1, E1 is a sink point if and only if F(1) > 0, F(−1) > 0, and N < 1.
This condition is satisfied when |M| < 1 + N < 2. Similarly, the proofs for Theorem 3 (2)–(4) follow
straightforwardly from the definitions and properties of M and N. �

3. Bifurcation analysis

In this section, we will analyze the period-doubling and Neimark-Sacker bifurcation behaviors of
model (1.4) at the positive equilibrium point E1(x∗, y∗). The reason for not analyzing the boundary
equilibrium point is that, at E0(K, 0), the predators have become extinct, leaving only the prey.

3.1. Period-doubling bifurcation

Assume M2 > 4N and
s = s1 :=

4 + 2Aa11

2A + A2(a11 + a12)
,

and we can ascertain that the characteristic equation (2.3) satisfies

F(−1) = 1 + M + N

= 1 + [2 + (a11 − s1)A] +
[
1 + (a11 − s1)A − (a11 + a12)s1A2

]
= 4 + 2a11A −

[
2A + (a11 + a12)A2

]
s1 = 0.

Therefore, the eigenvalues of the characteristic equation (2.3) are

λ1 = −1, λ2 = 1 + M = 3 + (a11 − s1)A.

Let
s2 = a11 +

2
A
, s3 = a11 +

4
A
.

The condition |λ2| , 1 implies that s1 , s2, s3.
Based on the above analysis, we can conclude that when the parameters vary within the set

P.D =
{
(h, α, r, k,K, b, a, s) : M2 > 4N, s = s1 and s , s2, s3

}
, (3.1)

model (1.4) will undergo period-doubling bifurcation at E1(x∗, y∗).
Select parameters (h, α, r, k,K, b, a, s) ∈ P.D and consider s∗ as a small perturbation of s, i.e., s∗ =

s − s1, where |s∗| � 1. After this perturbation, model (1.4) can be represented as follows:
xn+1 = xn +

hα

Γ(α + 1)

[
rxn

1 + kyn

(
1 −

xn

K

)
−

bxnyn

a + xn

]
,

yn+1 = yn +
hα

Γ(α + 1)

[
(s1 + s∗)yn

(
1 −

yn

xn

)]
.

(3.2)

AIMS Mathematics Volume 9, Issue 11, 30298–30319.



30304

Let un = xn − x∗ and vn = yn − y∗, transforming the equilibrium point E1(x∗, y∗) into the origin
O(0, 0). The model (3.2) can thus be expressed as:

un+1 = un +
hα

Γ(α + 1)

[
r(un + x∗)

1 + k(vn + y∗)

(
1 −

un + x∗

K

)
−

b(un + x∗)(vn + y∗)
a + (un + x∗)

]
,

vn+1 = vn +
hα

Γ(α + 1)

[
(s1 + s∗)(vn + y∗)

(
1 −

vn + y∗

un + x∗

)]
.

(3.3)

The Taylor expansion of model (3.3) around (un, vn) = (0, 0) yields the following form:[
un+1

vn+1

]
=

[
1 + Aa11 Aa12

As1 1 − As1

] [
un

vn

]
+

[
f (un, vn, s∗)
g(un, vn, s∗)

]
, (3.4)

where
f (un, vn, s∗) =c13u2

n + c14unvn + c15v2
n + c16u3

n + c17u2
nvn + c18unv2

n + c19v3
n

+ O((|un| + |vn| + |s∗|)4),
g(un, vn, s∗) =c23u2

n + c24unvn + c25v2
n + c26u3

n + c27u2
nvn + c28unv2

n + c29v3
n

+ d1uns∗ + d2vns∗ + d3u2
ns∗ + d4unvns∗ + d5v2

ns∗

+ O((|un| + |vn| + |s∗|)4),

and

c13 = −
Ar

K(1 + kx∗)
+

abAx∗

(a + x∗)3 , c14 = −
Ark

(1 + kx∗)2

(
1 −

2x∗

K

)
−

abA
(a + x∗)2 ,

c15 =
Ark2x∗

(1 + kx∗)3

(
1 −

x∗

K

)
, c16 = −

Aabx∗

(a + x∗)4 ,

c17 =
Ark

K(1 + kx∗)2 +
abA

(a + x∗)3 , c18 =
Ark2

(1 + kx∗)3

(
1 −

2x∗

K

)
,

c19 = −
Ark3x∗

(1 + kx∗)4

(
1 −

x∗

K

)
, c23 = c25 = −

As1

x∗
, c24 =

2As1

x∗
,

c26 = c28 =
As1

x∗2
, c27 = −

2As1

x∗2
, c29 = 0, d1 = A, d2 = −A,

d3 = d5 = −
A
x∗
, d4 =

2A
x∗
.

Define

T =

[
Aa12 Aa12

−2 − Aa11 λ2 − 1 − Aa11

]
,

then

T−1 =
1

Aa12(1 + λ2)

[
λ2 − 1 − Aa11 −Aa12

2 + Aa11 Aa12

]
.

Using the transformation: [
un

vn

]
= T

[
ũn

ṽn

]
,
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model (3.4) is transformed into the following form:[
ũn+1

ṽn+1

]
=

[
−1 0
0 λ2

] [
ũn

ṽn

]
+

[
f̃ (̃un, ṽn, s∗)
g̃(̃un, ṽn, s∗)

]
, (3.5)

where

f̃ (̃un, ṽn, s∗) =
(λ2 − 1 − Aa11)c13 − Aa12c23

Aa12(1 + λ2)
u2

n +
(λ2 − 1 − Aa11)c14 − Aa12c24

Aa12(1 + λ2)
unvn

+
(λ2 − 1 − Aa11)c15 − Aa12c25

Aa12(1 + λ2)
v2

n +
(λ2 − 1 − Aa11)c16 − Aa12c26

Aa12(1 + λ2)
u3

n

+
(λ2 − 1 − Aa11)c17 − Aa12c27

Aa12(1 + λ2)
u2

nvn +
(λ2 − 1 − Aa11)c18 − Aa12c28

Aa12(1 + λ2)
unv2

n

+
(λ2 − 1 − Aa11)c19 − Aa12c29

Aa12(1 + λ2)
v3

n −
d1

1 + λ2
uns∗ −

d2

1 + λ2
vns∗

−
d3

1 + λ2
u2

ns∗ −
d4

1 + λ2
unvns∗ −

d5

1 + λ2
v2

ns∗ + O((|un| + |vn| + |s∗|)4),

g̃(̃un, ṽn, s∗) =
(2 + Aa11)c13 + Aa12c23

Aa12(1 + λ2)
u2

n +
(2 + Aa11)c14 + Aa12c24

Aa12(1 + λ2)
unvn

+
(2 + Aa11)c15 + Aa12c25

Aa12(1 + λ2)
v2

n +
(2 + Aa11)c16 + Aa12c26

Aa12(1 + λ2)
u3

n

+
(2 + Aa11)c17 + Aa12c27

Aa12(1 + λ2)
u2

nvn +
(2 + Aa11)c18 + Aa12c28

Aa12(1 + λ2)
unv2

n

+
(2 + Aa11)c19 + Aa12c29

Aa12(1 + λ2)
v3

n +
d1

1 + λ2
uns∗ +

d2

1 + λ2
vns∗ +

d3

1 + λ2
u2

ns∗

+
d4

1 + λ2
unvns∗ +

d5

1 + λ2
v2

ns∗ + O((|un| + |vn| + |s∗|)4),

and
un = Aa12ũn + Aa12̃vn, vn = −(2 + Aa11)̃un + (λ2 − 1 − Aa11)̃vn.

Next, we apply the center manifold theorem [26] to analyze the dynamics around the equilibrium
point (̃un, ṽn) = (0, 0) at s∗ = 0. According to the theorem, the model (3.5) has a center manifold, which
can be represented as:

Wc(0, 0, 0) =
{
(̃un, ṽn, s∗) ∈ R3

+ : ṽn = w(̃un, s∗), w(0, 0) = 0, Dw(0, 0) = 0
}
.

Assume that
w(̃un, s∗) = η1ũ2

n + η2ũns∗ + η3(s∗)2 + O((|̃un| + |s∗|)3).

Then, the center manifold must satisfy

w
(
−ũn + f̃ (̃un,w(̃un, s∗), s∗), s∗

)
− λ2w(̃un, s∗) − g̃(̃un,w(̃un, s∗), s∗) = 0.

By comparing the coefficients, it can be obtained that

η1 =
Aa12 [(2 + Aa11)c13 + Aa12c23] − (2 + Aa11) [(2 + Aa11)c14 + Aa12c24]

1 − λ2
2
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+
(2 + Aa11)2 [(2 + Aa11)c15 + Aa12c25]

Aa12(1 − λ2
2)

,

η2 =
(2 + Aa11)d2 − Aa12d1

(1 + λ2)2 ,

η3 =0.

Thus, the model (3.5), when restricted to the center manifold Wc(0, 0, 0), is given by:

W̃ : ũn+1 = −ũn + m1ũ2
n + m2ũns∗ + m3ũ3

n + m4ũ2
ns∗ + m5ũn(s∗)2 + O((|̃un| + |s∗|)4) (3.6)

where

m1 =
Aa12[(λ2 − 1 − Aa11)c13 − Aa12c23]

1 + λ2
−

(2 + Aa11)[(λ2 − 1 − Aa11)c14 − Aa12c24]
1 + λ2

+
(2 + Aa11)2[(λ2 − 1 − Aa11)c15 − Aa12c25]

Aa12(1 + λ2)

m2 = −
d1Aa12

1 + λ2
+

d2(2 + Aa11)
1 + λ2

m3 =
2Aa12η1 [(λ2 − 1 − Aa11)c13 − Aa12c23]

1 + λ2

+
Aa12η1(λ2 − 3 − 2Aa11) [(λ2 − 1 − Aa11)c14 − Aa12c24]

1 + λ2

−
2η1(2 + Aa11)(λ2 − 1 − Aa11) [(λ2 − 1 − Aa11)c15 − Aa12c25]

Aa12(1 + λ2)

+
(Aa12)2 [(λ2 − 1 − Aa11)c16 − Aa12c26]

1 + λ2
−

Aa12(2 + Aa11) [(λ2 − 1 − Aa11)c17 − Aa12c27]
1 + λ2

+
(2 + Aa11)2 [(λ2 − 1 − Aa11)c18 − Aa12c28]

1 + λ2
−

(2 + Aa11)3 [(λ2 − 1 − Aa11)c19 − Aa12c29]
Aa12(1 + λ2)

m4 =
2Aa12η2 [(λ2 − 1 − Aa11)c13 − Aa12c23]

1 + λ2

+
η2(λ2 − 3 − 2Aa11) [(λ2 − 1 − Aa11)c14 − Aa12c24]

1 + λ2

−
2η2(2 + Aa11)(λ2 − 1 − Aa11) [(λ2 − 1 − Aa11)c15 − Aa12c25]

Aa12(1 + λ2)

−
Aa12η1d1

1 + λ2
−

(λ2 − 1 − Aa11)η1d2

1 + λ2
−

(Aa12)2d3

1 + λ2
+

Aa12(2 + Aa11)d4

1 + λ2
−

(2 + Aa11)2d5

1 + λ2

m5 = −
Aa12η2d1

1 + λ2
−

(λ2 − 1 − Aa11)η2d2

1 + λ2
.

In order for Eq (3.6) to undergo period-doubling bifurcation, it is necessary that the following two
quantities possess nonzero values.

β1 =

 ∂2W̃
∂ũn∂s∗

+
1
2
∂W̃
∂s∗

∂2W̃
∂ũ2

n

 ∣∣∣∣∣∣
(0,0)

= m2
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β2 =

1
6
∂3W̃
∂ũ3

n
+

1
2
∂2W̃
∂ũ2

n

2
∣∣∣∣∣∣
(0,0)

= m3 + m2
1.

Summarize the above analysis into the following theorem.

Theorem 4. If β1β2 , 0, then model (1.4) undergoes a period-doubling bifurcation at the positive
equilibrium point E1(x∗, y∗) when parameters vary in a small neighborhood of P.D. Additionally, when
β2 > 0 (respectively, β2 < 0), model (1.4) bifurcates from the equilibrium point E1(x∗, y∗) to a stable
(respectively, unstable) 2-periodic orbit.

3.2. Nerimark-Sacker bifurcation

Assume M2 < 4N and
s = s4 :=

a11

1 + A(a11 + a12)
,

and we can determine that the eigenvalues of the characteristic equation (2.3) satisfy

|λ1,2|
2 =

∣∣∣∣∣∣∣M2 ±
√

4N − M2

2
i

∣∣∣∣∣∣∣
2

= 1 + (a11 − s4)A − (a11 + a12)s4A2

= 1 + a11A − [1 + (a11 + a12)A] As4 = 1.

Namely, Eq (2.3) has two complex conjugate roots with unit modulus. It is clear from the above
discussion that

d|λ1,2|

ds

∣∣∣∣∣
s=s4

= −
A
2

[1 + (a11 + a12)A] , 0.

In addition, it is crucial that when s = s4, λθ1,2(s4) , 1(θ = 1, 2, 3, 4), which is equivalent to M(s4) ,
−2,−1, 0, 2. Since M2 < 4N, we deduce M(s4) , −2, 2. Additionally, we necessitate that M(s4) ,
0,−1, which leads to

s4 , s5 := a11 +
3
A
, s4 , s6 := a11 +

2
A
.

Based on the preceding analysis, we conclude that when the parameters vary within a small
neighborhood of the set

N.S =
{
(h, α, r, k,K, b, a, s) : M2 < 4N, s = s4, s , s5, s , s6

}
, (3.7)

model (1.4) undergoes a Neimark-Sacker bifurcation at E1(x∗, y∗).
Next, assuming (h, α, r, k,K, b, a, s) ∈ N.S . and |s∗| � 1 represents a small perturbation of s4,

model (1.4) can be described as follows:
xn+1 = xn +

hα

Γ(α + 1)

[
rxn

1 + kyn

(
1 −

xn

K

)
−

bxnyn

a + xn

]
,

yn+1 = yn +
hα

Γ(α + 1)

[
(s4 + s∗)yn

(
1 −

yn

xn

)]
.

(3.8)
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Let un = xn − x∗ and vn = yn − y∗, then we have[
un+1

vn+1

]
=

[
1 + Aa11 Aa12

As4 1 − As4

] [
un

vn

]
+

[
F(un, vn)
G(un, vn)

]
(3.9)

where
F(un, vn) =c13u2

n + c14unvn + c15v2
n + c16u3

n + c17u2
nvn + c18unv2

n

+ c19v3
n + O((|un| + |vn|)4),

G(un, vn) =c23u2
n + c24unvn + c25v2

n + c26u3
n + c27u2

nvn + c28unv2
n

+ c29v3
n + O((|un| + |vn|)4),

and c13, c14, c15, c16, c17, c18, c19, c23, c24, c25, c26, c27, c28, c29 are given in (2.3) by substituting s1 for
s4 + s∗.

In order to obtain the normal form of model (3.9) at s∗ = 0, we use the following transformation:[
un

vn

]
=

[
ω 1 + Aa11 − ρ

0 As4

] [
ûn

v̂n

]
,

with

ρ =
M
2
, ω =

√
4N − M2

2
.

Using this transformation, model (3.9) will transform as follows:[
ûn+1

v̂n+1

]
=

[
ρ −ω

ω ρ

] [
ûn

v̂n

]
+

[
F̂ (̂un, v̂n)
Ĝ(̂un, v̂n)

]
, (3.10)

where

F̂ (̂un, v̂n) =
As4c13 + (ρ − 1 − Aa11)c23

As4ω
u2

n +
As4c14 + (ρ − 1 − Aa11)c24

As4ω
unvn

+
As4c15 + (ρ − 1 − Aa11)c25

As4ω
v2

n +
As4c16 + (ρ − 1 − Aa11)c26

As4ω
u3

n

+
As4c17 + (ρ − 1 − Aa11)c27

As4ω
u2

nvn +
As4c18 + (ρ − 1 − Aa11)c28

As4ω
unv2

n

+
As4c19 + (ρ − 1 − Aa11)c29

As4ω
v3

n + O((|un| + |vn|)4),

Ĝ(̂un, v̂n) =
1

As4

(
c23u2

n + c24unvn + c25v2
n + c26u3

n + c27u2
nvn + c28unv2

n + c29v3
n

)
+ O((|un| + |vn|)4),

and
un = ωûn + (1 + Aa11 − ρ)̂vn, vn = As4̂vn.

Next, a nonzero real number is defined as follows:

Ω = −Re
[
(1 − 2λ1)λ2

2

1 − λ1
ξ11ξ12

]
−

1
2
|ξ11|

2 − |ξ21|
2 + Re(λ2ξ22) (3.11)

AIMS Mathematics Volume 9, Issue 11, 30298–30319.



30309

where

ξ11 =
1
4

∂2F̂
∂̂u2

n
+
∂2F̂
∂̂v2

n
+ i

∂2Ĝ
∂̂u2

n
+
∂2Ĝ
∂̂v2

n

 ∣∣∣∣∣∣
s∗=0

ξ12 =
1
8

∂2F̂
∂̂u2

n
−
∂2F̂
∂̂v2

n
+ 2

∂2Ĝ
∂̂un∂̂vn

+ i
∂2Ĝ
∂̂u2

n
−
∂2Ĝ
∂̂v2

n
− 2

∂2F̂
∂̂un∂̂vn

 ∣∣∣∣∣∣
s∗=0

ξ21 =
1
8

∂2F̂
∂̂u2

n
−
∂2F̂
∂̂v2

n
− 2

∂2Ĝ
∂̂un∂̂vn

+ i
∂2Ĝ
∂̂u2

n
−
∂2Ĝ
∂̂v2

n
+ 2

∂2F̂
∂̂un∂̂vn

 ∣∣∣∣∣∣
s∗=0

ξ22 =
1

16

∂3F̂
∂̂u3

n
+

∂3F̂
∂̂un∂̂v2

n
+

∂3Ĝ
∂̂u2

n∂̂vn
+
∂3Ĝ
∂̂v3

n
+ i

∂3Ĝ
∂̂u3

n
+

∂3Ĝ
∂̂un∂̂v2

n
−

∂3F̂
∂̂u2

n∂̂vn
−
∂3F̂
∂̂v3

n

 ∣∣∣∣∣∣
s∗=0

.

Through some complicated calculations, we get

∂2F̂
∂̂u2

n

∣∣∣∣∣∣
s∗=0

=
2ω
As4

[
c13As4 + c23(ρ − 1 − Aa11)

]
,

∂2F̂
∂̂un∂̂vn

∣∣∣∣∣∣
s∗=0

=
1

As4

[
c14(As4)2 − As4(ρ − 1 − Aa11)(2c13 − c24) − 3c23(ρ − 1 − Aa11)2

]
,

∂2F̂
∂̂v2

n

∣∣∣∣∣∣
s∗=0

=
1

ωAs4

[
2c15(As4)2 − 2(As4)2(ρ − 1 − Aa11)(c14 − c25)

−2As4(c24 − c13)(ρ − 1 − Aa11)2 + 2c23(ρ − 1 − Aa11)3
]
,

∂3F̂
∂̂u3

n

∣∣∣∣∣∣
s∗=0

=
6ω2

As4

[
c16As4 + c26(ρ − 1 − Aa11)

]
,

∂3F̂
∂̂u2

n∂̂vn

∣∣∣∣∣∣
s∗=0

=
ω

As4

[
2c17(As4)2 − As4(ρ − 1 − Aa11)(6c16 − 2c27) − 6c26(ρ − 1 − Aa11)2

]
,

∂3F̂
∂̂un∂̂v2

n

∣∣∣∣∣∣
s∗=0

=
1

As4

[
2c18(As4)2 + 2(As4)2(c28 − 2c17)(ρ − 1 − Aa11)

+6As4(c16 − c27)(ρ − 1 − Aa11)2 + 6c26(ρ − 1 − Aa11)3
]
,

∂3F̂
∂̂v3

n

∣∣∣∣∣∣
s∗=0

=
6(1 + Aa11 − ρ)

ωAs4

[
c18(As4)3 + (As4)2(c28 − c17)(ρ − 1 − Aa11)

+As4(c16 − c27)(ρ − 1 − Aa11)2 + c26(ρ − 1 − Aa11)3
]
,

and

∂2Ĝ
∂̂u2

n

∣∣∣∣∣∣
s∗=0

=
2c23ω

2

As4
,

∂2Ĝ
∂̂un∂̂vn

∣∣∣∣∣∣
s∗=0

=
ω

As4

[
c24As4 − 2c23(ρ − 1 − Aa11)

]
,

∂2Ĝ
∂̂v2

n

∣∣∣∣∣∣
s∗=0

=
2

As4

[
c25(As4)2 − As4c24(ρ − 1 − Aa11) + c23(ρ − 1 − Aa11)2

]
,

∂3Ĝ
∂̂u3

n

∣∣∣∣∣∣
s∗=0

=
6c26ω

3

As4
,

∂3Ĝ
∂̂u2

n∂̂vn

∣∣∣∣∣∣
s∗=0

=
ω2

As4

[
2c27As4 − 6c26(ρ − 1 − Aa11)

]
,
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∂3Ĝ
∂̂un∂̂v2

n

∣∣∣∣∣∣
s∗=0

=
ω

As4

[
2c28(As4)2 − 4c27As4(ρ − 1 − Aa11) + 6c26(ρ − 1 − Aa11)2

]
,

∂3Ĝ
∂̂v3

n

∣∣∣∣∣∣
s∗=0

=
6(1 + Aa11 − ρ)

As4

[
c26(1 + Aa11)2 + c27As4(1 + Aa11) + c28(As4)2

−(2(1 + Aa11)c26 + As4c27)ρ + c26ρ
2
]
.

Based on the aforementioned calculations, we establish the theorem regarding the existence and
direction of Neimark-Sacker bifurcation.

Theorem 5. If (h, α, r, k,K, b, a, s) ∈ N.S . and Ω , 0, then model (1.4) undergoes a Neimark-
Sacker bifurcation at the equilibrium point E1(x∗, y∗) when the parameter s varies in the vicinity of s4.
Moreover, if Ω < 0 (respectively, Ω > 0), then an attracting (respectively, repelling) closed invariant
curve bifurcates from the equilibrium point for s∗ > 0 (respectively, s∗ < 0).

4. Chaos control

Chaos often has detrimental effects on biological systems, disrupting the ecological balance of
populations and directly influencing long-term population growth projections. Implementing effective
control policies not only safeguards the size of ecological populations but also establishes a strong
foundation for the sustainable exploitation of ecological resources [27, 28]. This section explores two
control methods aimed at effectively managing the chaos generated by model (1.4).

4.1. State feedback control

In this subsection, the state feedback control method [22] will be employed to regulate the chaos
exhibited by model (1.4). To achieve this, we introduce the following controlled model.

xn+1 = xn +
hα

Γ(α + 1)

[
rxn

1 + kyn

(
1 −

xn

K

)
−

bxnyn

a + xn

]
+ S n,

yn+1 = yn +
hα

Γ(α + 1)

[
syn

(
1 −

yn

xn

)]
,

(4.1)

which corresponds to model (1.4). The feedback controlling force is defined as

S n = −p1(xn − x∗) − p2(yn − y∗), (4.2)

where (x∗, y∗) represents the positive equilibrium point of the model (1.4), and p1, p2 stand for the
feedback gains. The Jacobian matrix of the controlled model (4.1) evaluated at the positive equilibrium
point E1(x∗, y∗) is given by

J1(x∗, y∗) =

(
1 + Aa11 − p1 Aa12 − p2

As 1 − As

)
, (4.3)

where the variables A, a11, and a12 are defined in Eq (2.2). The corresponding characteristic equation
of the Jacobian matrix J1(x∗, y∗) is

λ2 − (2 + Aa11 − As − p1) λ + (1 + Aa11 − p1)(1 − As) − (Aa12 − p2)As = 0. (4.4)
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Let λ1 and λ2 be the roots of the Eq (4.3), then

λ1λ2 = (1 + Aa11 − p1)(1 − As) − (Aa12 − p2)As. (4.5)

The lines of marginal stability l1, l2, and l3 are derived by solving λ1λ2 = 1, λ1 = 1 and λ2 = ±1,
respectively. These conditions ensure that |λ1,2| = 1. Then, we derive the marginal stability lines as
follows:

l1 : (1 − As)p1 − Asp2 = −A2s(a11 + a12) + A(a11 − s), (4.6)
l2 : p1 + p2 = A(a11 + a12), (4.7)
l3 : (2 − As)p1 − Asp2 = −A2s(a11 + a12) + 2A(a11 − s) + 4. (4.8)

Therefore, l1, l2, and l3 in the (p1, p2)-plane form a triangular region which leads to |λ1,2| < 1.

Theorem 6. If p1 and p2 lie within a triangular region bounded by the lines l1, l2, and l3, it can be
concluded that the model (4.1) is stable.

4.2. Hybrid control

Next, we apply the hybrid control approach proposed by [23] to control chaos. The controlled
model of (1.4) with the hybrid control approach is depicted below:

xn+1 = ρxn +
ρhα

Γ(α + 1)

[
rxn

1 + kyn

(
1 −

xn

K

)
−

bxnyn

a + xn

]
+ (1 − ρ)xn,

yn+1 = ρyn +
ρhα

Γ(α + 1)

[
syn

(
1 −

yn

xn

)]
+ (1 − ρ)yn.

(4.9)

where 0 < ρ < 1, and the controlled strategy in (4.9) combines feedback control and parameter
perturbation. By appropriately choosing the controlled parameter ρ, the chaotic behaviors of the
equilibrium point (x∗, y∗) of the controlled model (4.9) can be accelerated (delayed) or even entirely
eliminated. The Jacobian matrix of the controlled model (4.9), evaluated at the positive equilibrium
point (x∗, y∗), is given by

J2(x∗, y∗) =

(
1 + Aρa11 Aρa12

Aρs 1 − Aρs

)
, (4.10)

where the variables A, a11, and a12 are defined in Eq (2.2). Then, the positive equilibrium point (x∗, y∗)
of the controlled model (4.9) is locally asymptotically stable if the roots of the characteristic polynomial
of (4.10) lie within the open unit disk. According to the Jury condition, the equilibrium point of the
model remains stable if, and only if, the following conditions are met:

|2 + Aρa11 − Aρs| < 1 + (1 + Aρa11)(1 − Aρs) − (Aρa12)(Aρs) < 2.

Theorem 7. If |2 + Aρa11 − Aρs| < 1 + (1 + Aρa11)(1 − Aρs) − (Aρa12)(Aρs) < 2 can hold, it can be
concluded that the model (4.9) is stable.
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5. Numerical experiments

In this section, by exploring specific cases of model (1.4), we confirm the theoretical analysis above
and discover new intriguing complex dynamic behaviors. Additionally, we validate the effectiveness
of linear feedback techniques and hybrid control strategies for chaos control through numerical
simulations.

5.1. Period-doubling bifurcation at positive equilibrium point

Take
h = 0.69, α = 0.85, r = 2.27, k = 1.64, K = 2.16, b = 0.24, a = 2.02. (5.1)

After straightforward calculations, we determine the positive equilibrium point E1 = (1.7498, 1.7498)
and the critical bifurcation value s1 = 2.8472. The Jacobian matrix of model (1.4) evaluated at E1 with
s = s1 is given by

J(E1) =

(
0.6733 −0.1497
2.1965 −1.1965

)
,

whose characteristic equation is

F(λ) = λ2 + 0.5232λ − 0.4768 = 0. (5.2)

The roots of (5.2) are λ1 = −1 and λ2 = 0.4768. Moreover, we have β1 = −0.7959 , 0 and β2 =

1.0080 > 0. According to Theorem 4, model (1.4) undergoes period-doubling bifurcation at E1 as
s passes through s1. This behavior, verified through corresponding bifurcation diagrams shown in
Figure 1, utilizes initial conditions (x0, y0) = (1.74, 1.74) and varies s in the range [2.7, 3.7].

(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

Figure 1. Bifurcation diagrams of model (1.4) with parameter values as given in (5.1) and
initial conditions (1.74, 1.74).

5.2. Neimark-Sacker bifurcation at positive equilibrium point

Take
h = 0.75, α = 0.8, r = 4.2, k = 0.5, K = 3.5, b = 3.6, a = 8.1. (5.3)
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After straightforward calculations, we determine the positive equilibrium point E1 = (2.1746, 2.1746)
and the critical bifurcation value s4 = 1.1872. The Jacobian matrix of model (1.4) evaluated at E1 with
s = s4 is given by

J(E1) =

(
0.0712 −0.9884
1.0126 −0.0126

)
,

whose characteristic equation is

F(λ) = λ2 − 0.0586λ + 1 = 0. (5.4)

The roots of (5.4) are λ1,2 = 0.02930 ± 0.9996i. Moreover, we have d = 0.3912 , 0 and Ω =

−1392.0464 < 0. According to Theorem 5, model (1.4) undergoes Neimark-Sacker bifurcation at E1

as s passes through s4. This behavior, verified through corresponding bifurcation diagrams shown in
Figure 2, utilizes initial conditions (x0, y0) = (2.2, 2.2) and varies s in the range [1.1, 1.6].

(a) Bifurcation diagram for xn (b) Bifurcation diagram for yn

Figure 2. Bifurcation diagrams of model (1.4) with parameter values as given in (5.3) and
initial conditions (2.2, 2.2).

5.3. Chaos control

We chose the parameter values as follows:

h = 0.75, α = 0.8, r = 4.2, k = 0.5, K = 3.5, b = 3.6, a = 8.1, s = 1.58. (5.5)

By Figure 3, we can get that the variables xn and yn in the model (1.4) are in a chaotic state.
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Figure 3. Plots for model (1.4) with parameter values as given in (5.5) and initial conditions
(2.2, 2.2).

5.3.1. State feedback control

We use the same parameter values as in (5.5). In Figure 4, the triangular region defined by
Theorem 6 bounds the parameters p1 and p2. Inside this region, the chaotic behavior produced by
model (1.4) is effectively managed, resulting in asymptotic convergence toward the equilibrium point
E1 = (2.1746, 2.1746).
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Figure 4. Stability region for the controlled model (4.1).

In this case, with feedback gains set to p1 = 0.57 and p2 = −0.38 and the controller activated at
the 3000th iteration of the model, Figure 5 demonstrates the control effect. A chaotic trajectory is
successfully stabilized at the equilibrium point E1 = (2.1746, 2.1746). This indicates that the feedback
control approach is effective in mitigating bifurcation and chaos.
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Figure 5. Plots for controlled model (4.1) with parameter values as given in (5.5), p1 = 0.57,
p2 = −0.38, and initial conditions (2.2, 2.2).
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5.3.2. Hybrid control

Finally, using the same parameter values as in (5.5), the Jacobian matrix of the controlled
model (4.9), evaluated at E1, is given by:

(
1 − 0.9288ρ −0.988439ρ

1.34765ρ 1 − 1.34765ρ

)
. (5.6)

The characteristic polynomial of (5.6) is given by

λ2 − (2 − 2.27645ρ)λ + 2.58377ρ2 − 2.27645ρ + 1 = 0. (5.7)

The roots of (5.7) lie within the open unit disk if, and only if, 0 < ρ < 0.881058. Additionally, the
plots for xn and yn of the controlled model (4.9) are shown in Figure 6 with ρ = 0.87. From Figure 6, it
is clear that the positive equilibrium point E1 is stable. Therefore, it can be concluded that employing
the hybrid control approach is effective in mitigating bifurcation and chaos.
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Figure 6. Plots for controlled model (4.9) with parameter values as given in (5.5), ρ = 0.87,
and initial conditions (2.2, 2.2).
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6. Conclusions

In this study, we proposed a fractional Leslie-Gower model with a Holling type II functional
response and antipredator behavior. By employing the piecewise constant approximation method,
we derived the discrete model (1.4) and analyzed its dynamical behavior, including the existence and
stability of equilibrium points and the possibility of local bifurcations. The following conclusions can
be drawn from our research:

(1) The discrete model (1.4) has two equilibrium points: E0(K, 0) and E1(x∗, y∗). The only positive
coexistence equilibrium point, E1(x∗, y∗), reflects the coexistence of predators and prey.

(2) Our theoretical analysis and numerical simulations of the positive equilibrium point E1(x∗, y∗)
indicate that the model undergoes period-doubling bifurcation and Neimark-Sacker bifurcation under
specific parameter conditions. Figures 1 and 2 illustrate how these bifurcations can lead to chaotic
behavior at E1.

(3) By applying state feedback control and hybrid control methods, we effectively managed the
chaotic behavior generated by the model (1.4), as shown in Figures 3–6. These interventions mitigated
the adverse effects of chaos and bifurcations, consequently enhancing ecosystem resilience.

This study advances our understanding of the complex dynamics in ecological models influenced by
fear effects and provides practical techniques for controlling chaotic behavior in such models. Future
work could explore different discretization methods for the model, and new parameters could be chosen
to study the influence of various ecological effects on population dynamics.
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