Research article Special Issues

On Riemannian warped-twisted product submersions

  • Received: 24 August 2023 Revised: 26 November 2023 Accepted: 06 December 2023 Published: 02 January 2024
  • MSC : 53C15, 53C40, 53C50

  • In this paper, we introduce the concepts of Riemannian warped-twisted product submersions and examine their fundamental properties, including total geodesicity, total umbilicity and minimality. Additionally, we investigate the Ricci tensor of Riemannian warped-twisted product submersions, specifically about the horizontal and vertical distributions. Finally, we obtain Einstein condition for base manifold if the horizontal and vertical distributions of the ambient manifold is Einstein.

    Citation: Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb. On Riemannian warped-twisted product submersions[J]. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144

    Related Papers:

  • In this paper, we introduce the concepts of Riemannian warped-twisted product submersions and examine their fundamental properties, including total geodesicity, total umbilicity and minimality. Additionally, we investigate the Ricci tensor of Riemannian warped-twisted product submersions, specifically about the horizontal and vertical distributions. Finally, we obtain Einstein condition for base manifold if the horizontal and vertical distributions of the ambient manifold is Einstein.



    加载中


    [1] B. O'Neill, The fundamental equation of submersion, Michigan Math. J., 13 (1966), 458–469. https://doi.org/10.1307/mmj/1028999604 doi: 10.1307/mmj/1028999604
    [2] A. L. Besse, Einstein manifolds, Berlin: Springer-Verlag, 1987. https://doi.org/10.1007/978-3-540-74311-8
    [3] I. K. Erken, C. Murathan, Riemannian warped product submersions, Results Math., 76 (2021), 1. https://doi.org/10.1007/s00025-020-01310-4 doi: 10.1007/s00025-020-01310-4
    [4] J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20–63. https://doi.org/10.2307/1969989 doi: 10.2307/1969989
    [5] R. L. Bishop, B. O'Neill, Manifolds of negative curvature, T. Am. Math. Soc., 145 (1969), 1–49.
    [6] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, World Scientific Publishing Co. Pvt. Ltd, 2017. https://doi.org/10.1142/10419
    [7] S. G. Aydin, H. M. Tastan, On a certain type of warped-twisted product submanifolds, Turk. J. Math., 46 (2022), 2645–2662. https://doi.org/10.55730/1300-0098.3292 doi: 10.55730/1300-0098.3292
    [8] H. M. Tastan, S. G. Aydin, Warped-twisted product semi-slant submanifolds, Filomat, 36 (2022), 1587–1602. https://doi.org/10.2298/FIL2205587T doi: 10.2298/FIL2205587T
    [9] M. A. Khan, S. Uddin, R. Sachdeva, Semi-invariant warped product submanifolds of cosymplectic manifolds, J. Inequal. Appl., 2012 (2012), 19. https://doi.org/10.1186/1029-242X-2012-19 doi: 10.1186/1029-242X-2012-19
    [10] K. S. Park, H-semi-invariant submersions, Taiwanese J. Math., 16 (2012), 1865–1878. https://doi.org/10.11650/twjm/1500406802 doi: 10.11650/twjm/1500406802
    [11] Y. Gunduzalp, Slant submersions from almost product Riemannian manifolds, Turk. J. Math., 37 (2013), 13 https://doi.org/10.3906/mat-1205-64 doi: 10.3906/mat-1205-64
    [12] Y. Gunduzalp, Semi slant submersions from almost product Riemannian manifolds, Demonstr. Math., 49 (2016), 345–356. https://doi.org/10.1515/dema-2016-0029 doi: 10.1515/dema-2016-0029
    [13] B. Sahin, Hemi-slant Riemannian maps, Mediterr. J. Math., 14 (2017), 10. https://doi.org/10.1007/s00009-016-0817-2 doi: 10.1007/s00009-016-0817-2
    [14] B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Academic Press, 2017.
    [15] M. A. Khan, C. Ozel, Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting a trans-Sasakian structure, Filomat, 35 (2021), 125–146. https://doi.org/10.2298/FIL2101125K doi: 10.2298/FIL2101125K
    [16] Y. Gunduzalp, Warped product pointwise hemi-slant submanifolds of a Para-Kaehler manifold, Filomat, 36 (2022), 275–288. https://doi.org/10.2298/FIL2201275G doi: 10.2298/FIL2201275G
    [17] Y. Li, R. Prasad, A. Haseeb, S. Kumar, S. Kumar, A study of Clairaut semi invariant Riemannian maps from cosymplectic manifolds, Axioms, 11 (2022), 503. https://doi.org/10.3390/axioms11100503 doi: 10.3390/axioms11100503
    [18] S. Rahman, A. Haseeb, N. Jamal, Geometry of warped product $ CR$ and semi-slant submanifolds in quasi-para-Sasakian manifolds, Int. J. Anal. Appl., 20 (2022), 59. https://doi.org/10.28924/2291-8639-20-2022-59 doi: 10.28924/2291-8639-20-2022-59
    [19] N. B. Turki, S. Shenawy, H. K. EL-Sayied, N. Syied, C. A. Mantica, $\rho$-Einstein solitons on warped product manifolds and applications, J. Math., 2022 (2022), 1028339. https://doi.org/10.1155/2022/1028339 doi: 10.1155/2022/1028339
    [20] I. Al-Dayel, F. Aloui, S. Deshmukh, Poisson doubly warped product manifolds, Mathematics, 11 (2023), 519. https://doi.org/10.3390/math11030519 doi: 10.3390/math11030519
    [21] L. S. Alqahtani, A. Ali, P. Laurian-Ioan, A. H. Alkhaldi, The homology of warped product submanifolds of spheres and their applications, Mathematics, 11 (2023), 3405. https://doi.org/10.3390/math11153405 doi: 10.3390/math11153405
    [22] S. Kumar, R. Prasad, A. Haseeb, Conformal semi-slant submersions from Sasakian manifolds, J. Anal., 31 (2023), 1855–1872. https://doi.org/10.1007/s41478-022-00540-9 doi: 10.1007/s41478-022-00540-9
    [23] S. G. Aydin, H. M. Tastan, Warped-twisted products and Einstein-like manifolds, Novi Sad J. Math., 2022, 1–19. https://doi.org/10.30755/NSJOM.12381 doi: 10.30755/NSJOM.12381
    [24] J. P. Bourguignon, H. B. Lawson Jr., Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189–230. https://doi.org/10.1007/BF01942061 doi: 10.1007/BF01942061
    [25] S. Ianus, M. Visinescu, Space-time compactification and Riemannian submersion, In: The mathematical heritage of C.F. Gauss, 1991,358–371. https://doi.org/10.1142/9789814503457_0026
    [26] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918–6929. https://doi.org/10.1063/1.1290381 doi: 10.1063/1.1290381
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(921) PDF downloads(86) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog