Research article

On the stability of Fractal interpolation functions with variable parameters

  • Received: 05 November 2023 Revised: 22 December 2023 Accepted: 27 December 2023 Published: 02 January 2024
  • MSC : 28A80, 47H10, 54H25, 37C70

  • Fractal interpolation function (FIF) is a fixed point of the Read–Bajraktarević operator defined on a suitable function space and is constructed via an iterated function system (IFS). In this paper, we considered the generalized affine FIF generated through the IFS defined by the functions $ W_n(x, y) = \big(a_n(x)+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. We studied the shift of the fractal interpolation curve, by computing the error estimate in response to a small perturbation on $ \alpha_n(x) $. In addition, we gave a sufficient condition on the perturbed IFS so that it satisfies the continuity condition. As an application, we computed an upper bound of the maximum range of the perturbed FIF.

    Citation: Najmeddine Attia, Neji Saidi, Rim Amami, Rimah Amami. On the stability of Fractal interpolation functions with variable parameters[J]. AIMS Mathematics, 2024, 9(2): 2908-2924. doi: 10.3934/math.2024143

    Related Papers:

  • Fractal interpolation function (FIF) is a fixed point of the Read–Bajraktarević operator defined on a suitable function space and is constructed via an iterated function system (IFS). In this paper, we considered the generalized affine FIF generated through the IFS defined by the functions $ W_n(x, y) = \big(a_n(x)+e_n, \alpha_n(x) y +\psi_n(x)\big) $, $ n = 1, \ldots, N $. We studied the shift of the fractal interpolation curve, by computing the error estimate in response to a small perturbation on $ \alpha_n(x) $. In addition, we gave a sufficient condition on the perturbed IFS so that it satisfies the continuity condition. As an application, we computed an upper bound of the maximum range of the perturbed FIF.



    加载中


    [1] M. Barnsley, S. Demko, Iterated function systems and the global construction of fractals, Proc Roy Soc London, 1985.
    [2] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434
    [3] M. Barnsley, A. Harrington, The calculus of fractal interpolation functions, J Approx Th 1989.
    [4] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 doi: 10.1512/iumj.1981.30.30055
    [5] M. F. Barnsley, Fractals everywhere, Boston: Academic Press, 1988.
    [6] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [7] A. Petrusel, I. A. Rus, M. A. Serban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223–237. https://doi.org/10.1007/s11228-014-0291-6 doi: 10.1007/s11228-014-0291-6
    [8] X. Y. Wang, F. P. Li, A class of nonlinear iterated function system attractors, Nonlinear Anal. Theor., 70 (2009), 830–838. https://doi.org/10.1016/j.na.2008.01.013 doi: 10.1016/j.na.2008.01.013
    [9] K. R. Wicks, Fractals and hyperspaces, 1991. Berlin, Heidelberg: Springer. https://doi.org/10.1007/BFb0089156
    [10] Mihail, R. Miculescu, The shift space for an infinite iterated function system, Math. Rep., 11 (2009), 21–32.
    [11] A. Mihail, R. Miculescu, Generalized IFSs on non-compact spaces, Fixed Point Theory Appl., 2010 (2010), 584215. https://doi.org/10.1155/2010/584215 doi: 10.1155/2010/584215
    [12] F. Strobin, J. Swaczyna, On a certain generalization of the iterated function system, Bull. Aust. Math. Soc., 87 (2013), 37–54. https://doi.org/10.1017/S0004972712000500 doi: 10.1017/S0004972712000500
    [13] K. Leśniak, Infinite iterated function systems: A multivalued approach, Bulletin Polish Acad. Sci. Math., 52 (2004), 1–8. https://doi.org/10.4064/ba52-1-1 doi: 10.4064/ba52-1-1
    [14] N. A. Secelean, Countable iterated function systems, Far East J. Dyn. Syst., 3 (2001), 149–167.
    [15] N. Attia, H. Jebali, On the construction of recurrent fractal interpolation functions using Geraghty contractions, Electron. Res. Arch., 31 (2023), 6866–6880. https://doi.org/10.3934/era.2023347 doi: 10.3934/era.2023347
    [16] N. Attia, M. Balegh, R. Amami, R. Amami, On the Fractal interpolation functions associated with Matkowski contractions, Electron. Res. Arch., 31 (2023), 4652–4668. https://doi.org/10.3934/era.2023238 doi: 10.3934/era.2023238
    [17] S. Ri, A new nonlinear fractal interpolation function, Fractals, 25 (2017), 1750063. https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633
    [18] S. Ri, New types of fractal interpolation surfaces, Chaos Solitons Fractals, 119 (2019), 291–297. https://doi.org/10.1016/j.chaos.2019.01.010 doi: 10.1016/j.chaos.2019.01.010
    [19] M. A. Navascués, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 602.
    [20] J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Ap. Mat., 51 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x
    [21] A. K. B, Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/040611070 doi: 10.1137/040611070
    [22] M. A. Navascuès, M. V. Sebastian, Smooth fractal interpolation, Journal of Inequalities and Applications Volume 2006, Article ID 78734, 1–20, https://doi.org/10.1155/JIA/2006/78734
    [23] P. Viswanathan, A. K. B. Chand, M. A. Navascuès, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019
    [24] N. Vijender, Bernstein fractal trigonometric approximation, Acta Appl. Math., 159 (2018), 11–27. https://doi.org/10.1007/s10440-018-0182-1 doi: 10.1007/s10440-018-0182-1
    [25] E. Mihailescu, Unstable directions and fractal dimension for skew products with overlaps in fibers, Math Zeit, 2011.
    [26] E. Mihailescu, M. Urbanski, Hausdorff dimension of the limit set of conformal iterated function systems with overlaps, Proc Amer Math Soc, 2011.
    [27] C. Gang, The smoothness and dimension of fractal interpolation functions, Appl. Math. JCU, 11 (1996), 409–418.
    [28] Md. Nasim Akhtar, M. Guru Prem Prasad, M. A. Navascués, Box dimension of $\alpha$-fractal function with variable scaling factors in subintervals, Chaos Soliton. Fract., 103 (2017), 440–449. https://doi.org/10.1016/j.chaos.2017.07.002 doi: 10.1016/j.chaos.2017.07.002
    [29] N. Attia, T. Moulahi, R. Amami, N. Saidi, Note on Fractal interpolation function with variable parameters, AIMS Math., 9 (2024), 2584–2601. https://doi.org/10.3934/math.2024127 doi: 10.3934/math.2024127
    [30] A. K. B. Chand, G. P. Kapoor, Smoothness analysis of coalescence hidden variable fractal interpolation functions, Int. J. Nonlinear Sci., 3 (2007), 15–26.
    [31] A. K. B. Chand, G. P. Kapoor, Stability of affine coalescence hidden variable fractal interpolation functions, Nonlinear Anal. Theor., 68 (2008), 3757–3770. https://doi.org/10.1016/j.na.2007.04.017 doi: 10.1016/j.na.2007.04.017
    [32] H. Y. Wang, J. S. Yu, Fractal interpolation functions with variable parameters and their analytical proper ties, J. Approx. Theory, 175 (2013), 1–18.
    [33] M. A. Navascués, Fractal trigonometric approximation, Electron. Trans. Numer. Anal., 20 (2005), 64–74.
    [34] M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwend., 24 (2005), 401–418. https://doi.org/10.4171/ZAA/1248 doi: 10.4171/ZAA/1248
    [35] M. A. Navascués, Fractal functions on the sphere, J. Comput. Anal. Appl., 9 (2007), 257–270.
    [36] H. Y. Wang, X. J. Li, Perturbation error analysis for fractal interpolation functions and their moments, Appl. Math. Lett., 21 (2008), 441–446. https://doi.org/10.1016/j.aml.2007.03.026 doi: 10.1016/j.aml.2007.03.026
    [37] H. J. Ren, W. X. Shen, A dichotomy for the Weierstrass-type functions, Invent. Math., 226 (2021), 1057–1100. https://doi.org/10.1007/s00222-021-01060-2 doi: 10.1007/s00222-021-01060-2
    [38] T. Y. Hu, K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649–665.
    [39] W. Shen, Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266.
    [40] L. Jiang, H. J. Ruan, Box dimension of generalized affine fractal interpolation functions, J. Fractal Geom., 10 (2023), 279–302. https://doi.org/10.4171/JFG/136 doi: 10.4171/JFG/136
    [41] J. Xu, Z. Feng, Fractal Interpolation Functions on the Stability of Vertical Scale Factor, Int. J. Nonlin. Sci., 13 (2012), 380–384.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(746) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog