Research article

Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds

  • Received: 21 August 2024 Revised: 27 September 2024 Accepted: 08 October 2024 Published: 15 October 2024
  • MSC : 53C05, 49K35, 62B10

  • Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.

    Citation: Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan. Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds[J]. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416

    Related Papers:

  • Chen (1993) developed the theory of $ \delta $-invariants to establish novel necessary conditions for a Riemannian manifold to allow a minimal isometric immersion into Euclidean space. Later, Siddiqui et al. (2024) derived optimal inequalities involving the CR $ \delta $-invariant for a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional curvature. In this work, we extend the study of such optimal inequality to the contact CR $ \delta $-invariant on contact CR-submanifolds in Sasakian statistical manifolds of constant $ \phi $-sectional curvature. This paper concludes with a summary and final remarks.



    加载中


    [1] S. Amari, H. Nagaoka, Methods of information geometry, New York: American Mathematical Society, 2000.
    [2] F. Al-Solamy, B. Y. Chen, S. Deshmukh, Two optimal inequalities for antiholomorphic submanifolds and their applications, Taiwanese J. Math., 18 (2014), 199–217. http://doi.org/10.11650/tjm.18.2014.3241 doi: 10.11650/tjm.18.2014.3241
    [3] F. Al-Solamy, B.-Y. Chen, S. Deshmukh, Erratum to: two optimal inequalities for anti-holomorphic submanifolds and their applications, Taiwanese J. Math., 22 (2018), 615–616. https://doi.org/10.11650/tjm/180405 doi: 10.11650/tjm/180405
    [4] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568–578.
    [5] B.-Y. Chen, An optimal inequality for CR-warped products in complex space forms involving CR $\delta$-invariant, Int. J. Math., 23 (2012), 1250045. https://doi.org/10.1142/S0129167X12500450 doi: 10.1142/S0129167X12500450
    [6] B.-Y. Chen, A tour through $\delta$-invariants: From Nash embedding theorem to ideal immersions, best ways of living and beyond, preprint papaer, 2013. https://doi.org/10.48550/arXiv.1307.1030
    [7] B.-Y. Chen, Pseudo-riemannian geometry, $\delta$-invariants and applications, Hackensack: World Scientific Publication, 2011.
    [8] H. Furuhata, Sasakian statistical manifolds Ⅱ, In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, Springer, 10589 (2017), 179–185.
    [9] H. Furuhata, I. Hasegawa, Submanifold Theory in Holomorphic Statistical Manifolds. In: Dragomir, S., Shahid, M., Al-Solamy, F. (eds) Geometry of Cauchy-Riemann Submanifolds, Singapore: Springer, 2016.
    [10] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys., 1117 (2017), 179–186. https://doi.org/10.1016/j.geomphys.2017.03.010 doi: 10.1016/j.geomphys.2017.03.010
    [11] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom., 108 (2017), 1175–1191. https://doi.org/10.1007/s00022-017-0403-1 doi: 10.1007/s00022-017-0403-1
    [12] H. Furuhata, I. Hasegawa, N. Satoh, Chen invariants and statistical submanifolds, Commun. Korean Math. Soc., 37 (2022), 851–864. https://doi.org/10.4134/CKMS.c210185 doi: 10.4134/CKMS.c210185
    [13] S. Kazan, A. Kazan, Sasakian statistical manifolds with semi-symmetric metric connection, Uni. J. Math. Appl., 1 (2018), 226–232. https://doi.org/10.32323/ujma.439013 doi: 10.32323/ujma.439013
    [14] C. W. Lee, J. W. Lee, Inequalities on Sasakian statistical manifolds in terms of Casorati curvatures, Mathematics, 6 (2018), 259. https://doi.org/10.3390/math6110259 doi: 10.3390/math6110259
    [15] I. Mihai, I. Presura, An inequality for contact CR-submanifolds in Sasakian space forms, J. Geom., 34 (2018), 109. https://doi.org/10.1007/s00022-018-0440-4 doi: 10.1007/s00022-018-0440-4
    [16] C. D. Neacsu, Mixed 3-Sasakian statistical manifolds and statistical submersions, In: Rovenski, V., Walczak, P., Wolak, R. (eds) Differential Geometric Structures and Applications. IWDG 2023. Springer, 440 (2024).
    [17] M. Noguchi, Geometry of statistical manifolds, Diff. Geom. Appl., 2 (1992), 197–222. https://doi.org/10.1016/0926-2245(92)90011-B doi: 10.1016/0926-2245(92)90011-B
    [18] V. Rani, J. Kaur, On Contact CR-Product of Sasakian statistical manifold, preprint paper, 2023. https://doi.org/10.48550/arXiv.2305.19790
    [19] A. N. Siddiqui, A. Ali, A. H. Alkhaldi, Chen optimal inequalities of CR-warped products of generalized Sasakian space form, J. Taibah Univ. Sci., 14 (2020), 322–330. https://doi.org/10.1080/16583655.2020.1738704 doi: 10.1080/16583655.2020.1738704
    [20] A. N. Siddiqui, A. H. Alkhaldi, M. H. Shahid, Geometric inequalities for CR $\delta$-invariant on generic statistical submanifolds, Filomat, 38 (2024), 1343–1355. https://doi.org/10.2298/FIL2404343S doi: 10.2298/FIL2404343S
    [21] S. Uddin, E. Peyghan, L. Nourmohammadifar, R. Bossly, On nearly Sasakian and nearly Kähler statistical manifolds, Mathematics, 11 (2023), 2644. https://doi.org/10.3390/math11122644 doi: 10.3390/math11122644
    [22] P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Stat. Math., 41 (1989), 429–450. https://doi.org/10.1007/BF00050660 doi: 10.1007/BF00050660
    [23] K. Yano, M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J., 3 (1980), 163–196. https://doi.org/10.2996/kmj/1138036191 doi: 10.2996/kmj/1138036191
    [24] K. Yano, M. Kon, Structures on manifolds, Singapore: World Scientific, 1984.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(313) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog