Research article Special Issues

Risk spillovers and extreme risk between e-commerce and logistics markets in China

  • Received: 27 June 2024 Revised: 15 September 2024 Accepted: 23 September 2024 Published: 14 October 2024
  • MSC : 62M10, 62P20, 91B84

  • We first utilized the Bayes positive diagonal BEKK generalized autoregressive conditional heteroskedasticity (Bayes-pdBEKK-GARCH) model to evaluate the risk spillovers between the e-commerce and logistics, then applied the adaptive Fourier decomposition method to measure the extent of these spillovers and detect structural changes. The results showed that there were structural breaks in both markets, which may lead to extreme risks. At last, we applied the GARCH-copula quantile regression model to analyze the extreme risks. We found that: (1) there were asymmetric volatility spillovers and positive correlations between them. (2) The dynamic risk spillovers exhibited heterogeneity over time. The logistics market had a smaller downside risk spillover, while the e-commerce market had a stronger upside risk spillover. (3) The study indicated that important events, such as the Chinese stock market crash, the Sino-U.S. trade friction, the COVID-19 epidemic, and the "either-or choice" monopoly policy of e-commerce platforms, had a significant influence on them, resulting in dramatic risk spillovers.

    Citation: Liushuang Meng, Bin Wang. Risk spillovers and extreme risk between e-commerce and logistics markets in China[J]. AIMS Mathematics, 2024, 9(10): 29076-29106. doi: 10.3934/math.20241411

    Related Papers:

  • We first utilized the Bayes positive diagonal BEKK generalized autoregressive conditional heteroskedasticity (Bayes-pdBEKK-GARCH) model to evaluate the risk spillovers between the e-commerce and logistics, then applied the adaptive Fourier decomposition method to measure the extent of these spillovers and detect structural changes. The results showed that there were structural breaks in both markets, which may lead to extreme risks. At last, we applied the GARCH-copula quantile regression model to analyze the extreme risks. We found that: (1) there were asymmetric volatility spillovers and positive correlations between them. (2) The dynamic risk spillovers exhibited heterogeneity over time. The logistics market had a smaller downside risk spillover, while the e-commerce market had a stronger upside risk spillover. (3) The study indicated that important events, such as the Chinese stock market crash, the Sino-U.S. trade friction, the COVID-19 epidemic, and the "either-or choice" monopoly policy of e-commerce platforms, had a significant influence on them, resulting in dramatic risk spillovers.



    加载中


    [1] Z. Teng, Y. He, R. Wu, E-commerce: Does sustainable logistics development matter? Sustainability, 15 (2023), 579. https://doi.org/10.3390/su15010579 doi: 10.3390/su15010579
    [2] Z. Y. Zhong, F. Guo, Z. Wang, H. Tang, Coordination analysis of revenue sharing in e-commerce logistics service supply chain with cooperative distribution, SAGE Open, 9 (2019), 2158244019870536. https://doi.org/10.1177/2158244019870536 doi: 10.1177/2158244019870536
    [3] M. Parvin, S. B. Asimiran, A. F. B. M. Ayub, Impact of introducing e-commerce on small and medium enterprises—a case on logistics provider, Soc. Bus. Rev., 17 (2022), 469–484. https://doi.org/10.1108/SBR-10-2020-0131 doi: 10.1108/SBR-10-2020-0131
    [4] Z. S. Ma, X. Ye, G. Pan, Spillover effects between competitive brands—based on the comparison of cross-border e-commerce and offline store scenarios, Dig. Econ. Sustain. Devel., 1 (2023), 6. https://doi.org/10.1007/s44265-023-00006-1 doi: 10.1007/s44265-023-00006-1
    [5] Y. Yu, X. Wang, R. Y. Zhong, G. Q. Huang, E-commerce logistics in supply chain management: Practice perspective, Procedia CIRP, 52 (2016), 179–185. https://doi.org/10.1016/j.procir.2016.08.002 doi: 10.1016/j.procir.2016.08.002
    [6] J. Cao, Y. Zhu, H. Zhu, S. Zhao, J. Zhang, Evolution model and driving mechanism of urban logistics land: Evidence from the Yangtze river delta, Land, 13 (2024), 616. https://doi.org/10.3390/land13050616 doi: 10.3390/land13050616
    [7] J. W. Kang, D. M. Ramizo, Nexus of technologyadoption, e-commerce, and global value chains: The case of asia, Asian Develop. Rev., 39 (2022), 45–73. https://doi.org/10.1142/S0116110522500147 doi: 10.1142/S0116110522500147
    [8] L. Tang, M. Chen, Y. Tang, Y. Xiong, Can e-commerce development alleviate farm household poverty vulnerability: Evidence from rural China, Cities, 153 (2024), 105297. https://doi.org/10.1016/j.cities.2024.105297 doi: 10.1016/j.cities.2024.105297
    [9] Z. H. Yang, S. D. Wang, Systemic financial risk contagion in global stock markets under public health emergencies—evidence from the new crown epidemic, Econ. Res., 56 (2021), 22–38. https://doi.org/10.1111/acfi.12775 doi: 10.1111/acfi.12775
    [10] G. Gereffi, H. C. Lim, J. Lee, Trade policies, firm strategies, and adaptive reconfigurations of global value chains, J. Int. Bus. Policy, 4 (2022), 506–522. https://doi.org/10.1057/s42214-021-00102-z doi: 10.1057/s42214-021-00102-z
    [11] M. Farghali, A. I. Osman, I. M. A. Mohamed, Z. H. Chen, L. Chen, I. Ihara, et al., Strategies to save energy in the context of the energy crisis: A review, Environ. Chem. Lett., 21 (2023), 2003–2039. https://doi.org/10.1007/s10311-023-01591-5 doi: 10.1007/s10311-023-01591-5
    [12] X. Tang, G. Wang, Design and analysis of e-commerce and modern logistics for regional economic integration in wireless networks, EURASIP J. Wirel. Comm., 208 (2020), 1–15. https://doi.org/10.1186/s13638-020-01816-z doi: 10.1186/s13638-020-01816-z
    [13] K. Guo, Research on location selection model of distribution network with constrained line constraints based on genetic algorithm, Neural Comput. Appl., 32 (2020), 1679–1689. https://doi.org/10.1007/s00521-019-04257-y doi: 10.1007/s00521-019-04257-y
    [14] H. Yang, S. D. Wang, Systemic financial risk contagion in global stock markets under public health emergencies—evidence from the new crown epidemic, Econ. Res., 56 (2021), 22–38. https://doi.org/10.1111/acfi.12775 doi: 10.1111/acfi.12775
    [15] M. Tian, M. M. Alshater, S. M. Yoon, Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model, Energy Econ., 115 (2022), 106341. https://doi.org/10.1016/j.eneco.2022.106341 doi: 10.1016/j.eneco.2022.106341
    [16] M. Tian, F. Guo, R. Niu, Risk spillover analysis of China's financial sectors based on a new GARCH copula quantile regression model, N. Am. J. Econ. Financ., 63 (2022), 101817. https://doi.org/10.1016/j.najef.2022.101817 doi: 10.1016/j.najef.2022.101817
    [17] M. Giuffrida, R. Mangiaracina, A. Perego, A. Tumino, Cross-border B2C e-commerce to greater China and the role of logistics: A literature review, Int. J. Phys. Distr. Log., 47 (2017), 772–795. https://doi.org/10.1108/IJPDLM-08-2016-0241 doi: 10.1108/IJPDLM-08-2016-0241
    [18] I. Zennaro, S. Finco, M. Calzavara, A. Persona, Implementing e-commerce from logistic perspective: Literature review and methodological framework, Sustainability, 14 (2022), 911. http://doi.org/10.3390/su14020911 doi: 10.3390/su14020911
    [19] S. Zeng, Q. Fu, F. Haleem, Y. Han, L. Zhou, Logistics density, e-commerce and high-quality economic development: An empirical analysis based on provincial panel data in China, J. Clean. Prod., 426 (2023), 138871. https://doi.org/10.1016/j.jclepro.2023.138871 doi: 10.1016/j.jclepro.2023.138871
    [20] P. E. I. Dang, T. Qian, Y. Guo, Transient time-frequency distribution based on mono-component decompositions, Int. J. Wavelets Multi., 11 (2013), 1350022. https://doi.org/10.1142/S0219691313500227 doi: 10.1142/S0219691313500227
    [21] A. Kawa, J. Światowiec-Szczepańska, Logistics as a value in e-commerce and its influence on satisfaction in industries: A multilevel analysis, J. Bus. Ind. Mark., 36 (2021), 220–235. https://doi.org/10.1108/JBIM-09-2020-0429 doi: 10.1108/JBIM-09-2020-0429
    [22] A. V. Barenji, W. Wang, Z. Li, D. A. Guerra-Zubiaga, Intelligent e-commerce logistics platform using hybrid agent based approach, Transport. Res. E-Log., 126 (2019), 15–31. https://doi.org/10.1016/j.tre.2019.04.002 doi: 10.1016/j.tre.2019.04.002
    [23] Z. Feng, Constructing rural e-commerce logistics model based on ant colony algorithm and artificial intelligence method, Soft Comput., 24 (2020), 7937–7946. https://doi.org/10.1007/s00500-019-04046-8 doi: 10.1007/s00500-019-04046-8
    [24] S. Teng, Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network, Soft Comput., 25 (2021), 12107–12116. https://doi.org/10.1007/s00500-021-05861-8 doi: 10.1007/s00500-021-05861-8
    [25] M. Viu-Roig, E. J. Alvarez-Palau, The impact of e-commerce-related last-mile logistics on cities: A systematic literature review, Sustainability, 12 (2020), 6492. https://doi.org/10.3390/su12166492 doi: 10.3390/su12166492
    [26] Z. A. Kawa, Out-of-Home delivery as a solution of the last mile problem in e-commerce, Smart and Sustainable Supply Chain and Logistics—Trends, Challenges, Methods and Best Practices, Springer, Cham, 1 (2020), 25–40. https://doi.org/10.1007/978-3-030-61947-3_2
    [27] H. Zhang, Y. Liu, Q. Zhang, Y. Cui, S. Xu, A bayesian network model for the reliability control of fresh food e-commerce logistics systems, Soft Comput., 24 (2020), 6499–6519. https://doi.org/10.1007/s00500-020-04666-5 doi: 10.1007/s00500-020-04666-5
    [28] S. A. Ross, Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy, J. Financ., 44 (1989), 1–17. https://doi.org/10.1111/j.1540-6261.1989.tb02401.x doi: 10.1111/j.1540-6261.1989.tb02401.x
    [29] S. Zeng, J. Jia, B. Su, C. Jiang, G. Zeng, The volatility spillover effect of the European Union (EU) carbon financial market, J. Clean. Prod., 282 (2021), 124394. https://doi.org/10.1016/j.jclepro.2020.124394 doi: 10.1016/j.jclepro.2020.124394
    [30] X. Gong, R. Shi, J. Xu, B. Lin, Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective, Appl. Energy, 285 (2021), 116384. https://doi.org/10.1016/j.apenergy.2020.116384 doi: 10.1016/j.apenergy.2020.116384
    [31] X. Gong, Y. Liu, X. Wang, Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method, Int. Rev. Financ. Anal., 76 (2021), 101790. https://doi.org/10.1016/j.irfa.2021.101790 doi: 10.1016/j.irfa.2021.101790
    [32] W. Zhang, X. Zhuang, Y. Lu, J. Wang, Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework, Int. Rev. Financ. Anal., 71 (2020), 101454. https://doi.org/10.1016/j.irfa.2020.101454 doi: 10.1016/j.irfa.2020.101454
    [33] S. Singhal, S. Ghosh, Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models, Resour. Policy, 50 (2016), 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001 doi: 10.1016/j.resourpol.2016.10.001
    [34] F. X. Diebold, K. Yilmaz, Measuring financial asset return and volatility spillovers, with application to global equity markets, Econ. J., 119 (2009), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.x doi: 10.1111/j.1468-0297.2008.02208.x
    [35] F. X. Diebold, K. Yilmaz, Better to give than to receive: Predictive directional measurement of volatility spillovers, Int. J. Forecast., 28 (2012), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006 doi: 10.1016/j.ijforecast.2011.02.006
    [36] F. X. Diebold, K. Yılmaz, On the network topology of variance decompositions: Measuring the connectedness of financial firms, J. Econometrics, 182 (2014), 119–134. https://doi.org/10.1016/j.jeconom.2014.04.012 doi: 10.1016/j.jeconom.2014.04.012
    [37] S. Cheng, L. Han, Y. Cao, Q. Jiang, R. Liang, Gold-oil dynamic relationship and the asymmetric role of geopolitical risks: Evidence from Bayesian pdBEKK-GARCH with regime switching, Resour. Policy, 78 (2022), 102917. https://doi.org/10.1016/j.resourpol.2022.102917 doi: 10.1016/j.resourpol.2022.102917
    [38] P. Rast, S. R. Martin, S. W. Liu, D. R. Williams, A new Frontier for studying within-person variability: Bayesian multivariate generalized autoregressive conditional heteroskedasticity models, Psychol. Methods, 27 (2020), 856–873. https://doi.org/10.1037/met0000357 doi: 10.1037/met0000357
    [39] C. C. Lee, H. Zhou, C. Xu, X. Zhang, Dynamic spillover effects among international crude oil markets from the time-frequency perspective, Resour. Policy, 80 (2023), 103218. https://doi.org/10.1016/j.resourpol.2022.103218 doi: 10.1016/j.resourpol.2022.103218
    [40] Q. Xie, R. Liu, T. Qian, J. Li, Linkages between the international crude oil market and the Chinese stock market: A BEKK-GARCH-AFD approach, Energ. Econ., 102 (2021), 105484. https://doi.org/10.1016/j.eneco.2021.105484 doi: 10.1016/j.eneco.2021.105484
    [41] Z. Wu, N. E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2019), 1–41. https://doi.org/10.1142/S1793536909000047 doi: 10.1142/S1793536909000047
    [42] Q. Tao, L. Zhang, Z. Li, Algorithm of adaptive fourier decomposition, IEEE T. Signal Process., 59 (2011), 5899–5906. https://doi.org/10.1109/TSP.2011.2168520 doi: 10.1109/TSP.2011.2168520
    [43] Y. Li, L. Zhang, T. Qian, 2D partial unwinding—a novel non-linear phase decomposition of images, IEEE T. Image Process., 28 (2019), 4762–4773. https://doi.org/10.1109/TIP.2019.2914000 doi: 10.1109/TIP.2019.2914000
    [44] C. Tan, L. Zhang, H. T. Wu, A novel Blaschke unwinding adaptive-Fourier-decomposition-Based signal compression algorithm with application on ECG signals, IEEE J. Biomed. Health, 23 (2019), 672–682. https://doi.org/10.1109/JBHI.2018.2817192 doi: 10.1109/JBHI.2018.2817192
    [45] J. Li, R. Liu, Q. Xie, The price fluctuation in Chinese carbon emission trading market: New evidence from adaptive Fourier decomposition, Proc. Comput. Sci., 119 (2022), 1095–1102. https://doi.org/10.1016/j.procs.2022.01.139 doi: 10.1016/j.procs.2022.01.139
    [46] J. Li, X. Yang, T. Qian, Q. Xie, The adaptive Fourier decomposition for financial time series, Eng. Anal.-Bound. Elem., 150 (2023), 139–153. https://doi.org/10.1016/j.enganabound.2023.01.037 doi: 10.1016/j.enganabound.2023.01.037
    [47] J. Zhao, L. Cui, W. Liu, Q. Zhang, Extreme risk spillover effects of international oil prices on the Chinese stock market: A GARCH-EVT-Copula-CoVaR approach, Resour. Policy, 86 (2023), 571041429. https://doi.org/10.1016/j.resourpol.2023.104142 doi: 10.1016/j.resourpol.2023.104142
    [48] P. Embrechts, Correlation: Pitfalls and alternatives, Risk Mag., 15 (1999), 69–71.
    [49] B. Zhi, X. Wang, F. Xu, Managing inventory financing in a volatile market: A novel data-driven copula model, Transport. Res. E-Log., 165 (2022), 102854. https://doi.org/10.1016/j.tre.2022.102854 doi: 10.1016/j.tre.2022.102854
    [50] Q. Gao, H. Zeng, G. Sun, J. Li, Extreme risk spillover from uncertainty to carbon markets in China and the EU—a time varying copula approach, J. Environ. Manage., 326 (2023), 116634. https://doi.org/10.1016/j.jenvman.2022.116634 doi: 10.1016/j.jenvman.2022.116634
    [51] T. Adrian, M. K. Brunnermeier, CoVaR, Am. Econ. Rev., 106 (2016), 1705–1741. https://doi.org/10.1257/aer.20120555
    [52] X. Sun, C. Liu, J. Wang, J. Li, Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach, Int. Rev. Financ. Anal., 68 (2020), 101453. https://doi.org/10.1016/j.irfa.2020.101453 doi: 10.1016/j.irfa.2020.101453
    [53] J. C. Mba, Assessing portfolio vulnerability to systemic risk: A vine Copula and APARCH-DCC approach, Financ. Innov., 10 (2024), 20. https://doi.org/10.1186/s40854-023-00559-2 doi: 10.1186/s40854-023-00559-2
    [54] A. J. Patton, Modelling asymmetric exchange rate dependence*, Int. Econ. Rev., 47 (2006), 527–556. https://doi.org/10.1111/j.1468-2354.2006.00387.x doi: 10.1111/j.1468-2354.2006.00387.x
    [55] E. Bouyé, M. Salmon, Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets, Eur. J. Financ., 15 (2009), 721–750. https://doi.org/10.1080/13518470902853491 doi: 10.1080/13518470902853491
    [56] M. Tian, H. Ji, GARCH copula quantile regression model for risk spillover analysis, Financ. Res. Lett., 44 (2022), 102104. https://doi.org/10.1016/j.frl.2021.102104 doi: 10.1016/j.frl.2021.102104
    [57] J. Geweke, Bayesian treatment of the independent student-t linear model, J. Appl. Economet., 8 (1993), S19–S40. https://doi.org/10.1002/jae.3950080504 doi: 10.1002/jae.3950080504
    [58] D. Lewandowski, D. Kurowicka, H. Joe, Generating random correlation matrices based on vines and extended onion method, J. Multivariate Anal., 100 (2009), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008 doi: 10.1016/j.jmva.2009.04.008
    [59] T. Qian, Y. B. Wang, Adaptive Fourier series—a variation of greedy algorithm, Adv. Comput. Math., 34 (2010), 279–293. https://doi.org/10.1007/s10444-010-9153-4 doi: 10.1007/s10444-010-9153-4
    [60] T. Qian, L. M. Zhang, H. Li, Mono-components vs imfs in signal decomposition, Int. J. Wavelets Multi., 6 (2011), 353–374. https://doi.org/10.1142/S0219691308002392 doi: 10.1142/S0219691308002392
    [61] R. S. Tsay, An introduction to analysis of financial data with R, John Wiley & Sons, 2014. Available from: https://books.google.com/books?id = UVJYBAAAQBAJ.
    [62] M. J. Sklar, Fonctions de répartition à n dimensions et leurs marges, 1 Ed., Annales de l'ISUP, 1959. Available from: https://hal.science/hal-04094463.
    [63] H. Joe, Multivariate models and multivariate dependence concepts, 1 Ed., New York: Chapman and Hall/CRC, 1997. https://doi.org/10.1201/9780367803896
    [64] R. B. Nelsen, An introduction to copulas, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/0-387-28678-0
    [65] R. Koenker, B. J. Park, An interior point algorithm for nonlinear quantile regression, J. Econometrics, 71 (1996), 265–283. https://doi.org/10.1016/0304-4076(96)84507-6 doi: 10.1016/0304-4076(96)84507-6
    [66] S. Wang, Tail dependence, dynamic linkages, and extreme spillover between the stock and China's commodity markets, J. Commod. Mark., 29 (2023), 100312. https://doi.org/10.1016/j.jcomm.2023.100312 doi: 10.1016/j.jcomm.2023.100312
    [67] L. Liu, F. Creutzig, Y. Yao, Y. Wei, Q. Liang, Environmental and economic impacts of trade barriers: The example of China–US trade friction, Resour. Energy Econ., 59 (2020), 101144. https://doi.org/10.1016/j.reseneeco.2019.101144 doi: 10.1016/j.reseneeco.2019.101144
    [68] J. Y. Lee, Y. S. Yang, P. N. Ghauri, E-commerce policy environment, digital platform, and internationalization of Chinese new ventures: The moderating effects of COVID-19 pandemic, Manag. Int. Rev., 63 (2022), 57–90. https://doi.org/10.1007/s11575-022-00491-0 doi: 10.1007/s11575-022-00491-0
    [69] L. Zhao, Modern China and international rules: Reconstruction and innovation, 1 Ed., Singapore: Springer Verlag, 2023. https://doi.org/10.1007/978-981-19-7576-9_6
    [70] X. Ma, Z. Yang, X. Xu, C. Wang, The impact of Chinese financial markets on commodity currency exchange rates, Glob. Financ. J., 37 (2018), 186–198. https://doi.org/10.1016/j.gfj.2018.05.003 doi: 10.1016/j.gfj.2018.05.003
    [71] A. U. Din, H. Han, A. Ariza-Montes, A. Vega-Muñoz, A. Raposo, S. Mohapatra, The impact of COVID-19 on the food supply chain and the role of e-commerce for food purchasing, Sustainability, 14 (2022), 3074. https://doi.org/10.3390/su14053074 doi: 10.3390/su14053074
    [72] A. I. Salitskii, E. A. Salitskaya, The United States and China: Deadlocks and paradoxes of trade war, Her. Russ. Acad. Sci., 90 (2020), 460–469. https://doi.org/10.1134/S101933162004005X doi: 10.1134/S101933162004005X
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(322) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog