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Abstract: We first utilized the Bayes positive diagonal BEKK generalized autoregressive conditional
heteroskedasticity (Bayes-pdBEKK-GARCH) model to evaluate the risk spillovers between the e-
commerce and logistics, then applied the adaptive Fourier decomposition method to measure the
extent of these spillovers and detect structural changes. The results showed that there were structural
breaks in both markets, which may lead to extreme risks. At last, we applied the GARCH-copula
quantile regression model to analyze the extreme risks. We found that: (1) there were asymmetric
volatility spillovers and positive correlations between them. (2) The dynamic risk spillovers exhibited
heterogeneity over time. The logistics market had a smaller downside risk spillover, while the e-
commerce market had a stronger upside risk spillover. (3) The study indicated that important events,
such as the Chinese stock market crash, the Sino-U.S. trade friction, the COVID-19 epidemic, and
the “either-or choice” monopoly policy of e-commerce platforms, had a significant influence on them,
resulting in dramatic risk spillovers.
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1. Introduction

With China’s digital economy continuing to grow at a rapid pace, e-commerce (EC) has entered
an era of inventive growth in 2020. According to the Global Payments Report 2021, China has been
the world’s largest EC market [1]. It is expected to reach a total value of $3.17 trillion by 2024.
The rapid development of EC has aided in the flourishing growth of the logistics (LOG) industry [2].
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In 2022, the national express delivery business generated revenue of 10566.7 billion yuan, a 2.3%
increase from the previous year. The total volume of express deliveries exceeded 110.58 billion pieces,
a 2.1% year-on-year increase, according to the State Post Bureau of the People’s Republic of China.
LOG plays a crucial role in EC, improving customers’ purchasing experience through the prompt
delivery of goods [3]. The rapid progress of EC relies on the backing of LOG, while the innovation and
enhancement of efficiency in the LOG business influences the evolution of EC in turn. However, this
close connection also makes it possible for any impact of the LOG industry to be quickly transmitted
to the EC industry, causing volatility and vice versa.

Spillover effects are a frequent topic of interest in economics research [4]. The interaction between
EC and LOG has produced significant spillover effects. Specifically, the widespread use of EC
platforms promotes the surge in LOG demand and drives the continuous innovation and upgrading
of LOG technology [5]. Once technologies such as intelligent warehousing systems, automated
sorting equipment, and big data analytics are implemented in the LOG industry, these technological
innovations generate spillover effects that spread to other industries and promote broader efficiency
improvements and accuracy [6]. Efficient and frictionless transportation of goods is essential for
both domestic and cross-border EC. The inefficiency of the LOG system, which includes freight
transportation, warehousing, border clearance and domestic postal delivery, exacerbates the cost of
trade for enterprises involved in EC. Therefore, maximizing the positive impact of transport and
LOG on EC can also improve the efficiency of the LOG chain [7]. In addition, the synergistic
development of EC and LOG also has a positive spatial spillover effect on the regional economy by
optimizing resource allocation and improving the overall efficiency of the supply chain. This effect
helps to narrow the development gap between urban and rural areas, promote the process of regional
economic integration, and achieve more balanced and sustainable development [8]. However, the
current international economic situation is complex and volatile. When various extreme risk events
occur internationally or domestically, China’s stock market tends to experience varying degrees of
volatility, which further exacerbates the risks in the financial market [9]. For example, the Sino-U.S.
trade friction has affected the foreign trade operations of Chinese EC companies, making many Chinese
companies face higher export costs and trade restrictions, making it necessary to adjust their supply
chain and market strategies [10]. The global energy crisis has pushed up LOG, transportation and
warehousing costs, making the company’s operating costs higher [11]. This is particularly severe
for small EC firms and LOG service providers. COVID-19 has contributed to the surge in online
shopping by consumers, leading to increasing pressure on LOG, with LOG firms having to deal with a
large number of orders and delivery demand issues. At this point, the development of EC in China is
hampered by a variety of issues, including LOG development [1].

Based on Tang and Wang [12] and Guo [13], we acknowledge the close interdependence between
the EC and LOG sectors, which constitute a significant portion of the national economy. However
there’s also the potential that this close relationship will increase and transmit risk between the two
markets; especially when faced with extreme events, this risk spillover effect will be amplified [14].
Thus, this paper’s goal is to explore the dynamics of asymmetric spillovers between the LOG and EC
industries and to reveal how they interact in extreme situations. We combine the findings of Tian et
al. [15] and Tian et al. [16] to further explore the underlying mechanisms of such extreme risk spillovers
and the potential threats they may pose to the stable development of the EC and LOG industries, as
well as to provide policymakers, firms, and investors with useful suggestions on how to better manage
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and mitigate extreme risk spillovers.
Previous research, such as that of Giuffrida et al. [17], Zennaro et al. [18] and Yu et al. [5],

only carried out theoretical and some descriptive analyses. While they demonstrated that the
growth of e-commerce has aided in the logistics industry’s prosperity [19], these studies lacked an
engaging discussion of the relationship between EC and LOG. As a result, we contribute in three
dimensions to the corpus of current literature. First, the Bayes positive diagonal BEKK generalized
autoregressive conditional heteroskedasticity (Bayes-pdBEKK-GARCH) model is employed to
illustrate the asymmetric spillover and evolving connection between the two markets. Our work differs
from Zeng et al. [19] in that the latter uses a two-way fixed-effects model to investigate the relationship
between logistics density and EC transaction size. Then the adaptive Fourier decomposition (AFD)
methodology is employed to reconstruct transient time-frequency distributions (TTFD) of EC and
LOG volatilities, overcoming restrictions of common statistical models and frequency analyses, such as
overlooking frequency information, requiring basis functions, and encountering modal aliasing, while
also highlighting structural changes in the frequency domain [20]. Third, the studies by Kawa and
Światowiec-Szczepańska [21] and Zeng et al. [19] only examine the linear relationship between EC
development and e-commerce. This paper also examines the study from a nonlinear perspective and
assesses extreme risk spillovers in both markets using a GARCH-copula quantile regression model to
measure volatility clustering, tail dependency, and possibly asymmetric effects of two markets under
extreme shocks, and to evaluate the extreme risk spillovers between them.

This study analyzes data from January 2, 2014, to November 30, 2023, comprising 2,413
observations. It includes significant events like China’s stock market crisis in 2015, the Sino-U.S.
trade friction, the COVID-19 epidemic, the EC “either-or choice” monopoly policy, and the Russo-
Ukrainian war. It is found that: (1) there is a unique dynamic relationship between the EC and LOG
markets, which is characterized by volatility spillovers and positive correlation. This implies that when
one market is volatile, the other markets are also affected, and the mutual impact is asymmetrical.
(2) Both markets have structural changes that result in fluctuations in volatility. (3) The relationship
between EC and LOG markets alters based on risk levels, and the dynamic risk spillover impact also
shows variability, evolving over time. The smallest downside risk spillover occurs in the LOG market,
whereas the upside risk spillover is observed in the EC market. Extreme events such as China’s stock
market crash, the Sino-U.S. trade friction, the COVID-19 epidemic, and the EC “either-or choice”
monopoly can significantly impact EC and LOG markets, leading to heightened market uncertainty
and risky volatility spillovers.

The article is structured as follows: Section 2 summarizes the relevant literature. Section 3 describes
the approaches used in this paper. Section 4 describes the relevant data used. Section 5 conducts an
empirical analysis. Section 6 concludes the full paper and makes recommendations accordingly.

2. Literature review

2.1. EC and LOG interactions

The information industry’s growth has led to significant expansion in LOG and EC, with LOG
being recognized as a crucial element in facilitating EC transactions. An effective, logical, and smooth
LOG system allows EC to take full advantage of its strengths [22]. Teng et al. [1] discovered that
the progress of LOG positively impacts EC, and this connection is affected by the growth rate of
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LOG. Also, Barenji et al. [22] stated that LOG plays such an important role in the EC process that
shipping costs can account for up to 40% of the price of a product. Currently, competition in the
EC industry has transitioned from business models to LOG services [19]. Guo [13] suggests that
this change is increasing the demand for faster delivery of the LOG network. How to improve the
timeliness of LOG distribution is a problem that all EC enterprises must face and urgently need to
solve. To address this problem, Guo [13] suggested a dual-layer planning approach for the location
of LOG urban distribution service systems to enhance distribution efficiency, decrease transportation
distance, and lower fuel costs. Feng [23] adopted the third-party delivery paradigm as a LOG strategy
and applied the colony of ants optimization method to calculate the most efficient routes and expenses.
This approach enhances LOG and distribution efficiency while also lowering LOG costs. Teng [24]
used a recurrent neural network to plan the LOG route of cross-border EC of agricultural products and
selected the optimal distribution path, so as to improve the timeliness of LOG distribution. Researchers
have studied methods to enhance the punctuality of LOG and transportation. They discovered that
enhancing the timeliness of LOG distribution has resulted in numerous advantages. In my opinion,
improving the timeliness of LOG and distribution can not only improve customer experience, but also
increase the repeat purchase rate, reduce the customer churn rate, and thus improve the competitiveness
of the EC platform.

The development of EC also promotes the growth of the LOG sector [19]. This is because the
development of EC can decrease the social transaction costs of businesses, such as credit charges,
time costs, and transportation costs [12]. The rise of EC can result in a notable rise in the volume
of packages and deliveries to urban areas, leading to an increase in urban freight transportation
demands, particularly in last-mile LOG [25]. Furthermore, online shopping has heightened customers’
expectations for convenience, leading them to desire the ability to autonomously select the time and
location for receiving their online purchases. Therefore, at this time, consumers not only expect fast
and free delivery but also flexibility in choosing when and where to pick up their goods [26]. Viu-Roig
and Alvarez-Palau [25] stated that the recent growth of EC has strengthened the importance of the “last
mile” in LOG, which offers clients the option to select delivery sites outside house delivery, including
lockers or collection points. Zhang et al. [27] believes that when the LOG industry is affected by
abnormal fluctuations or extreme events (such as weather disasters, traffic jams, strikes, etc.), it may
lead to problems such as delay, loss, damage, or nondelivery of LOG transportation. These issues can
impact the distribution and delivery services of EC, resulting in a compromised consumer experience,
increased order return rates, and inventory overstock. From the above, we can see that each of these
shocks creates volatility in another market. Therefore, we need to investigate the dynamic link between
LOG and EC and quantify the extreme risk transmission between them.

2.2. Methodology of the volatility spillover

Ross [28] was the first to introduce the notion of volatility spillovers. He contended that information
flow between markets influences volatility in prices, which is connected to the rate of information
dissemination in the market. The direction of volatility spillovers reflects the direction of information
flow. Specifically, when A market undergoes fluctuations such as shocks or price changes, these
variations impact B market through an information transmission process, leading B market to exhibit
similar volatile behavior. On the other hand, from a modern financial perspective, volatility embodies
asset risk. Thus, the core concept underlying the phenomenon of volatility spillover is the intricate
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propagation of risk across diverse markets [29].

Numerous scholars commonly use a variety of methods to explore the volatility spillover effects
between markets, including GARCH models, vector autoregression (VAR) models, Diebold and
Yilmaz (DY) methods, and so on. Several forms of GARCH models can be used to analyze volatility
spillovers between markets, including the BEKK-GARCH model and dynamic conditional correlation
(DCC-) GARCH model [30]. However, the GARCH model lacks the capacity for simultaneous
consideration of both the directional aspects and dynamic properties of volatility spillovers [31].
Though the BEKK-GARCH model excels at capturing the directional movement of volatility, it falls
short in accounting for time-varying characteristics [32]. Conversely, although the DCC-GARCH
model proficiently depicts temporal variations, it is inadequate in discerning the directional flow of
volatility [33]. To address the limitations of the GARCH model, Diebold and Yilmaz [34] developed
the DY spillover index, an innovative measure of volatility spillovers derived from the variance
decomposition of VAR prediction errors. However, DY has certain methodological and substantive
constraints. Methodologically, DY only addresses aggregate spillovers and overlooks the direction of
spillovers. Therefore, Diebold and Yilmaz [35, 36], enhanced this method by employing a generalized
VAR framework, effectively addressing its shortcomings and improving its analytical capabilities.
Besides, the estimation using the BEKK-GARCH model falls short in capturing temporally dynamic
characteristics. More significantly, it may generate negative diagonal coefficients. While these negative
diagonal coefficients do not pose inherent challenges during the estimation process, they introduce
potential interpretational complexities [37]. Therefore, Rast et al. [38] set positive restrictions on
the diagonal elements of the ARCH(A) and GARCH(B) parameters, requiring diag(A) > 0 and
diag(B) > 0, thus enabling a pdBEKK parameterization. This method was initially applied mainly in
psychological research, but now it has also been applied to volatility predictions and financial decision-
making. Cheng et al. [37] investigated the correlation between crude oil and gold by employing the
Bayes-pdBEKK-GARCH model.

Considering that financial time series are also characterized by frequency dimension, some scholars
have also investigated the spillover effects of financial markets under different time frequencies [39].
Common methods for frequency domain analysis include wavelet transform and empirical modal
decomposition (EMD). Wavelet transform’s limitation lies in selecting the wavelet basis function and
decomposition level, which can significantly influence the graphical manifestation of time-frequency
domain representations [40]. While the EMD method overcomes this issue, it faces modal aliasing
problems which reduces the analysis of data details and confidence. Wu and Huang [41] presented
an ensemble empirical mode decomposition technique, building upon the foundations of EMD
methodology. Although it does not entirely resolve the modal aliasing issue in EMD, the reconstructed
signal does help reduce the remaining noise. The constraints noted above can be bypassed by the AFD
approach. The AFD decomposition was an algorithm introduced by Tao et al. [42], which applied
variants and implementations of the greedy algorithm (matching pursuit) in Hardy H2 and L2 spaces.
This method is utilized to examine the instantaneous frequency of a specific signal and has been proven
to be robust. AFD has demonstrated strong performance in signal compression and denoision [43,44].
The AFD approach has also been used in financial time series in recent years. Li et al. [45] employed
the AFD method to analyze carbon price fluctuations in China. They reconstructed the model’s single
component, identified components with various time-frequency scales, compared the decomposition
results with EMD and variational mode decomposition (VMD), and found that the AFD effectively
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captures valuable price information derived by all these methods the best. In addition to this, Li et
al. [46] demonstrated that the detailed elements of AFD more accurately indicate the structural changes
in the original time series.

2.3. Methodology of the return spillover

The volatility spillover approach mentioned above can be used to capture linear dependence in
the financial domain, but it is not possible to measure nonlinear relationships between financial time
series [47]. Therefore the copula function theory of Embrechts [48] can be used to study nonlinearities
in finance and also to capture return spillovers. In recent years, copula specification has been used
by more and more scholars to study risk spillover effects in finance [49, 50]. Although value-at-
risk (VaR) constitutes an efficacious methodology for assessing the extremity of risks associated with
individual assets or standalone financial markets, it demonstrates a notable deficiency in accounting for
the interconnected risks that propagate between dissimilar financial assets or market sectors. Therefore,
Adrian and Brunnermeier [51] presented conditional VaR (CoVaR) as a new risk measure. Unlike
Adrian and Brunnermeier [51], we use a GARCH-copula quantile regression model rather than a
quantile regression model or a GARCH-copula model to estimate CoVaR. GARCH-copula models
are effective in capturing nonlinear tail dependence between markets, accurately representing sharp
peaks, thick tails of marginal distributions, biases, serial correlations, and phenomena of volatility
clustering [15, 52, 53]. Nevertheless, a limitation of such copula-based models lies in their assumption
of a static nature for the nonlinear tail dependence structure, which might fail to adequately capture
the dynamic nature of financial interactions over time [15]. Time-varying coefficient (TVC) models
were subsequently presented by Patton [54], where the structural composition of the copula remains
invariant, and the allowance for temporal fluctuations in tail dependence endows these models with
a crucial degree of dynamism. Implementing a TVC model could result in an unreliable VaR for
asset portfolios and assets. Bouyé and Salmon [55] introduced a copula quantile regression model.
This model fails to account for serial correlation and the clustering of volatilities within the marginal
distributions, potentially resulting in inaccurate estimations of the outcomes. Tian and Ji [56] advocated
for the implementation of a GARCH-copula quantile regression framework to quantify the downside-
CoVaR (DCoVaR), emanating from four distinct financial markets toward the developed market
financial system. This model is considered more rational than the traditional GARCH-copula model
and simpler to manage than the TVC model. On this basis, Tian et al. [15] applied this model to
evaluate the upward and downward tail dependence between oil prices and stock market returns for
different risk levels. We employ the aforementioned model to investigate the spillover effects of
extreme risks, both in terms of upward and downward movements, between EC and LOG markets.
Subsequently, we assess the significance and asymmetry of the model’s results using the two-sample
bootstrap Kolmogorov-Smirnov (KS) test.

3. Methodology

To assess the asymmetric transmission of risk between LOG and EC markets, we employ a Bayes-
pdBEKK-GARCH model to investigate the asymmetric spillover effects and dynamic interactions in
them. The model not only portrays the time-varying characteristics of market volatility, but also reveals
the transmission mechanism of volatility across different markets, thus laying a solid foundation for
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the subsequent risk spillover analysis. Subsequently, in order to specifically quantify the extent of
spillovers revealed by the Bayes-pdBEKK-GARCH model and to detect whether structural mutations
are embedded in it, we use the AFD method. Its powerful signal processing capability helps to
identify potential structural mutation points, providing important clues to extreme risk. Finally, to
quantify and assess extreme risk, we use the GARCH- copula quantile regression (CQR) model. This
model combines the GARCH model with the copula function, which not only captures the tail risk
characteristics of market returns, but also calculates the conditional CoVaR, which provides us with
a powerful tool to measure extreme risk. To ensure the significance and asymmetry of the GARCH-
CQR model results, a two-sample KS test is also used to ensure that our analytical conclusions are both
robust and reliable.

3.1. Bayes-pdBEKK-GARCH model

Given the observation sample y = y1, ..., yD , the conditional likelihood function θ =

(φ0, φ, ψ,C, A, B, β, υ) of the Bayes-pdBEKK-GARCH(1,1) model is:

L(y
∣∣∣θ, x) =

T∏
t=1

|Ht|
−1/2 pη[(C + A

′

(εt−1ε
′

t−1)A + B
′

(Ht−1)B)−1/2(yt − µt)], (1)

Ht =C + A′(εt−1ε
′

t−1)A + B′(Ht−1)B, (2)

where the joint density function ηt of pη of is assumed to be a standard multivariate normal distribution.
To better accommodate the thick-tailed characteristics of the data, we use the multivariate Student-t
distribution S t(ν, 0, I) with the degree of freedom ν, proposed by Geweke [57], instead of the Gaussian
distribution. Assume that µt is a multivariate autoregressive moving average model (ARMA)(1,1)
model, i.e., µt = φ0 + φyt−1 + ψ(yt−1 − µt−1); φ0 is a d × d vector of intercepts; φ is a d × d matrix
denoting the AR(1) components; and ψ is a d × d matrix denoting the MA(1) components. Let Ht =(
h11,t h12,t

h21,t h22,t

)
be the covariance matrix, C =

(
c11 0
c21 c22

)
be the constant term matrix, A =

(
a11 a12

a21 c22

)
be the

ARCH coefficient matrix, and B =

(
b11 b12

b21 b22

)
be the GARCH coefficient matrix. The constant variance

C = sRcs, where Rc is the correlation, s is the standard deviation, and the matrix diag(s) = exp(Xβ)
comprises solely elements derived from the linear model, while on the logarithmic scale, the standard
deviation is denoted as β ∼ N(0, 3I). Lewandowski et al. [58] proposed the correlation matrix prior
Rc ∼ LKJ(ν = 1), which is employed to specify the prior distribution of the correlation matrix, where
ν controls the shape of the distribution.

Both ARCH and GARCH have invariant elements that are constrained to ensure smoothness
during the process. This allows us to specify the prior distribution directly since the prior is defined
as a uniform prior with lower and upper bounds. For the Bayes-pdBEKK-GARCH model, it is
a prerequisite that the absolute eigenvalues of the Kronecker product between the ARCH(A) and
GARCH(B) processes are required to be both less than 1, and thus the prior distribution is assumed to
be A ∼ U(al, au), B ∼ U(bl, bu) [38].
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3.2. AFD test

3.2.1. AFD method

The Takenaka-Malmquist (TM) system, also known as the modified Blaschke product, is defined
as:

Bn(z) = B{a1,a2,...,an}(z) :=
1
√

2π

√
1 − |an|

2

1 − anz

∏n−1

k=1

z − ak

1 − anz
, (3)

an ∈ D(n = 1, 2, ...), D =
{
z ∈ C : |z| < 1

}
, where C is a complex plane [59]. For any an in D, the system

Bn(z) is orthogonal. Within this system, a condition for hyperbolic indivisibility exists if and only if∑∞

k=1
(1 − |ak|) = ∞. (4)

In the case of infinite sequences, the above conditions are sufficient and necessary Bn(z) to form a
basis H2 (D) space. For ∀F ∈ H2, utilizing the Cauchy formula, we derive for the case the following
expression:

〈
F, e{a}

〉
=
√

2π
√

1 − |a|2
1

2πi

∫ 2π

0

F(e jt)
e jt − a

de jt =
√

2π
√

1 − |a|2F(a), (5)

where e{a} is called the evaluator or normalized reproduction kernel at the point a, which is

e{a}(e jt) =

√
1 − |a|2

1 − ae jt . (6)

A relationship exists for a real-valued signal G̃:

G̃ = 2 Re G+ − c0, (7)

where c0 represents the power expansion coefficient of F, G+ ∈ H2. G̃ can be reconstructed by G+.
The precise steps are as follows:

Step 1: Use the maximized projection to select
∣∣∣G1, e{a}

∣∣∣2. In the first decomposition layer, for any
a ∈ D: ∣∣∣G1, e{a}

∣∣∣2 = 2π(1 − |a|2)|G1(a)|2, (8)

we can get a1 = arg max
∣∣∣G1, e{a}

∣∣∣2.

Step 2: Set G1(z) =
〈
G1, e{a1}

〉
e{a1} + R1(z), where R1(z) = G2(z)

z − a1

1 − a1z
.

Step 3: Use maximum screening G1 to obtain G2.

G2(z) = (G1(z) −
〈
G1, e{a1}

〉
e{a1})

1 − a1z
z − a1

. (9)

AFD amplification G+ was obtained by the above process.
For a real-valued signal G̃ , the signal G can be reconstructed by the decomposition method

described above, and this process is called AFD decomposition.
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3.2.2. AFD-based transient time-frequency distribution

The analytic signal obtained after AFD decomposition can be denoted as x(t) = ρ(t)e jµ(t), and its
TTFD is defined as [20] :

P(t, ξ) = ρ2(t)δM(ξ − ϕ
′

(t)), (t, ξ) ∈ R ×
[
−

1
2M

,+∞

)
, (10)

where

δM

(
ξ − ϕ

′

(t)
)

=


M, ξ ∈

[
ϕ
′

(t) −
1

2M
, ϕ

′

(t) +
1

2M

]

0, ξ <

[
ϕ
′

(t) −
1

2M
, ϕ

′

(t) +
1

2M

] . (11)

M is a huge positive integer. If M is 1, then δM(ξ − ϕ′(t)) is a unit pulse function.
There are 3 key features of TTFD. First, the transient frequency is the same for all channels in

a decomposition layer. Second, the shown transient frequencies are always positive [59, 60]. Third,
because of the traits of the TM system, ωn(t) < ωn+1(t) . At each time instance, there is no overlapping
spectral content among the various decomposition scales [20].

Assuming that orthogonal decomposition applies to the analytic representation of a monocomponent
signal x(t), the corresponding TTFD is defined as:

P(t, ξ) =

∞∑
k=1

Pk(t, ξ) =

∞∑
k=1

ρ2(t)δM(ξ − ϕ
′

(t)), (t, ξ) ∈ R ×
[
−

1
2M

,+∞

]
, (12)

where Pk(t, ξ) is the TTFD of a single component xk.

3.3. GARCH-CQR models based on CoVaR

3.3.1. Marginal distribution model

In this section, we introduce the ARMA-GARCH model, which captures the correlation, volatility,
and conditional heteroscedasticity properties of the return series. The ARMA(p,q)-EGARCH(m,n)
model is 

rt = µt + at = ϕ0 +
∑p

i=1 ϕirt−1 +
∑q

j=1 ψtat− j + at

at = σtεt, εt ∼ S S S T (ξ, ν)
lnσ2

t = ω +
∑m

i=1 gi(εt−i) +
∑n

j=1 β j lnσ2
t− j

, (13)

where p and q are nonnegative integers; ϕ0 is the constant term, ϕi and ψt are the autoregressive
and moving average parameters, respectively; σ2

t is the conditional variance; sequence {εt} comprises
independent and identically distributed (i.i.d) random variables, which adhere to a standardized skewed
Student-t probability distribution [61]; ξ is the skewness, ν is the degree of freedom, ω > 0, ai > 0,
β j > 0 and

∑max(m,n)
j=1 (ai + β j) < 1; gi(εt−i) = (αiε + γi(|εi| − E |εi|)); the parameter αi represents the sign

effect; and the parameter γi represents the magnitude effect, which indicates the asymmetric effect of
positive and negative return fluctuations.
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3.3.2. CQR model

Using the Sklar theorem proposed by Sklar [62], the marginal distribution u = FX(x) of the random
variable X and the marginal distribution v = FY(y) of Y are connected into a multivariate distribution
function, which is FXY(x, y) = C(FX(x), FY(y); δ). Based on the conditional probability that Y is in the
quartile τ given X = x, we get

v = C−1
1 (τ|u; δ) , (14)

which is the τth copula quartile curve for (u, v). Thus we can obtain the CQR function of (x, y) at the τ
quantile :

y = F−1
Y

(
C−1

1 (τ|FX (x) ; δ)
)
. (15)

The (1 − τ)th copula quantile curve of (u, v) can be generated based on the definition of the upside-
CoVaR (UCoVaR):

v = C−1
1 (1 − τ|u; δ) . (16)

This is the (1 − τ)th copula quantile curve of (u, v). Thus the CQR function of (x, y) at the (1 − τ)
quantile is:

y = F−1
Y

(
C−1

1 (1 − τ|FX(x); δ)
)
. (17)

3.3.3. CoVaR model

According to the measures of VaR and CoVaR given by Adrian and Brunnermeier [51], conditional
on the downside VaRlog

β,t and upside VaRlog
1−β,t of the LOG market returns for a given confidence level

1 − β, the DCoVaRec|log
τ|β,t and UCoVaRec|log

1−τ|1−β,t of the EC market are satisfied as follows for a given
confidence level 1 − τ:

Pr(rec,t 6 CoVaRec|log
τ|β,t

∣∣∣∣rlog,t = VaRlog
β,t

)
= Pr(rec,t > CoVaRec| log

1−τ|1−β,t

∣∣∣∣rlog,t = VaRlog
1−β,t

)
= τ, (18)

where rec,t and rec,t represent the returns of the EC and LOG markets, respectively. Therefore, at a
confidence level 1 − τ, the risk spillover ∆CoVaRec|log

τ|β,t from the LOG market to the EC market is:

∆CoVaRec| log
τ|β,t = CoVaRec|log

τ|β,t −CoVaRec|log
τ|0.5,t, (19)

where CoVaRec|log
τ|β,t and CoVaRec|log

τ|0.5,t represent the VaR ratios of the EC market during troubled and
benchmark states of the LOG market, respectively.

Similarly, the upside risk spillovers are

∆CoVaRec|log
1−τ|1−β,t = CoVaRec|log

1−τ|1−β,t −CoVaRec|log
1−τ|0.5,t. (20)

In the later work, we use the single-parameter copula family including Clayton copula, Joe Copula,
Gumbel copula, Galambos copula, Hüsler-Reiss copulas, as well as their corresponding rotated
forms [63,64], which are shown in Appendix A. Here the Clayton copula better describes the downward
tail dependence between EC and LOG, and the Joe copula, the Gumbel copula, the Galambos copula,
and the Hüsler-Reiss copula better describes the upward tail dependence between EC and LOG, and
their rotated forms can describe the opposite dependency structure. We use the parameter C(u, v; δ)

to represent the copula and the parameter C1(v|u; δ) =
∂C(u, v; δ)

∂u
to represent the conditional copula,

which are shown in Appendix B.
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3.3.4. GARCH-CQR model based on CoVaR

Let Flog,t and Fec,t denote the marginal distribution functions of returns rlog,t and rec,t in the LOG and
EC markets, respectively, which are available according to the definition of CoVaR, Eqs (14) and (15):

Dec

CoVaRec|log
τ|β,t − µec,t

σec,t

 = C−1
1

τ
∣∣∣∣∣∣∣Dlog

VaRlog
β,t − µlog,t

σlog,t

 ; δ

 = C−1
1

(
τ
∣∣∣∣Dlog

(
VaRεlog

β,t

)
; δ

)
, (21)

where Dlog and Dec denote the marginal distribution functions of εlog,t and εec,t, respectively, and the
standardized residuals of rlog,t and rec,t; µlog,t, µec,t, andσlog,t,σec,t are the conditional means and standard
deviations of the returns in the LOG and EC markets, respectively. Therefore, the DCoVaR can be
obtained by the following estimation:

CoVaRec| log
τ|β,t = µec,t + σec,tD−1

ec

(
C−1

1

(
τ
∣∣∣∣Dlog

(
VaRεlog

β,t

)
; δ

))
, (22)

where D−1
ec is a quantile function of εec,t. Eq (23) represents the inlying algorithm for the non-linear

quantile regression model [65] at the τth quantile:

Qτ(εec,t

∣∣∣ εlog,t) = θτ + ητD−1
ec

(
C−1

1

(
τ
∣∣∣∣Dlog

(
Dlog

(
εlog,t

))
; δτ

))
, (23)

where Qτ(εec,t

∣∣∣ εlog,t) is the τth conditional quantile of εec,t given εlog,t, ητ is the scaling parameter, and
θτ is the translation parameter. Thus, given confidence levels τ and β , conditional on the downside
VaRlog

β,t of the LOG market, the DCoVaRec|log
τ|β,t of the EC market can be obtained:

CoVaRec|log
τ|β,t =

(
µec,t + σec,tθτ

)
+ σec,tητD−1

ec

(
C−1

1

(
τ
∣∣∣∣Dlog

(
Dlog

(
εlog,t

))
; δτ

))
. (24)

Equation (24) is the DCoVaR-based GARCH-CQR model [56]. Meanwhile, the UCoVaR-based
GARCH-CQR model [15] is:

CoVaRec|log
1−τ|1−β,t =

(
µec,t + σec,tθ1−τ

)
+ σec,tη1−τD−1

ec

(
C−1

1

(
1 − τ

∣∣∣∣Dlog

(
Dl og

(
εlog,t

))
; δ1−τ

))
. (25)

Correspondingly, under the condition that the LOG market is in the benchmark state (β = 0.5), the
DCoVaR and UCoVaR for the EC market can be computed utilizing Eqs (24) and (25), thereby yielding
expressions for the respective downside and upside risk spillover effects as follows:

∆CoVaRec|log
τ|β,t = σec,tητ

(
D−1

ec

(
C−1

1 (τ |β ; δτ)
)
− D−1

ec

(
C−1

1 (τ |0.5 ; δτ)
))
. (26)

and

∆CoVaRec|log
1−τ|1−β,t = σec,tη1−τ(D−1

ec (C−1
1 (1 − τ |1 − β; δ1−τ) − D−1

ec

(
C−1

1 (1 − τ |0.5; δ1−τ)
)
. (27)

3.3.5. Two-sample bootstrap KS test

To discern if the risk spillovers from the LOG market to the EC market are statistically significant,
we use the two-sample bootstrap KS test [15] to compare the cumulative distribution function of the
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baseline CoVaR with those of the dynamic DCoVaR and UCoVaR. The pertinent statistical quantities
for the significance test were defined as follows:

Dmn = (mn/ (m + n))0.5 sup |Fm (x) −Gn (x)| , (28)

where Fm(x) represents the cumulative distribution function (CDF) of the baseline CoVaR, while Gn(x)
denotes the CDF corresponding to the DCoVaR(UCoVaR). Here, and m and n denote the sizes of the
two samples being compared. The null hypotheses underlying the significance tests for both DCoVaR
and UCoVaR are formulated as follows:

H0 : ∆CoVaRec| log
τ|β,t = CoVaRec|log

τ|β,t −CoVaRec|log
τ|0.5,t = 0 (29)

and

H0 : ∆CoVaRec|log
1−τ|1−β,t = CoVaRec|log

1−τ|1−β,t −CoVaRec|log
1−τ|0.5,t = 0. (30)

Finally, the asymmetry test is conducted to investigate whether the contribution of upside risk
spillovers from the LOG market to the EC market is greater than or equal to that of downside risk
spillovers. This asymmetry assessment can also be facilitated through a two-sample bootstrap KS test.
The original hypothesis for this asymmetry test is stated as follows:

H0 : CoVaRec|log
1−τ|1−β,t >

∣∣∣∣CoVaRec|log
τ|β,t

∣∣∣∣ . (31)

4. Data

This paper selects daily data from January 2, 2014, to November 30, 2023, which contained a total
of 2413 observations. The year 2014 is an extremely important year for the development of China’s EC
and LOG. China’s two major EC companies JD.com and Alibaba listed in the United States, and the
State Council of China had a new plan for China’s LOG, issuing the “Medium and Long-term Plan for
the Development of the Logistics Industry (2014-2020)”. These three events have greatly promoted the
development of EC in China. Extreme events such as the 2015 Chinese stock market crisis, the 2018
Sino-U.S. trade friction, the 2020 COVID-19 pandemic, the 2021 Chinese EC monopoly incident, and
the 2022 Russia-Ukraine war are all included in the sample range.

For the variable EC, we adopt the China Securities Index (CSI) E-Commerce Thematic Index which
selects the securities of listed companies involved in EC platforms, trading services and commodity
sales as the index sample to reflect the overall performance of the securities of EC-related listed
companies in the Shanghai Stock Exchange and Shenzhen Stock Exchange in China. For the variable
LOG, we choose the CSI Logistics Industry Index which selects the securities of listed companies
involved in Shanghai Stock Exchange and Shenzhen Stock Exchange in China. The data is obtained
from the official website of CSI (https://www.csindex.com.cn/about/overview). Note that China
Securities Index Co., Ltd. (CSI), a financial market index provider, was jointly funded in August
2005 by China’s two major stock exchanges, the Shanghai Stock Exchange and the Shenzhen Stock
Exchange, which means it has a certain authority (https://www.csindex.com.cn/about/overview).

We compute returns by taking logarithmic differences of prices:

Ri,t = ln(Pi,t/Pi,t−1), (32)

where Ri,t is the original price series of the EC(LOG) index at the time t. Figure 1 reveals the plots of
EC and LOG.
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4.1. Descriptive analysis

Figure 1 shows the logarithmic returns for the EC and LOG markets. The return series shows
significant volatility and clustering patterns. The EC and LOG markets experienced large fluctuations
in 2015–2016, which corresponded to the Chinese stock market crisis of 2015 [66]. In 2018, both
EC and LOG were affected by the Sino-U.S. trade friction, and their development was hindered [67],
showing a downside trend. During the outbreak of COVID-19 in 2020, the restriction of people’s travel
made it possible for EC transactions to increase dramatically [68], which also drove the development
of LOG. In 2021, the “either-or choice” of China’s EC monopoly policy limited competition in the EC
market which hindered the development of other EC firms and inhibited the growth and innovation of
the industry as a whole. In 2022, the continued impact of COVID-19 and the imposition of high tariffs
on Chinese goods has hampered the development of China’s EC into overseas markets [69].

Figure 1. Daily returns for EC and LOG.

Table 1 presents descriptive statistics for the return series of the EC and LOG markets. The average
of all returns is close to zero. The large difference between the maximum and minimum values of EC
and LOG proves that they have significant fluctuations of their own. The skewness of EC and LOG
is less than 0, which is left-skewed. Their peaks are greater than 3, which is in line with the peak
characteristics EC and LOG are characterized by “sharp peaks and thick tails”, which suggests that
there is a high probability that EC and LOG exhibit extreme tail events. At the 1% significant level, the
ADF results show that the return series of EC and LOG are smooth, and the results of the Jarque-Bera
(JB) test indicate that EC and LOG do not adhere to a normal distribution. Furthermore, the results of
the Ljung-Box (LB) test also refute the original hypothesis of autocorrelation with a lag of 9 periods.
The results of Engle’s Lagrange multiplier (LM) test reveal that there is a significant ARCH effect in
both markets.
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Table 1. Descriptive statistics.

EC LOG
Observations 2413 2413
Mean 0.013147 0.009655
Median 0.050172 0.025629
Maximum 7.757555 7.356383
Minimum -9.78207 -9.35511
Std. Dev. 2.033659 1.556255
Skewness -0.48967 -0.68829
Kurtosis 6.01057 8.524796
ADF -44.7259∗∗∗ -44.989∗∗∗

Jarque-Bera 1007.691∗∗∗ 3259.392∗∗∗

LB 37.325∗∗∗ 45.627∗∗∗

LM 493.21∗∗∗ 434.99∗∗∗

Notes: (a) LB denotes the Ljung-Box statistic for lagged 9th order return series. (b)LM test is used to compute the ARCH effect for
lagged 7th order return series. (c)*** denotes significance at a 1% significance level.

4.2. Bayesian pdBEKK-GARCH model

The Bayes-pdBEKK-GARCH model is employed on stationary time series data to investigate the
dynamics of conditional covariance and conditional correlation structures. This model with a lag order
of (1,1) has been shown to better characterize the volatility spillovers between markets [37]. We utilize
the Bayes-pdBEKK-GARCH(1,1) model in this study to evaluate the volatility spillovers between EC
and LOG markets.

Table 2 describes in detail the volatility spillover results between EC and LOG. The estimation
results indicate that the diagonal elements α11 (0.17), α22 (0.27), β11 (0.98), and β22 (0.94) of matrix A
and matrix B are significant. This indicates the presence of significant ARCH and GARCH effects
in both markets, implying that EC and LOG are susceptible to idiosyncratic shocks and persistent
volatility. We also examine the non-diagonal elements of the matrices, αi j and βi j, i , j , which capture
the cross-market effects of the two markets, i.e., the volatility and persistence spillovers between the
EC and LOG markets. Specifically, the α21 parameter in the ARCH and GARCH results indicates that
LOG generates a short-run negative shock to EC, β21 indicates that LOG generates a long-run positive
volatility spillover to EC, respectively, and the β12 parameter indicates that EC generates a long-run
negative volatility spillover to LOG. Thus, in both EC and LOG markets, the present conditional
volatility on either side is found to be influenced not solely by its prior volatility, but also by the
preceding volatility of the opposing market. The results confirm the interdependence between EC and
LOG markets. In addition, there is a conditional correlation between the volatility of EC and LOG
over time (as shown in Figure 2). In most cases, a substantial positive correlation was found between
the two markets.

AIMS Mathematics Volume 9, Issue 10, 29076–29106.



29090

Table 2. Bayesian pdBEKK-GARCH results.

mean 5% 50% 95%
R 0.76 0.51 0.77 0.93
α11 0.17 0.13 0.17 0.21
α21 -0.06 -0.1 -0.06 -0.01
α12 0.04 -0.01 0.04 0.08

A

α22 0.27 0.23 0.27 0.31
β11 0.98 0.97 0.98 0.99
β21 0.02 0.0 0.02 0.03
β12 -0.02 -0.03 -0.02 0.00

B

β22 0.94 0.92 0.94 0.95

Note: (a) Posterior mean, median, and 5% to 95% confidence intervals (CrI) for both markets. (b) Parameters with a posteriori probability
mass greater or less than zero and p > 0.95 are bolded.

Figure 2. Conditional correlation.

4.3. AFD test

First, we apply the AFD method, rooted in the TM system, to break down the volatility estimates
obtained from the Bayes-pdBEKK-GARCH(1,1) estimation. Then, TTFD of volatility is created
to identify structural changes in the two markets. After identifying the breakpoints, the volatility
characteristics of the two markets in the vicinity of the breakpoints are analyzed to study the effect of
a shock in one market that leads to structural breaks in the other market.

EC market and LOG market volatility are decomposed and reconstructed based on the TM system.
Figure 3(a) shows the decomposition and reconstruction results for EC. “Decomposition no” denotes
the maximum step size of the decomposition, and “MSE” denotes the discrepancy between the initial
volatility signal of EC and the rebuilt volatility signal. The smaller the error, the smaller the signal loss
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obtained from the reconstruction, which means the more original information is retained. The blue line
depicts the actual fluctuation pattern, whereas the red line displays the rebuilt fluctuation sequence.
From Figure 3(a), it can be seen that the reconstructed fluctuation signal and the original fluctuation
signal are the same, and the error is 0.0061. Figure 3(b) shows the decomposition and reconstruction
results of LOG, which has an error of 0.0146. We will use the results to support the decomposition and
reconstruction, and then proceed to create their TTFD maps.

Figure 3. Mean square error of EC and LOG volatility.

Figure 4(a) shows the TTFD of EC, which consists of many colored dots. The x-axis is the time
point under study and the y-axis is the frequency of EC. Higher frequencies indicate stronger changes in
volatility. With 70 decompositions and reconfigurations, the peaks will overlap or increase with each
other, and the volatility jitter will also be more violent, indicating the presence of structural breaks.
According to Figure 4(a), the peaks of the TTFD of EC volatility occur in 2015, 2018, 2020, 2021,
and 2022. Figure 4(b) shows the TTFD of LOG, similar to Figure 4(a). According to Figure 4(b),
the peaks of the TTFD of EC volatility occur in 2015, 2018, 2020, and 2023. These events, such
as China’s stock market turmoil in 2015 [70], the United States imposing large-scale tariffs on goods
imported from China, the COVID-19 outbreak in 2020 [71], and the Russia-Ukraine conflict in 2022,
bring serious risk spillovers to China’s EC and LOG industries. The economic downturn, exchange
rate depreciation, and major stock market turmoil directly affected consumers’ purchasing power and
confidence, which may lead to a decline in EC transactions and a decrease in LOG demand. The
large-scale tariffs imposed by the U.S. on China’s goods, the COVID-19 epidemic, and disruptions
in the global supply chain have left EC companies to deal with unreliable raw material availability,
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increased costs, and disruptions in LOG transportation. The Russia-Ukraine conflict and the global
food and energy crisis have caused serious damage to the global industrial and supply chains, which
may lead to multiple risks such as a tight import and export trade environment, rising LOG costs, and
unstable supply chains. These challenges require EC and LOG enterprises to respond more cautiously,
strengthen risk management, and innovate coping strategies.

Figure 4. TTFD of EC and LOG volatility.

4.4. GARCH-CQR models

4.4.1. Estimation of the marginal distribution

To capture the distributional properties of the posterior tail, skewness, autocorrelation, and volatility
aggregation, marginal return distributions of EC and LOG markets are formulated using ARMA-
EGARCH frameworks, adopting standard normal, Student-t, and skewed Student-t distributions.
Model selection is guided by the log-likelihood function (LLF) and Akaike information criterion (AIC),
tabulated in Table 3. The superior fit is discerned as the ARMA(1)-EGARCH(1) model with a skewed
Student-t distribution, as indicated by the lowest AIC and highest LLF values.

Table 3. Selection of edge distribution.

Markets Distribution ARMA(1,1)-EGARCH(1,1)
LLF AIC

EC
Norm -4795.5 3.9805
Student-t -4745.5 3.9399
Skewed Student-t -4740.5 3.9366

LOG
Norm -4134.9 3.433
Student-t -4052.4 3.3654
Skewed Student-t -4050.7 3.3649

Note: LLF and AIC are log-likelihood functions and AIC information criteria, respectively.

The selected models in Table 3 were used for estimation, and the estimated parameters in Table 4
were obtained by the LB test and ARCH test. Applying the LB test on standardized residuals and their
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squared values derived from the ARMA(1)-EGARCH(1) model with Skewed Student-t distributed
errors, we fail to reject the null hypothesis of no serial correlation up to lag 9 at a 5% significance
level. Consistently, the LM test fails to detect any ARCH influence in the EC and LOG returns.
Parameter and standard deviation estimates validate the adequacy of the ARMA(1)-EGARCH(1)
specification. Moreover, the Skewed Student-t distribution’s parameter estimates confirm the non-
normality of standardized residuals, corroborating the detected left-skewness and kurtosis in Table 1.

Table 4. Estimated parameters of the ARMA(1)-EGARCH(1) framework with Skewed
Student-t distribution.

Parameters EC LOG
ϕ0 -0.0168 0.0132
ϕ1 -0.6197∗∗∗ -0.2799∗∗∗

ψ1 0.6556∗∗∗ 0.3331∗∗∗

ω 0.0097∗∗∗ 0.0085∗∗∗

α1 -0.0150 0.0149
γ1f 0.9915∗∗∗ 0.9852∗∗∗

ξ 0.1435∗∗∗ 0.169∗∗∗

v 0.9132∗∗∗ 0.950∗∗∗

v 7.2387∗∗∗ 5.6395∗∗∗

LB
6.0620 3.7081
[0.2464] [0.7573]

LB2
2.772 4.6217
[0.7960] [0.4870]

LM
1.2036 5.600
[0.8784] [0.1705]

Notes: (a) LB signifies the Ljung-Box test statistic assessing serial correlation up to lag 9 in residuals. (b) LB2 represents the Ljung-Box
test for autocorrelation in squared residuals at lag 9. (c) LM indicates the ARCH effect detected after considering lags up to the 7th
order. (d) p-values are enclosed in square brackets. (e) *** implies the rejection of the null hypothesis at a 1% significance level.

4.4.2. Copula model estimation and selection

The marginal inference function (IMF) method [64] is used on the standardized residuals (εec,t, εlog,t)
to select the optimal copula function for pairing EC and LOG markets. Based on the LLF and AIC
values given in Table 5, the rotating Gumbel copula and Gumbel copula models are more effective
in capturing the DCoVaR and UCoVaR between EC and LOG markets, respectively. Therefore, we
choose these two copula models in the rest.
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Table 5. Estimated parameters of the ARMA(1)-EGARCH(1) framework with Skewed
Student-t distribution.

Tail dependence Copula EC-LOG

δ̂ LLF
Downside Clayton 1.487 544.9

Rotated Joe 2.030 552.2
Rotated Gumbel 1.729 621.3
Rotated Galambos 1.005 615.3
Rotated Husler-Reiss 1.436 600.7

Upside Rotated Clayton 1.487 241.4
Joe 1.736 326.2
Gumbel 1.636 487.9
Galambos 0.897 472.4
Husler-Reiss 1.26 442

4.4.3. Estimation of the CQR model

The rotating Gumbel CQR model and the Gumbel CQR model were fitted using residuals
(εec,t, εlog,t), t = 1, 2, ... , at the 5% and 95% quantiles to estimate coefficients δ, θ, and η . The results
are presented in Table 6, and the corresponding fitted curves can be seen in Figure 5. To illustrate
this desirable property and the robustness of the method, we generate 2000 random values of (u, v) for
Gumbel copula and Rotated Gumbel copula with different parameters δ . The marginal distributions
of x and y follow the Skewed Student-t distribution with different parameters. We show the robustness
of the results by plotting the CQR curves for the Gumbel copula and Rotated Gumbel copula series in
Appendix C.

Figure 5. Quantile regression fitting curve.

The parameters δ for the EC and LOG markets show that the EC market has both stronger downside
and upside tail dependence, while the LOG market shows stronger dependence only in the upside tail
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and the strongest dependence of all the upside tail dependence. The panning parameter θ is greater
than 0 at the 95% quantile. The scaling factor η is greater than 1 at the 5% quantile and less than 1 at
the 95% quantile. The analysis of the δ estimation in Table 6 indicates that the GARCH-CQR model
is more likely than the GARCH copula model with a constant tail structure dependence, as it accounts
for the varying nonlinear relationship between the two markets based on the risk level.

Table 6. Coefficient estimates for the CQR model.

Quantiles τ = 5% 1 − τ = 95%

Estimates
∧

δτ
∧

θτ
∧
ητ

∧

δ1−τ
∧

θ1−τ
∧
η1−τ

EC 1.5053∗∗ 0.13315 1.0320∗∗∗ 4.2228∗∗ 0.9132∗∗ 0.7081∗∗

-7.2192 -0.385 -6.3353 -1.988 -4.1501 -8.7946
LOG 1.9972∗∗ -0.1956 0.9571∗∗∗ 2.5434 0.9892∗∗∗ 0.5133∗∗∗

-8.963 -1.4492 -18.1078 -1.3768 -3.1364 -4.7237

Notes: (a) t-values are in parentheses. (b) *** indicates rejection of the original hypothesis at the 1% significance level. (c) ** indicates
rejection of the original hypothesis at the 5% significance level.

4.4.4. Dynamic risk spillover between the two markets

We conduct an estimation of dynamic CoVaR and assess risk spillover with the 95% level of
statistical significance. DCoVaRec|log

τ|β,t and UCoVaRec|log
1−τ|1−β,t for the EC and LOG markets can be

calculated by Eqs (24) and (25). To determine whether mutual spillovers between the two markets
hold, we apply significance to their dynamic CoVaR. The significance test presented in Table 7 reveals
a rejection of the original hypothesis at a 1% significance level. Therefore, it can be said that EC and
LOG markets influence each other.

Table 7. Significance test and asymmetry test results.

Industry EC LOG

CoVaRec|log
τ|β,t -4.4923 (-1.8806) -4.7334 (-1.9816)

Downside H0 : ∆CoVaRec|log
τ|β,t = 0 0.1210∗∗∗ [0.0000] 0.1144∗∗∗ [0.0000]

CoVaRec|log
1−τ|1−β,t 4.2324 (-1.7833) 4.1715 (-1.7558)

Upside H0 : ∆CoVaRec|log
1−τ|1−β,t = 0 0.1409∗∗∗ [0.0000] 0.1558∗∗∗ [0.0000]

Statistics Asymmetric H0 : ∆CoVaRec|log
1−τ|1−β,t >

∣∣∣∣∆CoVaRec|log
τ|β,t

∣∣∣∣ 0.2122∗∗∗ [0.0000] 0.2064∗∗∗ [0.0000]

Note: (a) Variance is in parentheses. (b) p-values are located in square brackets. (c) *** indicates rejection of the original hypothesis at
the 1% significance level.

However, the average absolute value of the downside risk spillover exceeds the upside risk spillover
in both markets, meaning that pronounced asymmetry exists in risk spillovers. This finding aligns
with the last column of Table 4 and corroborates the outcomes derived from the prior Bayes-pdBEKK-
GARCH model estimation.

Figure 6 shows the dynamic CoVaR and ∆CoVaR of the two markets at the 95% confidence level.
The gray points are the standard deviation of log returns, and the red and blue lines indicate the CoVaR
at the 0.5 and 0.05 quartiles, respectively. The trends of CoVaR and ∆CoVaR are the same over
time, and the risk spillovers reflect the impacts of some major events, such as the 2015 China stock
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market crash, Sino-U.S. trade friction, COVID-19, and the Fed’s contractionary monetary policy. In
2015, China’s A-share market crashed and the Chinese yuan (CNY) plummeted [66]. This led to an
increase in the cost of imported goods, which greatly impacted EC companies that rely on imported
goods, and at the same time the cost of export goods also rose, putting pressure on export LOG
companies. In 2018, the U.S. government announced tariffs on some imports from China, which
led to a decline in export sales on Chinese EC platforms, as consumers may reduce their purchases of
these goods as a result of rising costs [72]. In 2020, COVID-19 spread and many countries or regions
implemented measures such as embargoes and export restrictions, leading to supply chain disruptions
and unstable supply of goods [71]. At this time, EC companies faced more LOG and customs clearance
challenges to keep their cross-border EC business running normally. The LOG industry is also affected
by transportation restrictions, rising costs, etc. In 2022, the Fed’s contractionary monetary policy
caused the exchange rates of many currencies to fall to record lows, imported inflationary pressures
increased sharply, the risk of debt defaults rose, and financial markets fluctuated violently. These
affected international trade in China’s EC and LOG sectors.

Figure 6. Dynamic risk spillovers in the two markets.

5. Conclusions

This paper investigates asymmetric spillovers between EC and LOG markets. First, the Bayes-
pdBEKK-GARCH model is used as the starting point of the analysis, which is an extension of
the BEKK-GARCH model that integrates Bayesian inference with the positive diagonal BEKK
parameterization methodology, aiming to more accurately capture and analyze the asymmetric
volatility spillovers and dynamic relationships between the two markets. It is found that significant
asymmetric volatility spillovers and positive correlations do exist between the EC and LOG markets,
which lays the theoretical foundation and provides key findings for the subsequent risk spillover
analysis. In order to deeply quantify the extent of volatility spillovers and explore structural changes
among markets, the AFD methodology of observing frequency shifting to detect potential structural
mutations not only helps to reconstruct the transient time-frequency distributions of EC and LOG
volatility, but also identifies important clues that the market may have suffered or is experiencing
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shocks from extreme events, which provides important clues for the subsequent analysis of extreme risk
spillovers. After identifying the presence of asymmetric volatility spillovers and potential structural
mutations between markets, we employ a GARCH-CQR model to capture volatility clustering, tail
dependence, and potential asymmetric effects in the data. The GARCH model partially and efficiently
fits the volatility of market returns, while the copula function is used to characterize the tail dependence
between the variables, in particular the upper and lower tails of the asymmetric dependence structure of
the tails. Through quantile regression, the model is able to portray the market behavior under different
risk levels in a more detailed way, and CoVaR is calculated accordingly to accurately measure the
extreme risk spillover between the two markets. The experimental results show that both downside and
upside tail dependence are strong in the EC market, while the LOG market shows strong dependence
only in the upside tail, which is the strongest dependence among all the upside tail dependence. It is
also confirmed that the nonlinear dependence structure between the two markets varies with the level
of risk.

In summary, it can be obtained that: First, there exists a distinctive dynamic connection between
the EC and LOG markets, which is characterized by volatility spillovers and positive correlation.
This means that when one market experiences volatility, the other market is also impacted, and their
relationship is marked by asymmetry. In addition, both markets are found to experience structural
changes, potentially resulting in varying behavioral patterns and volatility shifts throughout specific
time frames. Second, the EC and LOG markets exhibit a nonlinear interdependence, where their
relationship dynamically adjusts according to the prevailing risk levels. These changes require market
participants to consistently evaluate their risk management techniques and business models. At the
same time, the dynamic risk spillovers exhibit heterogeneity and change over time. This indicates that
the transfer of risk between two markets is neither uniform nor steady, but instead an intricate process
affected by several circumstances. In particular, the LOG market has the least downside risk spillover,
possibly attributed to the LOG industry’s inherent high threshold and stability, rendering it resilient
to specific risk factors. EC market is strongest on upside risk spillover, indicating that the growth of
the EC sector is more likely to significantly benefit the LOG market during prosperous times. This is
likely because the EC industry’s expansion directly drives the increased need for LOG services. Third,
extreme events such as China’s stock market turmoil, the Sino-U.S. trade friction, COVID-19, and EC’s
“either-or choice” monopoly can significantly impact both the EC and LOG markets, which heightened
market uncertainty and increased extreme risk spillovers between the two markets. Our research fills
a gap in the literature and thus more accurately expresses the spillover relationship between EC and
LOG markets.

Based on the above findings, our study suggests the following policy and regulatory implications:
first, market authorities should enhance the control of EC and LOG industries, particularly in light
of the ”either-or choice” monopoly incident in EC, rigorously combatting monopolistic practices to
foster fair market competition. Second, the government has to enhance the management and oversight
of the supply chain to mitigate the effects of unexpected occurrences on the LOG industry. It should
also bolster international collaboration to enhance the stability of the supply chain. Third, increased
investment and resources should be allocated to the LOG sector, particularly for the advancement of
technology and digitalization within the business, to enhance efficiency and competitiveness in the
market. Fourth, investors and fund managers should consider including assets from both the EC and
LOG sectors in their portfolios, capitalizing on the positive correlation and spillover effects between
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the two to implement a diversification strategy. It is also important to keep an eye on market volatility
and asymmetric spillover and adjust investment weightings to diversify risk when appropriate. Given
the significant upside risk spillover from the EC market, focus on its positive momentum and increase
exposure to the LOG market when it performs well.
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A. Appendix A

Table A. Copula model.

Copula models Copula function Parameter
Clayton CC(u, v; δ) = (u−δ + v−δ − 1)−1/δ δ ∈ [0,∞)
Joe CJ(u, v; δ) = 1− ((1 − u)δ + (1 − v)δ − (1 − u)δ(1 − v)δ)1/δ δ ∈ [1,∞)
Gumbel CG(u, v; δ) = exp(−((− log u)δ + (− log v)δ)1/δ) δ ∈ [1,∞)
Galambos CGa(u, v; δ) = uv exp(−((− log u)δ + (− log v)δ)1/δ) δ ∈ [0,∞)

Hüsler-Reiss
CHR(u, v; δ) = exp(Φ(δ−1 + 0.5δ log(log u/ log v)) log u

+Φ(δ−1 + 0.5δ log(log u/ log v)) log v)
δ ∈ [0,∞)

Rotated Clayton CRC(u, v; δ) = u + v − 1 + CC(1 − u, 1 − v; δ) δ ∈ [0,∞)
Rotated Joe CRJ(u, v; δ) = u + v − 1 + CJ(1 − u, 1 − v; δ) δ ∈ [1,∞)
Rotated Gumbel CRG(u, v; δ) = u + v − 1 + CG(1 − u, 1 − v; δ) δ ∈ [1,∞)
Rotated Galambos CRGa(u, v; δ) = u + v − 1 + CGa(1 − u, 1 − v; δ) δ ∈ [0,∞)
Rotated Hüsler-Reiss CRHR(u, v; δ) = u + v − 1 + CHR(1 − u, 1 − v; δ) δ ∈ [0,∞)

Note: Φ is the marginal distribution function of the standard normal distribution.
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B. Appendix B

Table B. Descriptive statistics.

Copula models Conditional distribution functions
Clayton CC

1 (v|u; δ) = (1 + uδ(v
−δ
− 1))−(1+δ)/δ

Joe CJ
1(v|u; δ) = (1 + (1 − u)−δ(1 − v)δ − (1 − v)δ)(1−δ)/δ(1 − (1 − v)δ)

Gumbel CG
1 (v|u; δ) = u−1CG(u, v; δ)(1 + (log v/ log u)δ)(1−δ)/δ

Galambos CGa
1 (v|u; δ) = u−1CGa(u, v; δ)(1 − (1 + (log u/ log v)δ)−(1+δ)/δ)

Hüsler-Reiss CHR
1 (v|u; δ) = CHR(u, v; δ)u−1Φ(δ−1 + 0.5δ log(log u/ log v))

Rotated Clayton CRC
1 (v|u; δ) = 1 − (1 + (1 − u)δ((1 − v)

−δ
− 1))−(1+δ)/δ

Rotated Joe CRJ
1 (v|u; δ) = 1 − (1 + u−δvδ − vδ)(1−δ)/δ(1 − vδ)

Rotated Gumbel
CRG

1 (v|u; δ) = 1 − (1 − u)−1CG(1 − u, 1 − v; δ)
×(1 + (log(1 − v)/ log(1 − u))δ)(1−δ)/δ

Rotated Galambos
CRGa

1 (v|u; δ) = 1 − (1 − u)−1CGa(1 − u, 1 − v; δ)
×(1 − (1 + (log(1 − u)/ log(1 − v))δ)−(1+δ)/δ)

Rotated Hüsler-Reiss
CRHR

1 (v|u; δ) = 1 −CHR(1 − u, 1 − v; δ)(1 − u)−1

×Φ(δ−1 + 0.5δ log(log(1 − u)/ log(1 − v)))

Note: Φ is the marginal distribution function of the standard normal distribution.

C. Appendix C

Figure C1. Gumbel CQR curves with delta=2.5.
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Figure C2. Gumbel CQR curves with delta=3.5.

Figure C3. Rotated Gumbel CQR curves with delta=2.5.
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Figure C4. Rotated Gumbel CQR curves with delta=3.5.
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