Research article

A new family of positively based algebras $ {\mathcal{H}}_n $

  • Received: 25 October 2023 Revised: 04 December 2023 Accepted: 10 December 2023 Published: 26 December 2023
  • MSC : 16D80, 16G60

  • In this paper, we introduce a new family of algebras $ {\mathcal{H}}_n $, which are generated by three generators $ x, y, z $, with the following relations: (1) $ x^{2n} = 1, \ y^2 = xy+y, \ xy = yx; $ and (2) $ z^2 = z, \ xz = zx = z, \ zy = 2z. $ First, it shows that $ {\mathcal{H}}_n $ is a positively based algebra. Then, all the indecomposable modules of $ {\mathcal{H}}_n $ are constructed. Additionally, it shows that the dimension of each indecomposable $ {\mathcal{H}}_n $-module is at most $ 2 $. Finally, all the left (right) cells and left (right) cell modules of $ {\mathcal{H}}_n $ are described, and the decompositions of the decomposable left cell modules are also obtained.

    Citation: Shiyu Lin, Shilin Yang. A new family of positively based algebras $ {\mathcal{H}}_n $[J]. AIMS Mathematics, 2024, 9(2): 2602-2618. doi: 10.3934/math.2024128

    Related Papers:

  • In this paper, we introduce a new family of algebras $ {\mathcal{H}}_n $, which are generated by three generators $ x, y, z $, with the following relations: (1) $ x^{2n} = 1, \ y^2 = xy+y, \ xy = yx; $ and (2) $ z^2 = z, \ xz = zx = z, \ zy = 2z. $ First, it shows that $ {\mathcal{H}}_n $ is a positively based algebra. Then, all the indecomposable modules of $ {\mathcal{H}}_n $ are constructed. Additionally, it shows that the dimension of each indecomposable $ {\mathcal{H}}_n $-module is at most $ 2 $. Finally, all the left (right) cells and left (right) cell modules of $ {\mathcal{H}}_n $ are described, and the decompositions of the decomposable left cell modules are also obtained.



    加载中


    [1] Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Isr. J. Math., 114 (1999), 29–60. https://doi.org/10.1007/BF02785571
    [2] I. Assem, D. Simson, A. Skowroński, Elements of the representation theory of associative algebras volume 1: Techniques of representation theory, Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511614309
    [3] H. I. Blau, Table algebras, Eur. J. Combin., 30 (2009), 1426–1455. https://doi.org/10.1016/j.ejc.2008.11.008
    [4] L. F. Cao, H. X. Chen, L. B. Li, The cell modules of the Green algebra of Drinfel'd quantum double $D(H_4)$, Acta Math. Sin.-English Ser., 38 (2022), 1116–1132. https://doi.org/10.1007/s10114-022-9046-8 doi: 10.1007/s10114-022-9046-8
    [5] J. L. Chen, S. L. Yang, D. G. Wang, Y. J. Xu, On $4n$-dimensional neither pointed nor semisimple Hopf algebras and the associated weak Hopf algebras, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1809.00514
    [6] M. Geck, Left cells and constructible representations, Represent. Theor., 9 (2005), 385–416. https://doi.org/10.1090/S1088-4165-05-00245-1 doi: 10.1090/S1088-4165-05-00245-1
    [7] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165–184. https://doi.org/10.1007/BF01390031 doi: 10.1007/BF01390031
    [8] T. Kildetoft, V. Mazorchuk, Special modules over positively based algebras, Doc. Math., 21 (2016), 1171–1192. https://doi.org/10.4171/DM/555 doi: 10.4171/DM/555
    [9] G. Kudryavtseva, V. Mazorchuk, On multisemigroups, Port. Math., 72 (2015), 47–80. https://doi.org/10.4171/PM/1956
    [10] S. Y. Lin, S. L. Yang, Representations of a class of positively based algebras, Czech. Math. J., 73 (2023), 811–838. https://doi.org/10.21136/CMJ.2023.0254-22 doi: 10.21136/CMJ.2023.0254-22
    [11] G. Lusztig, A class of irreducible representations of Weyl group, Indagat. Math., 82 (1979), 323–335. https://doi.org/10.1016/1385-7258(79)90036-2 doi: 10.1016/1385-7258(79)90036-2
    [12] G. Lusztig, A class of irreducible representations of Weyl group., Indagat. Math., 85 (1982), 219–226. https://doi.org/10.1016/S1385-7258(82)80013-9 doi: 10.1016/S1385-7258(82)80013-9
    [13] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math., 43 (1977), 125–175. https://doi.org/10.1007/BF01390002 doi: 10.1007/BF01390002
    [14] V. Mazorchuk, V. Miemietz, Cell 2-representations of finitary 2-categories, Compos. Math., 147 (2011), 1519–1545. http://dx.doi.org/10.1112/S0010437X11005586 doi: 10.1112/S0010437X11005586
    [15] G. Singh, Bialgebra structures on table algebras, Linear Multilinear A., 69 (2021), 2288–2314. http://dx.doi.org/10.1080/03081087.2019.1669524 doi: 10.1080/03081087.2019.1669524
    [16] I. Schur, Zur Theorie der einfach transitiven Permutations-gruppen, Preuss. Akad. Wiss. Phys.-Math. KI., 1933,598–623.
    [17] I. Schur, Gesammelte abhandlungen, Springer-Verlag, Berlin, New York, 1973.
    [18] D. Su, S. L. Yang, Green rings of weak Hopf algebras based on generalized Taft algebras, Period. Math. Hung., 76 (2018), 229–242. http://dx.doi.org/10.1007/s10998-017-0221-0 doi: 10.1007/s10998-017-0221-0
    [19] D. P. Thurston, Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 9725–9732. http://dx.doi.org/10.1073/pnas.1313070111 doi: 10.1073/pnas.1313070111
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1096) PDF downloads(96) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog