Research article

Barrier option pricing with floating interest rate based on uncertain exponential Ornstein–Uhlenbeck model

  • Received: 17 June 2024 Revised: 20 August 2024 Accepted: 21 August 2024 Published: 05 September 2024
  • MSC : 91G30, 91G80

  • A barrier option is a kind of path-dependent option whose return depends on whether the price of the underlying asset reaches a certain barrier level. This paper mainly analyzes European barrier option pricing formulas for the uncertain exponential Ornstein–Uhlenbeck model with a floating interest rate. The corresponding numerical algorithms for the knock-in and knock-out option prices are designed. Several numerical examples are given to study the relationship between barrier option prices and parameters. Finally, a real-data example is presented to illustrate the option pricing formulas.

    Citation: Shaoling Zhou, Huixin Chai, Xiaosheng Wang. Barrier option pricing with floating interest rate based on uncertain exponential Ornstein–Uhlenbeck model[J]. AIMS Mathematics, 2024, 9(9): 25809-25833. doi: 10.3934/math.20241261

    Related Papers:

  • A barrier option is a kind of path-dependent option whose return depends on whether the price of the underlying asset reaches a certain barrier level. This paper mainly analyzes European barrier option pricing formulas for the uncertain exponential Ornstein–Uhlenbeck model with a floating interest rate. The corresponding numerical algorithms for the knock-in and knock-out option prices are designed. Several numerical examples are given to study the relationship between barrier option prices and parameters. Finally, a real-data example is presented to illustrate the option pricing formulas.



    加载中


    [1] R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143
    [2] P. Lévy, Sur certains processus stochastiques homogénes, Comp. Math., 7 (1940), 283–339.
    [3] R. C. Heynen, H. M. Kat, Partial barrier options, J. Financ. Eng., 3 (1994), 253–274.
    [4] P. Carr, Two extensions to barrier option valuation, Appl. Math. Financ., 2 (1995), 173–209. https://doi.org/10.1080/13504869500000010 doi: 10.1080/13504869500000010
    [5] N. Kunitomo, M. Ikeda, Pricing options with curved boundaries, Math. Financ., 2 (1992), 275–297. https://doi.org/10.1111/j.1467-9965.1992.tb00033.x doi: 10.1111/j.1467-9965.1992.tb00033.x
    [6] G. F. Armstrong, Valuation formulae for window barrier options, Appl. Math. Financ., 8 (2001), 197–208. https://doi.org/10.1080/13504860210124607 doi: 10.1080/13504860210124607
    [7] T. Guillaume, valuation of options on joint minima and maxima, Appl. Math. Financ., 8 (2001), 209–233. https://doi.org/10.1080/13504860210122384 doi: 10.1080/13504860210122384
    [8] B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), 1. https://doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1
    [9] B. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-662-44354-5
    [10] B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Berlin: Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8
    [11] B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10.
    [12] J. Peng, K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res., 8 (2011), 18–26.
    [13] X. Chen, Y. Liu, D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Making, 12 (2013), 111–123. https://doi.org/10.1007/s10700-012-9141-x doi: 10.1007/s10700-012-9141-x
    [14] Y. Liu, X. Chen, D. A. Ralescu, Uncertain currency model and currency option pricing, Int. J. Intell. Syst., 30 (2015), 40–51. https://doi.org/10.1002/int.21680 doi: 10.1002/int.21680
    [15] J. Deng, Z. Qin, On Parisian option pricing for uncertain currency model, Chaos Soliton. Fract., 143 (2021), 110561. https://doi.org/10.1016/j.chaos.2020.110561 doi: 10.1016/j.chaos.2020.110561
    [16] H. Liu, Y. Zhu, Y. Liu, European option pricing problem based on a class of Caputo-Hadamard uncertain fractional differential equation, AIMS Math., 8 (2023), 15633–15650. https://doi.org/10.3934/math.2023798 doi: 10.3934/math.2023798
    [17] Z. Pan, Y. Gao, L. Yuan, Bermudan options pricing formulas in uncertain financial markets, Chaos Soliton. Fract., 152 (2021), 111327. https://doi.org/10.1016/j.chaos.2021.111327 doi: 10.1016/j.chaos.2021.111327
    [18] K. Yao, Z. Qin, Barrier option pricing formulas of an uncertain stock model, Fuzzy Optim. Decis. Making, 20 (2021), 81–100. https://doi.org/10.1007/s10700-020-09333-w doi: 10.1007/s10700-020-09333-w
    [19] X. Yang, Z. Zhang, X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Soliton. Fract., 123 (2019), 79–86. https://doi.org/10.1016/j.chaos.2019.03.037 doi: 10.1016/j.chaos.2019.03.037
    [20] R. Gao, K. Liu, Z. Li, R. Lv, American barrier option pricing formulas for stock model in uncertain environment, IEEE Access, 7 (2019), 97846–97856. https://doi.org/10.1109/ACCESS.2019.2928029 doi: 10.1109/ACCESS.2019.2928029
    [21] L. Dai, Z. Fu, Z. Huang, Option pricing formulas for uncertain financial market based on the exponential Ornstein–Uhlenbeck model, J. Intell. Manuf., 28 (2017), 597–604. https://doi.org/10.1007/s10845-014-1017-1 doi: 10.1007/s10845-014-1017-1
    [22] Y. Liu, W. Lio, Power option pricing problem of uncertain exponential Ornstein–Uhlenbeck model, Chaos Soliton. Fract., 178 (2024), 114293. https://doi.org/10.1016/j.chaos.2023.114293 doi: 10.1016/j.chaos.2023.114293
    [23] Y. Gao, X. Yang, Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein–Uhlenbeck model, Soft Comput., 22 (2018), 5647–5654. https://doi.org/10.1007/s00500-017-2558-y doi: 10.1007/s00500-017-2558-y
    [24] K. Yao, X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825–832. https://doi.org/10.3233/IFS-120688 doi: 10.3233/IFS-120688
    [25] Y. Sun, T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Making, 16 (2017), 235–255. https://doi.org/10.1007/s10700-016-9247-7 doi: 10.1007/s10700-016-9247-7
    [26] Z. Liu, Asion option pricing formulas based on the uncertain exponential Ornstein–Uhlenbeck model with floating interest rate, Oper. Res. Manage. Sci., 31 (2022), 205–208.
    [27] K. Yao, B. Liu, Parameter estimation in uncertain differential equations, Fuzzy Optim. Decis. Making, 19 (2020), 1–12. https://doi.org/10.1007/s10700-019-09310-y doi: 10.1007/s10700-019-09310-y
    [28] G. Zhang, Y. Shi, Y. Sheng, Uncertain hypothesis testing and its application, Soft Comput., 27 (2023), 2357–2367. https://doi.org/10.1007/s00500-022-07748-8 doi: 10.1007/s00500-022-07748-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(353) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog