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1. Introduction

Barrier options are categorized as knock-in and knock-out options and have a reward that is
contingent on whether the underlying asset price reaches a specified barrier level within the contract
period. Barrier options are an essential tool for risk management in the financial market and are
extensively applied to different domains, such as risk control, asset management, and so on. The
option holders could control the potential returns and losses by setting different barriers, and the barrier
options are usually cheaper than the standard options, which makes them popular with many investors.

In a standard Black–Scholes model, barrier options were first analytically valued by Merton [1],
using classical results about the first passage time of Brownian motion to a point that can be traced
back to Lévy [2]. Heynen and Kat [3] and Carr [4] pioneered partial and outside barrier options,
while Kunitomo and Ikeda [5] first tackled double barrier options, Armstrong [6] first dealt with
window barrier options, and Guillaume [7] provided the first closed form formulae for step barrier
options. Other seminal contributions that cannot all be cited here tackle non-constant boundaries,
either deterministic or stochastic, or have been devoted to numerical approximations of barrier option
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values in more general models, especially those featuring stochastic volatility or jumps. What all these
papers have in common is a stochastic approach based on the martingale method of pricing.

The above studies assumed that stock prices follow a Wiener process. In fact, Liu [8] provided
a paradox: the actual stock price is impossible to follow any Ito’s stochastic differential equation.
Additionally, the application of probability theory requires that the real frequency closely resemble the
probability distribution, which means that it must be possible to acquire sufficient samples. However,
it is sometimes difficult to obtain enough or no samples for an uncertain event. Therefore, Liu [9]
proposed the Liu process and developed the uncertainty theory, which was refined by Liu [10].

Liu [11] applied the uncertainty theory to the field of finance, and he first proposed the uncertain
stock model. Afterward, many scholars started investigating the issue of option pricing with uncertainty
theory. The uncertain stock model, including a mean-reverting process, was presented by Peng and
Yao [12]. Chen and Liu [13] established a new uncertain stock model that has periodic dividends.
Liu et al. [14] proposed the uncertain currency model, and Deng and Qin [15] examined the pricing
issue of the Parisian option within this framework. Liu et al. [16] discussed the pricing problem of
the European option using the Caputo–Hadamard UFDEs to simulate the change in the stock price.
Pan et al. [17] investigated the pricing problem of Bermudan options. Yao and Qin [18] investigated
the European barrier option using Liu’s stock model. Similarly, Yang et al. [19] and Gao et al. [20]
examined American and Asian barrier options using the same model. Furthermore, Dai et al. [21]
explored a non-linear stock model that is named the uncertain exponential Ornstein–Uhlenbeck model.
Based on this model, Liu et al. [22] and Gao et al. [23] investigated the power option and the lookback
option, respectively.

We further investigate the price functions of the barrier option with a floating interest rate under the
uncertain exponential Ornstein–Uhlenbeck model. Section 2 introduces some definitions and theorems
used in the paper. The price formulas of two knock-in options and two knock-out option prices are
investigated in Section 3. We design the numerical algorithms to calculate the option prices and provide
several numerical examples in Section 4. In Section 5, the values of the knock-in and knock-out options
are calculated by utilizing the Shanghai Interbank Offered Rate (SHIBOR) and the closing price for
Haitian food. Section 6 gives a concise conclusion.

2. Preliminaries

Definition 2.1. (Liu [11]) An uncertain process Ct is called the Liu process if the following three
conditions are satisfed:
(1) C0 = 0, and almost all sample paths are Lipschitz continuous,
(2) Ct has stationary and independent increments,
(3) Every increment Cs+t −Cs is a normal uncertain variable with an expected value 0 and variance t2.

Theorem 2.2. (Liu [9]) Suppose M is an uncertain measure, and for events Λ1 and Λ2 with Λ1 ⊂ Λ2,
we can obtain

M{Λ1} ≤ M{Λ2}.

Theorem 2.3. (Liu [10]) Let ξ be an uncertain variable with a regular uncertainty distribution Φ.
Then

E[ξ] =

∫ 1

0
Φ−1(α)dα.

AIMS Mathematics Volume 9, Issue 9, 25809–25833.



25811

Definition 2.4. (Yao and Chen [24]) Assume that f (t, x) and g(t, x) are two continuous functions,
respectively, and Ct is a Liu process. Then

dXt = f (t, Xt)dt + g(t, Xt)dCt

is called an uncertain differential equation.

Theorem 2.5. (Yao and Chen [24]) Suppose Xt and Xα
t be the solution and α-path of the uncertain

differential equation
dXt = f (t, Xt)dt + g(t, Xt)dCt

respectively. Then
M{Xt ≤ Xα

t ,∀t ∈ [0,T ]} = α,

M{Xt > Xα
t ,∀t ∈ [0,T ]} = 1 − α,

and
Φ−1(α) = Xα

t

where Φ−1(α) is the inverse uncertainty distribution of the uncertain variable Xt.

3. Uncertain exponential Ornstein–Uhlenbeck model

Liu [11] first presented the uncertain stock modeldXt = rXtdt,

dYt = µYtdt + σYtdCt,
(3.1)

where Yt represents the stock price, µ and σ are the drift item and the diffusion item of Yt. Xt represents
the bond price, the interest rate r is a constant, and Ct is a Liu process. Let B be the strike price and T
be the expiration date. Liu [11] studied the European call option pricing formula

f c = exp(−rT )
∫ 1

0

(
Y0exp

(
µT +

√
3σT
π

ln
α

1 − α

)
− B

)+

dα

and the European put option pricing formula

f p = exp(−rT )
∫ 1

0

(
B − Y0exp

(
µT +

√
3σT
π

ln
α

1 − α

))+

dα.

In the model (3.1), which considers stock price movements in the short term, it is assumed that the
interest rate is a fixed constant. However, the stock price varies around a constant rather than rising
or falling constantly in the long term. In order to improve the model (3.1) to reflect the real financial
markets, it is vital to take into account the volatility of interest rates. Then, Sun and Su [25] presented
the following model: drt = (a1 − b1rt)dt + σ1dC1t,

dYt = (a2 − b2Yt)dt + σ2dC2t,
(3.2)
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where rt denotes the floating interest rate, a1, a2, b1, b2, σ1 and σ2 are positive constants, and b1 , 0,
b2 , 0, C1t and C2t are two mutually independent Liu processes.

The above uncertain stock models are both linear. Liu [26] explored a nonlinear model with a
floating interest rate that can better reflect the financial markets compared to the linear modelsdrt = (m − art)dt + σ1dC1t,

dYt = µ(1 − c ln Yt)Ytdt + σ2YtdC2t,
(3.3)

where m, a, c, σ1 and σ2 are positive constants with a , 0, µ is a constant.
The model (3.3) is an uncertain exponential Ornstein–Uhlenbeck stock model that takes into account

a floating interest rate. It ensures that the stock price is non-negative and does not fluctuate dramatically
in a short period of time. Hence, we investigate the knock-in and knock-out options and derive the price
functions under the model (3.3).

3.1. Knock-in options

This part primarily investigates the European up-and-in call option and the down-and-in put option.
Suppose a barrier option has a barrier level D, a maturity date T , and an exercise price B. We define an
indicator function to easily describe the barrier option

ID(y) =

1, if y ≥ D,

0, if y < D,

where D is a specified constant.
For an up-and-in call option, the initial asset price is below the barrier level, and the option is

activated only when the price moves up to the barrier level before the expiration date.
Let Cui be the option price. The investor buys the option with Cui at the initial time and has a payoff

ID

(
sup

0≤t≤T
Yt

)
(YT − B)+

at the expiration time T . The present value of the return is

exp
(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+.

Since money has a time value. At the initial moment, the net income of the investor is

−Cui + exp
(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+.

The seller receives Cui for selling the option and pays the investor

ID

(
sup

0≤t≤T
Yt

)
(YT − B)+.

Similarly, the seller has a net income

Cui − exp
(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+
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at the initial moment.
The fair option price should ensure the investor and the seller get the same expected return. Hence,

the option price is

Cui = E
[
exp

(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+

]
.

Theorem 3.1. Assume that a European up-and-in call option for the uncertain exponential Ornstein–
Uhlenbeck model (3.3) has a barrier level D, a maturity date T , and a strike price B. Then the option
price is

Cui =

∫ 1

θ

exp
(r0 − γ

a

(
exp(−aT ) − 1

)
− γT

)(
Yα

T − B
)+

dα,

where
θ =

(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1

γ =
m
a

+

√
3σ1

πa
ln

1 − α
α

,

and

Yα
t = exp

((1
c

+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µct)

)
+ ln Y0exp(−µct)

)
is the α-path of Yt.

Proof. First, we prove that

exp
(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)
(Yα

T − B)+

is the inverse uncertainty distribution of

exp
(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+.

Define two events

Λ1 :
{
exp

(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+ ≤ exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)
(Yα

T − B)+
}

and

Λ2 :
{
exp

(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+ > exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)
(Yα

T − B)+
}

where r1−α
t is the α-path of rt.

Since

Λ1 ⊃

{
rt ≥ r1−α

t , sup
0≤t≤T

Yt ≤ sup
0≤t≤T

Yα
t ,YT ≤ Yα

T

}
⊃

{
rt ≥ r1−α

t ,Yt ≤ Yα
t ,∀t

}
,
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we obtain

M{Λ1} ≥ M
{
rt ≥ r1−α

t ,Yt ≤ Yα
t ,∀t

}
= M

{
rt ≥ r1−α

t ,∀t
}
∧ M

{
Yt ≤ Yα

t ,∀t
}

= α.

Similarly, because of

Λ2 ⊃

{
rt < r1−α

t , sup
0≤t≤T

Yt > sup
0≤t≤T

Yα
t ,YT > Yα

T

}
⊃

{
rt < r1−α

t ,Yt > Yα
t ,∀t

}
,

we obtain

M{Λ2} ≥ M
{
rt < r1−α

t ,Yt > Yα
t ,∀t

}
= M

{
rt < r1−α

t ,∀t
}
∧ M

{
Yt > Yα

t ,∀t
}

= 1 − α.

According to the duality axiom, we obtain M{Λ1} + M{Λ2} = 1, which means that M{Λ1} = α. Hence,
we obtain

exp
(
−

∫ T

0
rtdt

)
ID

(
sup

0≤t≤T
Yt

)
(YT − B)+

has an inverse uncertainty distribution

exp
(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)
(Yα

T − B)+.

By using the calculation formula for the expected value, we have

Cui =

∫ 1

0
exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)(
Yα

T − B
)+

dα.

Note that rαt satisfies the following ordinary differential equation:

drαt = (m − arαt )dt + σ1Φ
−1(α)dt.

So it is easily verified that

r1−α
t =r0exp(−at) +

(m
a

+

√
3σ1

πa
ln

1 − α
α

)(
1 − exp(−at)

)
.

From Theorem 6 in [21], we obtain

Yα
t = exp

((1
c

+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µct)

)
+ ln Y0exp(−µct)

)
.

Additionally, the equation
ID

(
sup

0≤t≤T
Yα

t

)
= 1

is equivalent to
sup

0≤t≤T
Yα

t ≥ D.

Note that Y0 < D in the up-and-in option and Yα
t is a monotone function of t. Yα

t increases with t, we
can obtain

sup
0≤t≤T

Yα
t = Yα

T ,
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which implies that
ID

(
sup

0≤t≤T
Yα

t

)
= 1

and
Yα

T ≥ D.

Conversely, if Yα
t decreases with t, we obtain

sup
0≤t≤T

Yα
t = Y0 < D.

It means that
ID

(
sup

0≤t≤T
Yα

t

)
= 0,

which contradicts with
ID

(
sup

0≤t≤T
Yα

t

)
= 1.

Therefore, Yα
t is an increasing function of t. We derive that

exp
((1

c
+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µcT )

)
+ ln Y0exp(−µcT )

)
≥ D,

which implies that

α ≥
(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
= θ.

Consequently, we can rewrite the option price as

Cui =

∫ 1

0
exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
sup

0≤t≤T
Yα

t

)(
Yα

T − B
)+

dα

=

∫ 1

θ

exp
(
−

∫ T

0
r1−α

t dt
)
(Yα

T − B)+dα

=

∫ 1

θ

exp
(r0 − γ

a

(
exp(−aT ) − 1

)
− γT

)(
Yα

T − B
)+

dα.

�

For a down-and-in put option, the initial asset price is above the barrier level, and the option is not
activated until the price decreases to the barrier level before the expiration date.

Let Pdi be the option price. The investor purchases the option at the initial time for Pdi and has a
payoff of (

1 − ID

(
inf

0≤t≤T
Yt

))
(B − YT )+.

The present value of the return is

exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
inf

0≤t≤T
Yt

))
(B − YT )+.
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Then, the investor’s net return is

−Pdi + exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
inf

0≤t≤T
Yt

))
(B − YT )+.

Similarly, the seller’s net return is

Pdi − exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
inf

0≤t≤T
Yt

))
(B − YT )+.

Hence, the option price is

Pdi =E
[
exp

(
−

∫ T

0
rtdt

)(
1 − ID

(
inf

0≤t≤T
Yt

))(
B − YT

)+]
.

Corollary 3.1. Assume that a European down-and-in put option for the uncertain exponential
Ornstein–Uhlenbeck model (3.3) has a barrier level D, a maturity date T , and a strike price B. Then
the price of this option is

Pdi =

∫ θ

0
exp

(r0 − η

a

(
exp(−aT ) − 1

)
− ηT

)(
B − Yα

T

)+

dα,

where
θ =

(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
,

η =
m
a

+

√
3σ1

πa
ln

α

1 − α
,

and

Yα
t =exp

((1
c

+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µct)

)
+ ln Y0exp(−µct)

)
is the α-path of Yt.

3.2. Knock-out options

This part investigates two European knock-out options under the uncertain exponential Ornstein–
Uhlenbeck model (3.3), including the up-and-out option and the down-and-out option.

The down-and-out call option is a contract whose price of the asset is above the barrier level at the
beginning of the transaction. The option is void until the price decreases to the barrier level before the
expiration date.

Let Cdo be the option price. The investor buys an option with Cdo at the initial time and has a payoff

exp
(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+.

Then the investor’s net return is

−Cdo + exp
(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+.
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And the seller receives Cdo for selling the option at the initial time and has a net return

Cdo − exp
(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+.

Therefore, the option price is

Cdo = E
[
exp

(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+

]
.

Theorem 3.2. Assume that a European down-and-out call option for the uncertain exponential
Ornstein–Uhlenbeck model (3.3) has a barrier level D, a maturity date T , and a strike price B. Then
the option price is

Cdo =

∫ 1

θ

exp
(r0 − γ

a

(
exp(−aT ) − 1

)
− γT

)(
Yα

T − B
)+

dα,

where
θ =

(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
,

γ =
m
a

+

√
3σ1

πa
ln

1 − α
α

,

and

Yα
t =exp

((1
c

+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µct)

)
+ ln Y0exp(−µct)

)
is the α-path of Yt.

Proof. First, we prove that

exp
(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)
(Yα

T − B)+

is the inverse uncertainty distribution of

exp
(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+.

Define two events

Λ1 :
{
exp

(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+ ≤ exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)
(Yα

T − B)+
}

and

Λ2 :
{
exp

(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+ > exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)
(Yα

T − B)+
}
,

where r1−α
t is the α-path of rt.

AIMS Mathematics Volume 9, Issue 9, 25809–25833.
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Since

Λ1 ⊃

{
rt ≥ r1−α

t , inf
0≤t≤T

Yt ≤ inf
0≤t≤T

Yα
t ,YT ≤ Yα

T

}
⊃ {rt ≥ r1−α

t ,Yt ≤ Yα
t ,∀t},

we obtain

M{Λ1} ≥ M{rt ≥ r1−α
t ,Yt ≤ Yα

t ,∀t} = M
{
rt ≥ r1−α

t ,∀t
}
∧ M

{
Yt ≤ Yα

t ,∀t
}

= α.

Similarly, due to

Λ2 ⊃

{
rt < r1−α

t , inf
0≤t≤T

Yt > inf
0≤t≤T

Yα
t ,YT > Yα

T

}
⊃ {rt < r1−α

t ,Yt > Yα
t ,∀t},

we obtain

M{Λ2} ≥ M
{
rt < r1−α

t ,Yt > Yα
t ,∀t

}
= M

{
rt < r1−α

t ,∀t
}
∧ M

{
Yt > Yα

t ,∀t
}

= 1 − α.

According to the duality axiom, we obtain

M{Λ1} + M{Λ2} = 1,

which indicates that
M{Λ1} = α.

Thus, we obtain

exp
(
−

∫ T

0
rtdt

)
ID

(
inf

0≤t≤T
Yt

)
(YT − B)+

has an inverse uncertainty distribution

exp
(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)
(Yα

T − B)+.

From the calculation formula for the expected value, we obtain

Cdo =

∫ 1

0
exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)(
Yα

T − B
)+

dα.

Additionally, note that
ID

(
inf

0≤t≤T
Yα

t

)
= 1

is equivalent to

inf
0≤t≤T

Yα
t ≥ D.

Note that Y0 > D, and Yα
t is a monotonic function of time t. If Yα

t increases with t, we can obtain

inf
0≤t≤T

Yα
t = Y0 > D,

which implies
ID

(
inf

0≤t≤T
Yα

t

)
= 1.
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Conversely, if Yα
t decreases with t, we obtain

inf
0≤t≤T

Yα
t = Yα

T ,

which means that
ID

(
inf

0≤t≤T
Yα

t

)
= 1

and Yα
T ≥ D.

Therefore, we deduce that

exp
((1

c
+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µcT )

)
+ ln Y0exp(−µcT )

)
≥ D,

which indicates that

α ≥
(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
= θ.

Consequently, we can rewrite the option price as

Cdo =

∫ 1

0
exp

(
−

∫ T

0
r1−α

t dt
)
ID

(
inf

0≤t≤T
Yα

t

)(
Yα

T − B
)+

dα

=

∫ 1

θ

exp
(
−

∫ T

0
r1−α

t dt
)
(Yα

T − B)+dα

=

∫ 1

θ

exp
(r0 − γ

a

(
exp(−aT ) − 1

)
− γT

)(
Yα

T − B
)+

dα.

�

The up-and-out put option is a contract whose price of the asset is below the barrier level at the
beginning of the transaction. The option is invalid until the price exceeds the barrier level before the
expiration date.

Let Puo be the option price. The investor buys an option with Puo at the initial moment and has a
payoff

exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
sup

0≤t≤T
Yt

))
(B − YT )+.

Then, the investor’s net return at the initial time is

−Puo + exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
sup

0≤t≤T
Yt

))
(B − YT )+.

And the seller receives Puo for selling the option at the initial time and has a net return

Puo − exp
(
−

∫ T

0
rtdt

)(
1 − ID

(
sup

0≤t≤T
Yt

))
(B − YT )+.

Therefore, the option price is

Puo =E
[
exp

(
−

∫ T

0
rtdt

)(
1 − ID

(
sup

0≤t≤T
Yt

))(
B − YT

)+]
.
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Corollary 3.2. Assume that a European up-and-out put option for the uncertain exponential Ornstein–
Uhlenbeck model (3.3) has a barrier level D, a maturity date T , and a strike price B. Then the price
of this option is

Puo =

∫ θ

0
exp

(r0 − η

a

(
exp(−aT ) − 1

)
− ηT

)(
B − Yα

T

)+

dα,

where
θ =

(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
,

η =
m
a

+

√
3σ1

πa
ln

α

1 − α
,

and

Yα
t =exp

((1
c

+

√
3σ2

µcπ
ln

α

1 − α

)(
1 − exp(−µct)

)
+ ln Y0exp(−µct)

)
is the α-path of Yt.

4. Numerical experiments

This section focuses on developing numerical methods to compute the prices of knock-in options
and analyzing the effects of different parameters on the option values. The numerical algorithms for
calculating the knock-out option prices are similar to those presented in this section. Furthermore, the
effects of the parameters on the knock-out option prices can be analyzed in the same way.

4.1. Up-and-in call option

The algorithm for calculating the price Cui is designed according to Theorem 3.1.
Step 0: Set the values of r0, m, a , σ1, Y0, µ, c , σ2, B, T , and D.
Step 1: Calculate

θ =
(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
.

Step 2: Set α j = θ + j(1 − θ)/N, j = 1, 2, ...,N − 1, where N is a large positive integer.
Step 3: Set j = 0.
Step 4: Set j← j + 1.
Step 5: Compute the positive deviation

Z j =(Yα j

T − B)+

=max(Yα j

T − B, 0)

=max
(
exp

((1
c

+

√
3σ2

µcπ
ln

α j

1 − α j

)(
1 − exp(−µcT )

)
+ ln Y0exp(−µcT )

)
− B, 0

)
.

Step 6: Calculate

G j =exp
((r0

a
−

m
a2 −

σ1
√

3
a2π

ln
1 − α j

α j

)(
exp(−aT ) − 1

)
−

(m
a

+
σ1
√

3
aπ

ln
1 − α j

α j

)
T
)
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and W j = Z j ×G j. Return to Step 4 if j < N − 1.
Step 7: The option price function is

Cui =
1 − θ
N − 1

N−1∑
j=1

W j.

Example 4.1. Assume the initial interest rate r0 = 0.03, the initial stock price Y0 = 16, and other
parameters of model (3.3) are m = 0.01, a = 0.8, σ1 = 0.01, µ = 0.9, c = 0.35, and σ2 = 0.1, and the
parameters of the option are B = 18,T = 5, and D = 20, respectively. Then the price Cui is 1.3657.

It is noted that there are many parameters in the pricing formula of Cui in Theorem 3.1. Next, we
investigate the influence of the parameters on the price Cui through numerical experiments. Several
examples are given to illustrate the change of Cui on one parameter, in which the other parameters are
consistent with Example 4.1.

First, the strike price B and the parameter m are discussed.

Example 4.2. Let the strike price B change from 18 to 23 with step 0.01, and the other parameters
remain unchanged. Figure 1 displays the results.

Figure 1. Variation of the price Cui with B.

It illustrates a negative correlation between the price Cui and B in Figure 1. The result can be
explained intuitively from the option pricing formula in Theorem 3.1. The strike price B appears only
in the positive deviation, which demonstrates that Cui has a monotonically decreasing relationship with
B. Similarly, it can be shown that the price Cui demonstrates a monotonically decreasing relationship
with m.

Then, we study the parameter σ2, the maturity time T , and the barrier level D.

Example 4.3. Let the parameter σ2 change from 0.01 to 0.2 with step 0.01, and the other parameters
remain unchanged. Figure 2 displays the results.
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Figure 2. Variation of the price Cui with σ2.

It displays that the price Cui ascends with the parameter σ2 in Figure 2. The asset price is more
likely to move up to the barrier level if σ2 increases. Thus, the option price Cui increases with σ2.

Example 4.4. Let the maturity time T change from 1 to 6 with step 0.01, and the other parameters
remain unchanged. Figure 3 displays the results.

Figure 3. Variation of the price Cui with T .

As it is illustrated in Figure 3, the price Cui grows when the maturity time T gets longer. The
investor possibly gets more profits, and the seller takes more risks when T ascends. Therefore, the
option price Cui increases.

Example 4.5. Let the barrier level D change from 18 to 25 with step 0.01, and the other parameters
remain unchanged. Figure 4 displays the results.
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Figure 4. Variation of the price Cui with D.

Figure 4 demonstrates that the price Cui decreases with D. This result may be attributed to the fact
that the price of stock is less likely to move up to the barrier level as D increases, and the option is less
likely to get activated.

Finally, we consider the parameters σ1, a, µ, and c.

Example 4.6. Let the parameter σ1 change from 0 to 0.1 with step 0.01. Figure 5 displays the results.

Figure 5 illustrates that the price Cui exhibits a positive correlation with the parameter σ1. It is
difficult to investigate the relationship between the price Cui and σ1 from the pricing formula. Next,
we investigate the impact of σ1 on Cui with different values of σ2, µ, c, Y0, D, and T . The curves are
illustrated in Figure 6.

In all cases, it reveals that the price Cui increases with the parameter σ1. Thus, the price Cui is
a monotonically increasing function of σ1 as the remaining parameters remain within an acceptable
range. Analogously, the changes in the price Cui on the parameters a, µ, and c can be analyzed in the
same way.

Figure 5. Variation of the price Cui with σ1.
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Figure 6. Variation of the price Cui with σ1.

4.2. Down-and-in put option

The algorithm for calculating the price Pdi is designed according to Corollary 3.1.
Step 0: Set the values of r0, m, a , σ1, Y0, µ, c , σ2, B, T , and D.
Step 1: Calculate

θ =
(
1 + exp

(µcπ(ln Y0exp(−µcT ) − ln D)
√

3σ2 −
√

3σ2exp(−µcT )
+

µπ
√

3σ2

))−1
.

Step 2: Set α j = jθ/N, j = 1, 2, ...,N − 1, where N is a large positive integer.
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Step 3: Set j = 0.
Step 4: Set j← j + 1.
Step 5: Compute the positive deviation

Z j =(B − Yα j

T )+

=max(B − Yα j

T , 0)

=max
(
B − exp

((1
c

+

√
3σ2

µcπ
ln

α j

1 − α j

)(
1 − exp(−µcT )

)
+ ln Y0exp(−µcT )

)
, 0

)
.

Step 6: Calculate

G j =exp
((r0

a
−

m
a2 −

σ1
√

3
a2π

ln
α j

1 − α j

)(
exp(−aT ) − 1

)
−

(m
a

+
σ1
√

3
aπ

ln
α j

1 − α j

)
T
)

and W j = Z j ×G j. Return to Step 4 if j < N − 1.
Step 7: The option price function is

Pdi =
θ

N − 1

N−1∑
j=1

W j.

Example 4.7. Assume the initial interest rate r0 = 0.03, the initial stock price Y0 = 16, and other
parameters of model (3.3) are m = 0.01, a = 0.8, σ1 = 0.01, µ = 0.9, c = 0.35, and σ2 = 0.1, and the
parameters of the option are B = 15,T = 5, and D = 14, respectively. Then the price Pdi is 0.5425.

Considering the price function of the up-and-in call option is similar to that of the down-and-in put
option, we only investigate the influence of B and D on the option price Pdi.

Example 4.8. Let the strike price B change from 10 to 15 with step 0.01, and the other parameters
remain unchanged. Figure 7 displays the results.

Figure 7. Variation of the price Pdi with B.

Figure 7 illustrates that the price Pdi increases with B. The result can be deduced immediately from
Theorem 3.1. Since B appears only in the positive deviation, the price Pdi is a monotonically increasing
function of B.
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Example 4.9. Let the barrier level D change from 9 to 14 with step 0.01, and the other parameters
remain unchanged. Figure 8 displays the results.

Figure 8. Variation of the price Pdi with D.

Figure 8 demonstrates that the price Pdi increases with D. This result may be attributed to the fact
that the price of stock is more likely to decrease to the barrier level as D increases and the option is
more likely to be activated.

5. Real data analysis

In this section, real financial data are used to illustrate the performances of the four option pricing
formulas given in Sections 3.1 and 3.2. Moreover, the method of moments is chosen for estimating
the unknown parameters in the model (3.3). The uncertain hypothesis test is utilized in the following
example to assess the reasonableness of the estimations.

5.1. Parameter estimation

We choose the Shanghai Interbank Offered Rate (SHIBOR) and the closing price of Haitian food
stock for the period of October 20, 2023, to December 27, 2023, which are displayed in Tables 1 and 2.

Table 1. Shanghai Interbank Offered Rate from October 20, 2023 to December 27, 2023.

1.9070 1.9310 1.8770 1.9520 1.6500 1.6260 1.6950 1.7500 1.7890 1.4940
1.6230 1.5790 1.6370 1.7300 1.6470 1.7010 1.7540 1.9130 1.8630 1.9070
1.8822 1.8970 1.8900 1.8990 1.8960 1.8370 1.8090 1.7110 1.6080 1.8580
1.6180 1.7240 1.7140 1.6060 1.6190 1.6300 1.7550 1.7610 1.6340 1.6280
1.5940 1.6230 1.5700 1.5920 1.7110 1.6160 1.5920 1.4940 1.4670
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Table 2. The closing stock prices of Haitian food from October 20, 2023 to December 27,
2023.

35.09 35.07 34.59 35.05 35.26 37.33 37.87 37.65 37.15 36.86 37.53
37.79 38.10 38.02 38.51 38.36 38.25 38.35 39.15 38.35 38.10 38.41
38.23 38.00 37.91 37.98 37.49 37.98 37.81 38.11 37.32 36.75 36.70
36.40 36.39 36.35 36.72 36.57 35.00 34.83 34.69 34.55 34.34 33.96
35.19 35.82 36.30 36.20 36.28

According to the method of moments for uncertain differential equations [27], the estimations of
the parameters in the model (3.3) are m = 0.0122, a = 0.7139, σ1 = 0.0011, and µ = 0.8669, c =

0.2774, σ2 = 0.0166. Thus, the model (3.3) can be expressed asdrt = (0.0122 − 0.7139rt)dt + 0.0011dC1t,

dYt = 0.8669(1 − 0.2774 ln Yt)Ytdt + 0.0166YtdC2t.
(5.1)

As we can see from Figures 9 and 10, all the observations of interest rate and stock price fall between
the 0.05-path and the 0.95-path, which implies that the estimates are acceptable.

Figure 9. α-paths and observations rt.

Figure 10. α-paths and observations Yt.
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5.2. Hypothesis test

In this part, we employ the uncertain hypothesis testing proposed by Zhang et al. [28] to assess how
well the uncertain model (5.1) fits the observed data.

For the first differential equation in the model (3.3),

drt = (m − art)dt + σ1dC1t

by using the Euler difference, we obtained

rt j+1 − rt j − (m − art j)(t j+1 − t j)
σ1(t j+1 − t j)

=
Ct j+1 −Ct j

t j+1 − t j
.

Since
Ct j+1 −Ct j

t j+1 − t j
∼ N(0, 1),

it can be obtained that

ω j =
rt j+1 − rt j − (m − art j)(t j+1 − t j)

σ1(t j+1 − t j)
∼ N(0, 1).

Similarly, for the second differential equation, we have

z j =
Yt j+1 − Yt j − µ(1 − c ln Yt j)Yt j(t j+1 − t j)

σ2Yt j(t j+1 − t j)
∼ N(0, 1).

The sample values of ω j and z j can be obtained from the observed data of rt j and Yt j , where j =

1, 2, ..., 48.
The issue of determining whether the model (5.1) fits the data well is converted into a test to verify

whether ω j and z j obey the standard normal uncertain distributionN(0, 1). Let the significance level α
take the value of 0.05, and the two rejection domains are

W1 = {(ω1, ω2, ..., ω48) : there are at least 3 index j’s with 1 ≤ j ≤ 48
such that ω j < −2.0198 or ω j > 2.0198}

and

W2 = {(z1, z2, ..., z48) : there are at least 3 index j’s with 1 ≤ j ≤ 48
such that z j < −2.0198 or z j > 2.0198}.

We can see that only ω9 = −2.1621 < [−2.0198, 2.0198] in Figure 11, thus (ω1, ω2, ..., ω48) < W1. It
can also be found that z9 > 2.0198 and z42 < −2.0198 in Figure 12, so we have (z1, z2, ..., z48) < W2. In
summary, we can conclude that the model (5.1) is able to fit the observed data well.
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Figure 11. Residual plot of interest rate.

Figure 12. Residual plot of stock data.

5.3. Numerical results

We use the option price formulas given in Sections 3.1 and 3.2 to calculate the option prices with
Haitian food stock as the underlying asset. Suppose that Y0 is 37.33, r0 is 1.6260%, and the expiration
date T is 8. According to these initial conditions, we calculate the option prices under three different
models, including the Black–Scholes modeldXt = rXtdt,

dYt = µYtdt + σYtdWt,
(5.2)

where r is a constant, the stochastic exponential Ornstein–Uhlenbeck model with stochastic interest
rates drt = (m − art)dt + σ1dW1t,

dYt = µ(1 − c ln Yt)Ytdt + σ2YtdW2t,
(5.3)

and the model (3.3) used in this paper. The four barrier option prices on the three models are outlined
in Table 3. According to Table 3, it can be observed that the price estimates under the model (3.3) are
higher than those of the two stochastic models, with the exception of the down-and-out call option.
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Table 3. Prices of the four barrier options under different models.

Cui Pdi Puo Cdo

strike price B 38 35 38 35.5
barrier level D 40 34 40 34
B − S model 0.1569 0.0361 0.9716 1.5868

stochastic O − U model 0.0525 0.0033 0.5228 1.6138
uncertain O − U model 0.2242 0.1438 1.3018 1.4960

Finally, based on the three different models, some numerical results for the up-and-in call option
are given to visually demonstrate the sensitivity of the up-and-in call option price to the parameters,
including barrier level, strike price and expiration date. Tables 4 and 5 illustrate that the price Cui

decreases with the barrier level and the strike price, respectively. Table 6 indicates an increasing trend
in the price Cui by varying T from 6 to 10. As seen in Tables 4–6, for the comparison of the up-and-in
call option prices with different parameters, the uncertain O − U model’s price estimates are closer to
the stochastic B − S model’s price estimates.

Table 4. The price Cui with different barrier levels.

barrier level D 38.5 39 39.5 40
B − S model 0.3088 0.2663 0.2165 0.1569

stochastic O − U model 0.1858 0.1501 0.0938 0.0525
uncertain O − U model 0.3537 0.3178 0.2717 0.2242

Table 5. The price Cui with different strike prices.

strike price B 37 37.5 38 38.5
B − S model 0.2135 0.1752 0.1569 0.1247

stochastic O − U model 0.0816 0.0675 0.0525 0.0344
uncertain O − U model 0.2907 0.2575 0.2242 0.1909

Table 6. The price Cui with different expiration dates.

expiration date T 8 9 10 11
B − S model 0.1569 0.1782 0.2118 0.2353

stochastic O − U model 0.0525 0.0565 0.0633 0.0714
uncertain O − U model 0.2242 0.2408 0.2530 0.2617

6. Conclusions

This paper primarily focused on the pricing issue of the European barrier option in the uncertain
exponential Ornstein–Uhlenbeck model with a floating interest rate. The price functions of knock-in
and knock-out barrier options were given. Then we developed numerical algorithms to compute the
option prices and provided several numerical examples to show the effect of parameters on the option
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prices. In the end, we chose Haitian food stock as the underlying asset to demonstrate how to obtain
the option prices and compare the option prices under different models.
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Appendix

Suppose the stock price of Haitian food follows the stochastic differential equation

dYt = µ(1 − c ln Yt)Ytdt + σ2YtdWt,

where Wt is a Wiener process, µ, c and σ2 are unknown parameters. Based on the stock price data
shown in Table 2, using Maximum Likelihood Estimation (MLE), we obtain the estimates of the
parameters in the above stochastic differential equation as

µ∗ = 0.4002, c∗ = 0.2761, σ∗2 = 0.0159.

Hence, we get a stochastic stock model

dYt = 0.4002(1 − 0.2761 ln Yt)Ytdt + 0.0159YtdWt.

By using the Euler difference, we obtain

ε j =
Yt j+1 − Yt j − µ(1 − c ln Yt j)Yt j(t j+1 − t j)

σ2Yt j(t j+1 − t j)
=

Wt j+1 −Wt j

t j+1 − t j
∼ N(0, 1).

Therefore, the sample value of ε j can be regarded as a sample of the standard normal distribution
N(0, 1).

Next we test whether the stochastic stock model fits the stock price of Haitian-food by the “Shapiro-
Wilk” test. That is, we should determine whether the sample values of ε j are derived from the standard
normal distribution N(0, 1). The Shapiro function is used in the test with a significance level of 0.05.
The result indicates that the value of P is 0.0172, which implies that the sample values of ε j don’t come
from the standard normal distribution N(0, 1). Therefore, the stochastic stock model mentioned in this
part is not suitable for the observed stock data well.
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