Research article Special Issues

A novel edge-weighted matrix of a graph and its spectral properties with potential applications

  • Received: 10 June 2024 Revised: 16 July 2024 Accepted: 24 July 2024 Published: 27 August 2024
  • MSC : 05C12, 05C50, 05C92

  • Regarding a simple graph $ \Gamma $ possessing $ \nu $ vertices ($ \nu $-vertex graph) and $ m $ edges, the vertex-weight and weight of an edge $ e = uv $ are defined as $ w(v_{i}) = d_{ \Gamma}(v_{i}) $ and $ w(e) = d_{ \Gamma}(u)+d_{ \Gamma}(v)-2 $, where $ d_{ \Gamma}(v) $ is the degree of $ v $. This paper puts forward a novel graphical matrix named the edge-weighted adjacency matrix (adjacency of the vertices) $ A_{w}(\Gamma) $ of a graph $ \Gamma $ and is defined in such a way that, for any $ v_{i} $ that is adjacent to $ v_{j} $, its $ (i, j) $-entry equals $ w(e) = d_{ \Gamma}(v_{i})+d_{ \Gamma}(v_{j})-2 $; otherwise, it equals 0. The eigenvalues $ \lambda_{1}^{w}\ge \lambda_{2}^{w}\ge\ldots\ge \lambda_{\nu}^{w} $ of $ A_w $ are called the edge-weighted eigenvalues of $ \Gamma $. We investigate the mathematical properties of $ A_{w}(\Gamma) $'s spectral radius $ \lambda_{1}^{w} $ and energy $ E_{w}(\Gamma) = \sum_{i = 1}^{\nu}|\lambda_{i}^{w}| $. Sharp lower and upper bounds are obtained for $ \lambda_{1}^{w} $ and $ E_{w}(\Gamma) $, and the respective extremal graphs are characterized. Further, we employ these spectral descriptors in structure-property modeling of the physicochemical properties of polycyclic aromatic hydrocarbons for a set of benzenoid hydrocarbons (BHs). Detailed regression analysis showcases that edge-weighted energy outperforms classical adjacency energy in structure-property modeling of the physicochemical properties of BHs.

    Citation: Sakander Hayat, Sunilkumar M. Hosamani, Asad Khan, Ravishankar L. Hutagi, Umesh S. Mujumdar, Mohammed J. F. Alenazi. A novel edge-weighted matrix of a graph and its spectral properties with potential applications[J]. AIMS Mathematics, 2024, 9(9): 24955-24976. doi: 10.3934/math.20241216

    Related Papers:

  • Regarding a simple graph $ \Gamma $ possessing $ \nu $ vertices ($ \nu $-vertex graph) and $ m $ edges, the vertex-weight and weight of an edge $ e = uv $ are defined as $ w(v_{i}) = d_{ \Gamma}(v_{i}) $ and $ w(e) = d_{ \Gamma}(u)+d_{ \Gamma}(v)-2 $, where $ d_{ \Gamma}(v) $ is the degree of $ v $. This paper puts forward a novel graphical matrix named the edge-weighted adjacency matrix (adjacency of the vertices) $ A_{w}(\Gamma) $ of a graph $ \Gamma $ and is defined in such a way that, for any $ v_{i} $ that is adjacent to $ v_{j} $, its $ (i, j) $-entry equals $ w(e) = d_{ \Gamma}(v_{i})+d_{ \Gamma}(v_{j})-2 $; otherwise, it equals 0. The eigenvalues $ \lambda_{1}^{w}\ge \lambda_{2}^{w}\ge\ldots\ge \lambda_{\nu}^{w} $ of $ A_w $ are called the edge-weighted eigenvalues of $ \Gamma $. We investigate the mathematical properties of $ A_{w}(\Gamma) $'s spectral radius $ \lambda_{1}^{w} $ and energy $ E_{w}(\Gamma) = \sum_{i = 1}^{\nu}|\lambda_{i}^{w}| $. Sharp lower and upper bounds are obtained for $ \lambda_{1}^{w} $ and $ E_{w}(\Gamma) $, and the respective extremal graphs are characterized. Further, we employ these spectral descriptors in structure-property modeling of the physicochemical properties of polycyclic aromatic hydrocarbons for a set of benzenoid hydrocarbons (BHs). Detailed regression analysis showcases that edge-weighted energy outperforms classical adjacency energy in structure-property modeling of the physicochemical properties of BHs.



    加载中


    [1] A. Altassan, M. Imran, B. A. Rather, On ABC energy and its application to anticancer drugs, AIMS Math., 8 (2023), 21668–21682. http://doi.org/10.3934/math.20231105 doi: 10.3934/math.20231105
    [2] M. Biernacki, H. Pidek, C. Ryll-Nardzewsk, Sur une iné galité entre des intégrales définies, Maria Curie-Skłodowska Uni., A4 (1950), 1–4.
    [3] Z. Cvetkovski, Inequalities, Theorems, Techniques and Selected Problems, Berlin: Springer, 2012.
    [4] J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of Pólya, Szegó and LV Kantorovich, Bull. Amer. Math. Soc., 69 (1963), 415–418.
    [5] K. C. Das, B. Furtula, I. Gutman, On spectral radius and energy of extended adjacency matrix of graphs, Appl. Math. Comput., 296 (2017), 116–123. https://doi.org/10.1016/j.amc.2016.10.029 doi: 10.1016/j.amc.2016.10.029
    [6] K. C. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 227–238.
    [7] S. S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math., 4 (2003), 63.
    [8] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl., 414 (2006), 29–37. https://doi.org/10.1016/j.laa.2005.09.008 doi: 10.1016/j.laa.2005.09.008
    [9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, total $\pi$-electron energy of alternate hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
    [10] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Schungsz. Graz., 103 (1978), 1–22.
    [11] S. Hayat, M. Imran, On topological properties of nanocones $CNC_k[n]$, Studia UBB Chemia., 59 (2014), 113–128.
    [12] S. Hayat, J. B. Liu, Comparative analysis of temperature-based graphical indices for correlating the total $\pi$-electron energy of benzenoid hydrocarbons, Int. J. Mod. Phys. B, online ready, 2024. https://doi.org/10.1142/S021797922550047X
    [13] S. Hayat, S. Khan, M. Imran, Quality testing of spectrum-based distance descriptors for polycyclic aromatic hydrocarbons with applications to carbon nanotubes and nanocones, Arab. J. Chem., 14 (2021), 102994. https://doi.org/10.1016/j.arabjc.2021.102994 doi: 10.1016/j.arabjc.2021.102994
    [14] S. Hayat, S. Khan, A. Khan, M. Imran, A computer-based method to determine predictive potential of distance-spectral descriptors for measuring the $\pi$-electronic energy of benzenoid hydrocarbons with applications, IEEE Access, 9 (2021), 19238–19253. https://doi.org/10.1109/ACCESS.2021.3053270 doi: 10.1109/ACCESS.2021.3053270
    [15] S. Hayat, S. Khan, A. Khan, M. Imran, Distance-based topological descriptors for measuring the $\pi$-electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.6668 doi: 10.1002/mma.6668
    [16] S. Hayat, S. Khan, A. Khan, J. B. Liu, Valency-based molecular descriptors for measuring the $\pi$-electronic energy of lower polycyclic aromatic hydrocarbons, Polycycl. Aromat. Comp., 42 (2022), 1113–1129. https://doi.org/10.1080/10406638.2020.1768414 doi: 10.1080/10406638.2020.1768414
    [17] S. Hayat, S. Khan, M. Imran, J. B. Liu, Quality testing of distance-based molecular descriptors for benzenoid hydrocarbons, J. Mol. Struct., 1222 (2020), 128927. https://doi.org/10.1016/j.molstruc.2020.128927 doi: 10.1016/j.molstruc.2020.128927
    [18] S. Hayat, S. J. Alanazi, J. B. Liu, Two novel temperature-based topological indices with strong potential to predict physicochemical properties of polycyclic aromatic hydrocarbons with applications to silicon carbide nanotubes, Phys. Scr., 99 (2024), 055027. https://doi.org/10.1088/1402-4896/ad3ada doi: 10.1088/1402-4896/ad3ada
    [19] F. Harary, Graph Theory, New Jersey: Addison-Wesley, 1969.
    [20] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem., 60 (2008), 461–472.
    [21] L. Jäntschi, Structure-property relationships for solubility of monosaccharides, Appl. Water Sci., 9 (2019), 38. https://doi.org/10.1007/s13201-019-0912-1 doi: 10.1007/s13201-019-0912-1
    [22] L. Jäntschi, The eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. https://doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027
    [23] S. R. Jog, J. R. Gurjar, Degree sum exponent distance energy of some graphs, J. Indones. Math. Soc., 27 (2021), 64–74.
    [24] Y. Huang, H. Liu, Bounds of modified Sombor index, spectral radius and energy, AIMS Math., 6 (2021), 11263–11274. http://doi.org/10.3934/math.2021653 doi: 10.3934/math.2021653
    [25] S. Kumar, P. Sarkar, A. Pal, A study on the energy of graphs and its applications, Polycycl. Aromat. Comp., 2023. https://doi.org/10.1080/10406638.2023.2245104
    [26] M. Y. H. Malik, M. A. Binyamin, S. Hayat, Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications, Polycycl. Aromat. Comp., 42 (2022), 6267–6281. https://doi.org/10.1080/10406638.2021.1977349 doi: 10.1080/10406638.2021.1977349
    [27] M. Y. H. Malik, S. Hayat, S. Khan, M. A. Binyamin, Predictive potential of spectrum-based topological descriptors for measuring the $\pi$-electronic energy of benzenoid hydrocarbons with applications to boron triangular and boron $\alpha$-nanotubes, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7161
    [28] A. Milićević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004), 393–399. https://doi.org/10.1023/B:MODI.0000047504.14261.2a doi: 10.1023/B:MODI.0000047504.14261.2a
    [29] S. Nasir, N. U. H. Awan, F. B. Farooq, S. Parveen, Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling, AIMS Math., 7 (2022), 11829–11850. https://doi.org/10.3934/math.2022660 doi: 10.3934/math.2022660
    [30] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Art. Sci. Chiba Uni., 5 (1968), 199–203.
    [31] G. Pólya, G. Szegó, Problems and Theorems in analysis. Series, Integral Calculus, Theory of Functions, Berlin: Springer, 1972.
    [32] D. Sarkarai, K. Desikan, QSPR/QSAR analysis of some eccentricity based topological descriptors of antiviral drugs used in COVID-19 treatment via $\mathcal{D}_{\varepsilon}$- polynomials, Math. Biosci. Eng., 20 (2023), 17272–17295. http://doi.org/10.3934/mbe.2023769 doi: 10.3934/mbe.2023769
    [33] H. Shoshtari, J. Rodríguez, New bounds on the energy of a graph, Commun. Comb. Optim., 7 (2022), 81–90. https://doi.org/10.22049/cco.2021.26999.1179 doi: 10.22049/cco.2021.26999.1179
    [34] M. A. Tomescu, L. Jäntschi, D. I. Rotaru, Figures of graph partitioning by counting, sequence and layer matrices, Mathematics, 9 (2021), 1419. https://doi.org/10.3390/math9121419 doi: 10.3390/math9121419
    [35] B. Xu, S. Li, R. Yu, Q. Zhao, On the spectral radius and energy of the weighted adjacency matrix of a graph, Appl. Math. Comput, 340 (2019), 156–163. https://doi.org/10.1016/j.amc.2018.08.012 doi: 10.1016/j.amc.2018.08.012
    [36] Y. Q. Yang, L. Xu, C. Y. Hu, Extended adjacency matrix indices and their applications, J. Chem. Inf. Comput. Sci., 34 (1994), 1140–1145. https://doi.org/10.1021/ci00021a020 doi: 10.1021/ci00021a020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(355) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog