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Abstract: Regarding a simple graph Γ possessing ν vertices (ν-vertex graph) and m edges, the vertex-
weight and weight of an edge e = uv are defined as w(vi) = dΓ(vi) and w(e) = dΓ(u) + dΓ(v) − 2, where
dΓ(v) is the degree of v. This paper puts forward a novel graphical matrix named the edge-weighted
adjacency matrix (adjacency of the vertices) Aw(Γ) of a graph Γ and is defined in such a way that, for
any vi that is adjacent to v j, its (i, j)-entry equals w(e) = dΓ(vi) + dΓ(v j) − 2; otherwise, it equals 0. The
eigenvalues λw

1 ≥ λ
w
2 ≥ . . . ≥ λ

w
ν of Aw are called the edge-weighted eigenvalues of Γ. We investigate

the mathematical properties of Aw(Γ)’s spectral radius λw
1 and energy Ew(Γ) =

∑ν
i=1 |λ

w
i |. Sharp lower

and upper bounds are obtained for λw
1 and Ew(Γ), and the respective extremal graphs are characterized.

Further, we employ these spectral descriptors in structure-property modeling of the physicochemical
properties of polycyclic aromatic hydrocarbons for a set of benzenoid hydrocarbons (BHs). Detailed
regression analysis showcases that edge-weighted energy outperforms classical adjacency energy in
structure-property modeling of the physicochemical properties of BHs.
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1. Introduction

Every graph taken into consideration here is a simple graph Γ = (V, E), where |V | = ν and |E| = m.
The count of edges connected to a vertex v ∈ V , denoted by dΓ(v) is the degree of that vertex. The
degree of an edge e = uv is defined by dΓ(e) = dΓ(u) + dΓ(v) − 2. The parameters ∆ (resp. δ) and
∆′(δ′) represent the maximum (resp. minimum) vertex and edge degree of a graph, respectively. If
∆Γ = δΓ = ν − 1 then the graph Γ is said to be a complete graph denoted by Kν. The graph Γ is called
bipartite if V(Γ) is partitioned into two sets say, M and N (partite sets), such that every edge in Γ has
one endpoint in M and the other in N. If every vertex of M is adjacent to every vertex of N with
|M| = r and |N| = s, then the graph is called the complete bipartite graph, denoted as Kr,s. The graph
K1,ν−1 denoted by S ν is a star graph, and the graph Kr,r is called the equi-bipartite graph. The graph Γ
represents the complement of a graph Γ, which is defined on the same vertex set as Γ such that if two
vertices are adjacent in Γ, then they are not adjacent in Γ. For more graph-theoretic terminologies, we
refer to the book by Harary [19]. For any real number x, the floor function is the greatest integer less
than or equal to x, denoted as ⌊x⌋.

The first degree-based molecular descriptor, the Zagreb index, was developed by Gutman and
Trinajsti¢ [9]. It first emerged in the topological formula for conjugated molecules regarding their
total π-electron energy. The first Zagreb index is defined as:

M1(Γ) =
∑

v∈V(Γ)

dΓ(v)2 =
∑

e=uv∈E(Γ)

(dΓ(u) + dΓ(v)). (1.1)

The Zagreb indices were reformulated in 2004 by Milićević et al. [28] in terms of edge degree,
where the edge degree is given by dΓ(e) = dΓ(u) + dΓ(v) − 2 for e = uv ∈ E(Γ). Thus, the first
reformulated Zagreb index is given by

EM1(Γ) =
∑

e∈E(Γ)

dΓ(e)2. (1.2)

The reader is referred to [9] regarding applications of Zagreb indices.
The sum of the absolute values of eigenvalues of the adjacency matrix of Γ gives us the energy E(Γ)

of a graph Γ. This quantity is introduced in [10]. Suppose λ1 ≥ λ2 ≥ . . . ≥ λν are the eigenvalues of
the adjacency matrix A(Γ), then the energy of the graph Γ is given by

E(Γ) =
ν∑

i=1

|λi|. (1.3)

Other graph energies were also introduced and studied. Indulal et al. [20] presented some results on
the distance energy of graphs. Gutman and Zhou [8] investigated the Laplcaian energy of graphs and
derived some extremal results from it.

The extended adjacency matrix of graph Γ was proposed by Yang et al. [36] in 1994, denoted by
Aex(Γ). Its (i, j)-entry is defined to be equal to 1

2

( d j

di
+ di

d j

)
if vi ∼ v j and 0 otherwise. Since Aex is a

real symmetric matrix of order ν, all its eigenvalues are real, which are denoted as η1 ≥ η2 ≥ . . . ≥ ην.
Yang et al. [36] also investigated the extended graph energy by summing the absolute values of the
eigenvalues of the Aex-matrix, defined as

Eex(Γ) =
ν∑

i=1

|ηi|. (1.4)
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For recent studies on graph energy, we refer to [5, 6, 23, 24, 33, 35].

1.1. Edge-weighted graph energy

For a given graph Γ, we define the following terminologies:

Definition 1.1. Let V = {v1, v2, . . . , vν} be the vertex set and {w1,w2, . . . ,wν} be the vertex-weights,
then the vertex weight for vi ∈ V is defined as w(vi) = dΓ(vi). The range for a vertex-weight of vi ∈ V is
0 ≤ w(vi) ≤ ∆Γ (here w(vi) = 0 if Γ is disconnected).

Definition 1.2. Let EΓ = {e1, e2, . . . , em} be the edge set, then the edge-weight of ei = uivi is defined
by w(ei) = dΓ(ui) + dΓ(vi) − 2. The range for an edge-weight of e ∈ E is 0 ≤ w(e) ≤ M1(Γ)

2 − m (where
w(e) = 0 if and only if Γ = K2.

Definition 1.3. The weighted degree of a vertex v ∈ V(Γ) is defined as

dw
Γ (v) =

∑
e=uv

w(e).

It is very clear that w(e) = dΓ(e) for every e ∈ E.
Observe that

ν∑
i=1

dw
Γ (vi) = 2

m∑
i=1

w(ei) = 2
∑
uv∈E

[dΓ(u) + dΓ(v) − 2] = 2[M1 − 2m].

Motivated by the extended adjacency matrix of graph Γ, we introduce a new edge-weighted
adjacency matrix of graph Γ denoted by Aw(Γ). It is defined in such a way that, for any vi that is
adjacent to v j, its (i, j)-entry equals dΓ(vi) + dΓ(v j) − 2; otherwise, it equals to 0. In fact, Aw(Γ) is a real
symmetric matrix of order ν. Hence, all its eigenvalues are real and can be arranged as
λw

1 ≥ λ
w
2 ≥ . . . ≥ λ

w
ν , where the largest eigenvalue λw

1 is called the spectral radius of Aw(Γ). The
edge-weighted graph energy of Γ is given by

Ew = Ew(Γ) =
ν∑

i=1

|λw
i |. (1.5)

Following the types of adjacencies in [34], the type of adjacency employed by the edge-weighted
matrix is the vertex-based adjacency.

1.2. Some useful identities

This subsection presents some basic properties of edge-weighted eigenvalues of graphs.

(1)
∑ν

i=1 λ
w
i = 0.

(2)
∑ν

i=1

(
λw

i

)2
= 2

∑m
i=1[w(ei)]2 = 2

∑m
i=1 dΓ(ei)2 = 2EM1(Γ).

(3)
∑

0≤i≤ j λ
w
i λ

w
j = −

∑m
i=1[w(ei)]2 = −

∑m
i=1 dΓ(ei)2 = −EM1(Γ).

Moreover, observe that,

(1)
∑ν

i=1 .
(
λw

i

)2
= 2EM1(Γ).
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(2)
∑

0≤i≤ j λ
w
i λ

w
j = −EM1(Γ).

The following example delivers the edge-weighted energy of standard graph families.

Example 1.4. (1) The edge-weighted energy Ew(Kν) of Kν is 4(ν − 1)(ν − 2).
(2) The edge-weighted energy Ew(Kr,s) of Kr,s is 2(r + s − 2)

√
rs.

(3) The edge-weighted energy Ew(S ν) of S ν is 2(ν − 2)
√

(ν − 1).
(4) The edge-weighted energy Ew(Kr,r) of Kr,r is 4r(r − 1).

Proof. The edge-weighted energy Ew(Kr,s) of Kr,s is 2(r + s − 2)
√

rs. Replacing s by r in Ew(Kr,s) of
Kr,s, we get Ew(Kr,r) of Kr,r as 2(r + r − 2)

√
r2 = 4r(r − 1). □

2. Auxiliary results

In subsequent sections, we need the following already established results:

Lemma 2.1. [35] Let C = (ci j) and D = (di j) be real symmetric non-negative matrices of order ν. If
C ≥ D, i.e., ci j ≥ di j for all i, j, then λ1(C) ≥ λ1(D), whereas λ1 is the largest eigenvalue.

Lemma 2.2. [35] Let Γ be a connected graph of order ν with m edges. Then

λ1(Γ) ≤
√

2m − ν + 1 (2.1)

with equality if and only if Γ � K1,ν−1 or Γ � Kν.

Here we deliver the well-known Cauchy–Schwartz inequality.

Lemma 2.3. (Cauchy–Schwartz inequality) [3] Let ri and si, 1 ≤ i ≤ ν be any real numbers, then ν∑
i=1

risi

2

≤

 ν∑
i=1

r2
i

  ν∑
i=1

s2
i

 . (2.2)

The Ozeki inequality is frequently used in the spectral analysis of graphs.

Lemma 2.4. (Ozeki inequality) [30] If ri and si (1 ≤ i ≤ ν) are non-negative real numbers, then

ν∑
i=1

r2
i

ν∑
i=1

s2
i −

 ν∑
i=1

risi

2

≤
ν2

4
(P1P2 − p1 p2)2 (2.3)

where P1 = max1≤i≤ν{ri}, P2 = max1≤i≤ν{si}, p1 = min1≤i≤ν{ri}, p2 = min1≤i≤ν{si}.

The following inequality has been retrieved from Dragomir [7].

Lemma 2.5. [7] Let pi, qi, ri and si be sequences of real numbers, and mi, νi are non-negative for
i = 1, 2, . . . , ν. Then the following inequality is valid:

ν∑
i=1

mi p2
i

ν∑
i=1

νiq2
i +

ν∑
i=1

mir2
i

ν∑
i=1

mis2
i ≥ 2

ν∑
i=1

mi piri

ν∑
i=1

νiqisi. (2.4)

AIMS Mathematics Volume 9, Issue 9, 24955–24976.



24959

Jog and Gurjar [23] used the following inequality while studying bounds on the distance energy of
graphs:

Lemma 2.6. Let ri, 1 ≤ i ≤ ν be any real numbers, then ν∑
i=1

|ri|

2

≥

 ν∑
i=1

|ri|
2

 . (2.5)

The following inequality was shown by Pólya and Szegó in their book [31].

Lemma 2.7. [31] Suppose ri and si, 1 ≤ i ≤ ν are positive real numbers, then

ν∑
i=1

r2
i

ν∑
i=1

s2
i ≤

1
4


√

P1P2

p1 p2
+

√
p1 p2

P1P2


2  ν∑

i=1

risi

2

(2.6)

where P1 = max1≤i≤ν{ri}, P2 = max1≤i≤ν{si}, p1 = min1≤i≤ν{ri}, p2 = min1≤i≤ν{si}.

The following classical inequality was proven by Biernacki et al. [2].

Lemma 2.8. [2] Suppose ri and si, 1 ≤ i ≤ ν are positive real numbers, then

|ν

ν∑
i=1

risi −

ν∑
i=1

ri

ν∑
i=1

si| ≤ α(ν)(R − r)(S − s) (2.7)

where r, s, R, and S are real constants such that for each i, 1 ≤ i ≤ ν, r ≤ ri ≤ R, and s ≤ si ≤ S .
Further, α(ν) = ν⌊ ν2⌋

(
1 − 1

ν
⌊ ν2⌋

)
.

Diaz and Metcalf [4] delivered a proof of the following inequality:

Lemma 2.9. [4] Let ri and si, 1 ≤ i ≤ ν are nonnegative real numbers, then

ν∑
i=1

s2
i + pP

ν∑
i=1

r2
i ≤ (p + P)

 ν∑
i=1

risi

 (2.8)

where p and P are real constants, so that for each i, 1 ≤ i ≤ ν, holds, pri ≤ si ≤ Pri.

Next, we prove the following inequality on the edge-connected eigenvalues:

Lemma 2.10. Let Γ be a connected graph of order ν ≥ 2. Then λw
1 > λ

w
2 .

Proof. Let us assume, for the sake of contradiction, that λw
1 = λ

w
2 . Since Γ is connected, Aw(Γ) is an

irreducible non-negative ν × ν matrix. By the Perron–Frobenius theorem, the eigenvector x
corresponding to λw

1 has all components positive. Let y be an eigenvector corresponding to λw
2 . Since

λw
1 = λ

w
2 , any linear combination of x and y would be an eigenvector corresponding to λw

1 . This implies
that it would be possible to construct an eigenvector with some zero components, which contradicts
the fact that all components of x are positive. Hence, we must have λw

1 > λ
w
2 . □

Next, we deliver a characterization for an ν-vertex satisfying |λw
1 | = |λ

w
2 | = . . . = |λ

w
ν |.
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Proposition 2.11. Let Γ be a graph of order ν. Then |λw
1 | = |λ

w
2 | = . . . = |λ

w
ν | if and only if Γ � Kν or

Γ � ν2 K2.

Proof. First, assume that |λw
1 | = |λ

w
2 | = . . . = |λ

w
ν |. Let S be the number of isolated vertices in Γ. If

S ≥ 1, then λw
1 = λ

w
2 = . . . = λ

w
ν = 0, hence Γ � Kν or Γ � ν

2 K2. Otherwise, if the maximum degree
∆ ≥ 2, then Γ contains a connected component H with at least 3 vertices. If H = Kν, ν ≥ 3, then by
Lemma 2.10, |λw

1 | = 2(ν − 1)(ν − 2) and |λw
2 | = 2(ν − 2), clearly |λw

1 | > |λ
w
2 |, a contradiction. Otherwise,

if H is not a complete graph, then by Lemma 2.10, λw
1 > λ

w
2 , a contradiction.

Conversely, one can easily check that |λw
1 | = |λ

w
2 | = . . . = |λ

w
ν | holds for Kν and ν2 K2. □

3. Main results

This section delivers various upper/lower extremal values for Ew(Γ) and λw
1 for an (m, ν)-graph with

ν-vertices and m-edges.
A sharp upper bound on λw

1 (i.e., edge-weighted spectral radius) is being proven in the following
result.

Theorem 3.1. Let Γ be an (m, ν)-graph possessing the maximum degree ∆. Then

λw
1 ≤ 2 (∆ − 1)

√
1 − ν + 2m (3.1)

with λw
1 = 2 (∆ − 1)

√
1 − ν + 2m ⇐⇒ Γ � Kν, ν ≥ 2.

Proof. Since Aw(Γ) ≤ 2(∆ − 1)A(Γ) and λw
1 be its spectral radius. Employing Lemma 2.1, one has

λw
1 ≤ 2λ1(∆ − 1).

By Lemma 2.2, one obtains
λw

1 ≤ 2(∆ − 1)
√

1 − ν + 2m.

Also, λw
1 = 2 (∆ − 1)

√
1 − ν + 2m in (3.1) ⇐⇒ Γ � Kν, ν ≥ 2. □

The next theorem delivers an upper extremal value considering the first–formulated Zagreb EM1

index of Γ.

Theorem 3.2. If Γ is an ν-vertex graph having λw
1 as its spectral radius (the largest eigenvalue), then

λw
1 ≤

√
2(−1 + ν)EM1(Γ)

ν
. (3.2)

Proof. Since
∑ν

k=1 λ
w
k = 0 it can be rewritten as

∑ν
k=2 λ

w
k = −λ

w
1 . Further,

(∑ν
k=1(λw

k )2
)
= 2EM1(Γ),

(
∑ν

k=2(λw
k )2) = (

∑ν
k=1(λw

k )2 − (λw
1 )2) = (2EM1(Γ) − (λw

1 )2) and (
∑ν

k=2 1) = (ν − 1).
Put rk = 1 and sk = λ

w
k in Lemma 2.3 and we obtain ν∑

k=2

(λw
k )

2

≤ (ν − 1)
ν∑

k=2

(λw
k )2

(−λw
1 )2 ≤ (−1 + ν)(2EM1(Γ) − (λw

1 )2)
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(−λw
1 )2 ≤ (−1 + ν)2EM1(Γ) − (ν − 1)(λw

1 )2

(−λw
1 )2 ≤ (−1 + ν)2EM1(Γ) − ν(λw

1 )2 + (λw
1 )2

ν(λw
1 )2 ≤ (−1 + ν)2EM1(Γ)

λw
1 ≤

√
2(−1 + ν)EM1(Γ)

ν
.

Hence, we have furnished the proof. □

Some lower and upper extremal values on Ew i.e., edge-weighted energy of Γ.

Theorem 3.3. For a connected ν-vertex graph Γ, Ew satisfies√
2EM1(Γ) ≤ Ew(Γ) ≤

√
2νEM1(Γ). (3.3)

Proof. For the upper bound, consider Lemma 2.3, i.e., ν∑
k=1

rksk

2

≤

 ν∑
k=1

r2
k

  ν∑
k=1

s2
k


put rk = 1 and sk = |λ

w
k |

2 in Lemma 2.3, we obtain ν∑
k=1

|λw
k |

2

≤

 ν∑
k=1

12

  ν∑
k=1

(|λw
k |)

2


since

(∑ν
k=1 |λ

w
k |
)
= Ew(Γ),

(∑ν
k=1 12

)
= 1 and

(∑ν
k=1(|λw

k |)
2
)
= 2EM1(Γ), we have

(Ew(Γ))2
≤ ν · 2EM1(Γ)

Ew(Γ) ≤
√

2νEM1(Γ).

Similarly, for a lower bound, consider Lemma 2.6, i.e., ν∑
k=1

|rk|

2

≥

 ν∑
k=1

|rk|
2


put rk = |λ

w
k | in Lemma 2.6, we obtan

(Ew(Γ))2
≥ 2EM1(Γ)

Ew(Γ) ≥
√

2EM1(Γ).

Hence, by combining the upper bound and the lower bound, we obtain the required result. □

In terms of the EM1 index, our next result delivers another lower extremal value on Ew.

Theorem 3.4. Any (m, ν)-graph Γ satisfies

Ew(Γ) ≥

√
2νEM1(Γ) −

ν2

4
(|λw

1 | − |λ
w
ν |)2 (3.4)

where |λw
ν | (resp. |λw

1 |) are minimum (resp. maximum) values of |λw
k |.
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Proof. Let |λw
1 | ≥ |λ

w
2 | ≥ . . . ≥ |λ

w
ν | be the eigenvalues of Aw(Γ). By putting rk = 1, sk = |λ

w
k | P1 = 1,

P2 = |λ
w
1 |, p1 = 1 and p2 = |λ

w
ν | in Lemma 2.4, one gets

ν∑
k=1

(1)2
ν∑

k=1

(|λw
k |

2) −

 ν∑
k=1

|λw
k |

2

≤
ν2

4
(|λw

1 | − |λ
w
ν |)

2

since
(∑ν

k=1(λw
k )2

)
= 2EM1(Γ) we have

2νEM1(Γ) − (Ew(Γ))2 ≤
ν2

4
(|λw

1 | − |λ
w
ν |)

2

2νEM1(Γ) −
ν2

4
(|λw

1 | − |λ
w
ν |)

2 ≤ (Ew(Γ))2

Ew(Γ) ≥

√
2νEM1(Γ) −

ν2

4
(|λw

1 | − |λ
w
ν |)2.

Hence, the proof has been furnished. □

The following theorem further refines the bound in Theorem 3.4.

Theorem 3.5. For an (ν,m)-graph Γ, assume λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν are eigenvalues of Aw(Γ). This

implies that,

Ew(Γ) ≥
√

2νEM1(Γ) − α(ν)(|λw
1 | − |λ

w
ν |)2 (3.5)

where α(ν) = ν⌊ ν2⌋
(
1 − 1

ν
⌊ ν2⌋

)
.

Proof. Let |λw
1 | ≥ |λ

w
2 | ≥ . . . ≥ |λ

w
ν | be the eigenvalues of Aw(Γ). By putting rk = |λ

w
k | = sk, R = |λw

1 | = S ,
and r = |λw

ν | = s in Lemma 2.8, one obtains

|ν

ν∑
k=1

|λw
k |

2 − (
ν∑

k=1

|λw
k |)

2| ≤ α(ν)(|λw
1 | − |λ

w
ν |)

2

|2νEM1(Γ) − (Ew(Γ))2| ≤ α(ν)(|λw
1 | − |λ

w
ν |)

2

2νEM1(Γ) − α(ν)(|λw
1 | − |λ

w
ν |)

2 ≤ (Ew(Γ))2

Ew(Γ) ≥
√

2νEM1(Γ) − α(ν)(|λw
1 | − |λ

w
ν |)2.

Hence the proof has been furnished. □

For a non-zero eigenvalue of a graph, the following theorem delivers yet another lower bound on
the edge-weighted energy Ew of graphs.

Theorem 3.6. If the eigenvalues of Aw(Γ) are non-zero, then

Ew(Γ) ≥
2
√
|λw

1 ||λ
w
ν |
√

2EM1(Γ)
|λw

1 | + |λ
w
ν |

, (3.6)

where |λw
1 | and |λw

ν | are the maximum and minimum of |λw
k |.
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Proof. Let |λw
1 | ≥ |λ

w
2 | ≥ . . . ≥ |λ

w
ν | be the eigenvalues of Aw(Γ). By putting rk = |λk| and sk = 1 in

Lemma 2.7, we obtain

ν∑
k=1

|λw
k |

2
ν∑

k=1

12 ≤
1
4


√
|λw

1 |

|λw
ν |
+

√
|λw
ν |

|λw
1 |


2  ν∑

k=1

|λw
k |

2

2νEM1(Γ) ≤
1
4

(
(|λw

1 | + |λ
w
2 |)

2

|λw
1 ||λ

w
ν |

)
(Ew(Γ))2

2νEM1(Γ) · 4|λw
1 ||λ

w
ν |

(|λw
1 | + |λ

w
ν |)2 ≤ (Ew(Γ))2

Ew(Γ) ≥
2
√
|λw

1 ||λ
w
ν |
√

2νEM1(Γ)
|λw

1 | + |λ
w
ν |

.

Hence the proof is completed. □

The following two results deliver lower bounds on Ew in terms of EM1, the smallest and largest
eigenvalues of graphs.

Theorem 3.7. Assuming λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν to be the eigenvalues of Aw(Γ), where Γ is an (ν,m)-graph.

Then

Ew(Γ) ≥
ν + 2EM1(Γ)(λw

ν λ
w
1 )

λw
ν + λ

w
1

. (3.7)

Proof. Let λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν be the eigenvalues of Aw(Γ). By putting rk = |λ

w
k |, sk = 1, p = λw

ν and
P = λw

1 , in Lemma 2.9, we obtain
ν∑

k=1

12 + λw
ν λ

w
1

ν∑
k=1

|λw
k |

2 ≤ (λw
ν + λ

w
1 )

 ν∑
k=1

|λw
k |


ν + 2EM1(Γ)(λw

ν λ
w
1 ) ≤ (λw

ν + λ
w
1 )Ew(Γ)

Ew(Γ) ≥
ν + 2EM1(Γ)(λw

ν λ
w
1 )

λw
ν + λ

w
1

.

Hence, the proof has been completed. □

Theorem 3.8. Assuming λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν to be the eigenvalues of Aw(Γ), where Γ is an (ν,m)-graph,

then

Ew(Γ) ≥
2EM1(Γ) + νλw

1λ
w
ν

λw
1 + λ

w
ν

. (3.8)

Proof. Let λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν be the eigenvalues of Aw(Γ). By putting rk = |λ

w
k |, sk = 1, p = λw

ν and
P = λw

1 , in Lemma 2.9, we obtain
ν∑

k=1

|λw
k |

2 + λw
ν λ

w
1

ν∑
k=1

12 ≤ (λw
ν + λ

w
1 )

 ν∑
k=1

|λw
k |


2EM1(Γ) + ν(λw

ν λ
w
1 ) ≤ (λw

ν + λ
w
1 )Ew(Γ)

Ew(Γ) ≥
2EM1(Γ) + νλw

1λ
w
ν

λw
1 + λ

w
ν

.

Hence the proof has been furnished. □
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Next, a sharp upper extremal value on Ew is proven.

Theorem 3.9. If Γ is a non-empty graph of order ν. Then

Ew(Γ) ≤

√
2(EM1(Γ))2 +

ν2

2
. (3.9)

Proof. Let λw
1 ≥ λ

w
2 ≥ . . . ≥ λ

w
ν be the eigenvalues of Aw(Γ). Substituting pk = |λ

w
k | = qk and

rk = sk = mk = νk = 1 in Lemma 2.5, we obtain

ν∑
k=1

1 · |λw
k |

2
ν∑

k=1

1 · |λw
k |

2 +

ν∑
k=1

1 · 12
ν∑

k=1

1 · 12 ≥ 2
ν∑

k=1

1 · |λw
k | · 1

ν∑
k=1

1 · |λw
k | · 1

2EM1(Γ) · 2EM1(Γ) + ν · ν ≥ 2(Ew(Γ))2

4(EM1(Γ))2 + ν2 ≥ 2(Ew(Γ))2√
4(EM1(Γ))2 + ν2

2
≥ Ew(Γ)

Ew(Γ) ≤

√
2(EM1(Γ))2 +

ν2

2
.

□

4. Applications on the edge-weighted energy of graphs

Until now, many researchers have studied the predictive potential of molecular descriptors (mainly
degree-, distance-, and eigenvalue-based) for estimating the π-electron energy (Eπ) of benzenoid
hydrocarbons (BHs) and also for estimating the enthalpy of formation ∆Ho

f and boiling point Bp of
BHs. For instance, Hayat et al. [16] (resp. Hayat and coauthors [14, 27]) investigated the efficiency of
degree-dependent (resp. eigenvalues-dependent) graphical descriptors for estimating Eπ of BHs.
Similar studies were conducted by Hayat et al. [15] (Hayat and Liu [12]) for distance-related and
temperature-based graphical descriptors. For predicting physicochemical properties such as Bp and
∆Ho

f of BHs, comparative studies for distance-dependent, temperature-related, degree-related, and
eigenvalue-related descriptors were conducted in [13, 17, 18, 26], respectively. For more studies on
QSPR, we refer to [1, 11, 29, 32].

In this section, we calculate energy and edge-weighted energy for molecular graphs of 22 benzenoid
hydrocarbons which are listed in Table 1. The adjacency matrix is defined, and eigenvalues, energy,
and edge-weighted energy are calculated using the Python programming language. The correlation
and regression models are obtained for the physicochemical properties of 22 BHs, for which the data
is taken from [25] (refer to Table 2), and the predictive ability is tested using energy E(Γ) and edge-
weighted energy Ew(Γ). In Table 3, the values of 11 molecular descriptors for 22 BHs are listed, which
are from [25]. Note that we consider carbon–carbon structures as chemical graphs. One can consider
other construction, of chemical graph based on molecular alignment [22].

This subsection records all the data sets that we employ for our structure-property models.
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Table 1. Edge-weighted energy Ew(Γ) and graph energy E(Γ) of lower 22 BHs.
Compound Ew(Γ) E(Γ)

Naphthalene 33.92994 13.684
Anthracene 51.763186 19.3136

Phenanthrene 51.86194 19.488
Pyrene 64.405992 22.505

Naphthacene 69.568754 27.3178
Triphenylene 71.69452 25.276
Tetraphene 87.365348 25.104

Benzo[c]phenanthrene 69.71874 13.252
Chrysene 69.74482 25.192
Perylene 82.208618 28.2453

Benzo[e]pyrene 82.37146 28.3360
Benzo[a]pyrene 82.242794 28.2219

Benzo[ghi]perylene 94.95264 31.4250
Anthanthrene 94.986946 31.2528

Picene 87.64762 30.942
Dibenz[a,j]anthracene 87.69062 30.879
Dibenz[a,h]anthracene 86.646292 30.880

Dibenzo[a,l]pyrene 100.135362 34.030
Dibenzo[a,i]pyrene 100.121532 34.018
Dibenzo[a,h]pyrene 100.048094 33.926
Dibenzo[a,e]pyrene 99.165458 34.604

Coronene 107.64814 34.568

Table 2. Experimental data on certain physicochemical characteristics of BHs [25].

Compound
Boiling point

(BP)(◦C)
Entropy(S)
(Cal/mol.K)

Acentric Factor
(ω) log P

Retention Index
(RI)

Enthalpy
∆Ho

f (kJ/mol)
Naphthalene 218.000 79.38 0.302 3.30 200.00 150.6
Anthracene 340.050 92.43 0.402 4.45 301.69 218.3

Phenanthrene 338.000 93.79 0.394 4.46 300.00 209.1
Pyrene 404.000 96.06 0.410 4.88 351.22 230.5

Naphthacene 440.000 105.47 0.460 5.76 408.30 286.1
Triphenylene 429.000 104.66 0.460 5.49 400.00 258.5
Tetraphene 425.000 108.22 0.460 5.76 398.50 276.9

Benzo[c]phenanthrene 448.000 113.61 - 5.70 391.12 280.5
Chrysene 431.000 106.83 0.460 5.81 400.00 267.7
Perylene 497.000 109.10 0.490 6.25 456.22 279.9

Benzo[e]pyrene 493.000 110.46 - 6.44 450.73 289.1
Benzo[a]pyrene 496.000 111.85 - 6.13 453.44 279.9

Benzo[ghi]perylene 542.000 114.10 - 6.63 501.32 301.3
Anthanthrene 547.000 114.10 - 7.04 503.89 310.5

Picene 519.000 119.87 0.540 7.11 500.00 326.3
Dibenz[a,j]anthracene 531.000 119.87 - 6.54 489.80 335.5
Dibenz[a,h]anthracene 536.000 119.87 - 6.75 495.45 335.5

Dibenzo[a,l]pyrene 595.000 131.69 - 7.71 553.00 351.2
Dibenzo[a,i]pyrene 594.000 123.50 - 7.28 556.47 347.7
Dibenzo[a,h]pyrene 596.000 123.50 - 7.28 559.90 347.7
Dibenzo[a,e]pyrene 592.000 124.89 - 7.28 551.53 338.5

Coronene 590.000 116.36 0.540 7.64 549.67 322.7
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Table 3. Molecular graphical descriptors of the lower 22 BHs [25].
Compound M1 M2 F R ABC SCI
Naphthalene 50.00 57.00 118.00 4.96632 7.73773 5.19710
Anthracene 76.00 90.00 188.00 6.93265 11.23282 7.39420

e Phenanthrene 76.00 91.00 188.00 6.94948 11.19238 7.40802
Pyrene 94.00 117.00 242.00 7.93265 13.23282 8.61895

Naphthacene 102.00 123.00 258.00 8.89897 14.72792 9.59130
Triphenylene 102.00 126.00 258.00 8.94948 14.60660 9.63277
Tetraphene 102.00 124.00 258.00 8.91581 14.68748 9.60512

Benzo[c]phenanthrene 102.00 125.00 258.00 8.93265 14.64704 9.61895
Chrysene 102.00 125.00 258.00 8.93265 14.64704 9.61895
Perylene 120.00 152.00 312.00 9.93265 16.64704 10.84369

Benzo[e]pyrene 120.00 152.00 312.00 9.93265 16.64704 10.84369
Benzo[a]pyrene 120.00 151.00 312.00 9.91581 16.68748 10.82987

Benzo[ghi]perylene 138.00 178.00 366.00 10.91581 18.68748 12.05461
Anthanthrene 138.00 177.00 366.00 10.89897 18.72792 12.04079

Picene 128.00 159.00 328.00 10.91581 18.10169 11.82987
Dibenz[a,j]anthracene 128.00 158.00 328.00 10.89897 18.14213 11.81605
Dibenz[a,h]anthracene 128.00 158.00 328.00 10.89897 18.14213 11.81605

Dibenzo[a,l]pyrene 146.00 186.00 382.00 11.91581 20.10169 13.05461
Dibenzo[a,i]pyrene 146.00 185.00 382.00 11.89897 20.14213 13.04079
Dibenzo[a,h]pyrene 146.00 185.00 382.00 11.89897 20.14213 13.04079
Dibenzo[a,e]pyrene 146.00 186.00 382.00 11.91581 20.10169 13.05461

Coronene 156.00 204.00 420.00 11.89897 20.72792 13.26554
Compound GA HA SDD ReZM RR -
Naphthalene 10.91918 4.93333 22.66666 270.00000 24.79795
Anthracene 15.83836 6.86666 33.33333 444.00000 37.59591

Phenanthrene 15.87877 6.90000 33.00000 454.00000 37.69693
Pyrene 18.83836 7.86666 39.33333 606.00000 46.59591

Naphthacene 20.75755 8.80000 44.00000 618.00000 50.39387
Triphenylene 20.87877 8.90000 43.00000 648.00000 50.69693
Tetraphene 20.79795 8.83333 43.66666 628.00000 50.49489

Benzo[c]phenanthrene 20.83836 8.86666 43.33333 638.00000 50.59591
Chrysene 20.83836 8.86666 43.33333 638.00000 50.59591
Perylene 23.83836 9.86666 49.33333 800.00000 59.59591

Benzo[e]pyrene 23.83836 9.86666 49.33333 800.00000 59.59591
Benzo[a]pyrene 23.79795 9.83333 49.66666 790.00000 59.49489

Benzo[ghi]perylene 26.79795 10.83333 55.66666 952.00000 68.49489
Anthanthrene 26.75755 10.80000 56.00000 942.00000 68.39387

Picene 25.79795 10.83333 53.66666 822.00000 63.49489
Dibenz[a,j]anthracene 25.75755 10.80000 54.00000 812.00000 63.39387
Dibenz[a,h]anthracene 25.75755 10.80000 54.00000 812.00000 63.39387

Dibenzo[a,l]pyrene 28.79795 11.93333 59.66666 984.00000 72.49489
Dibenzo[a,i]pyrene 28.75755 11.80000 60.00000 974.00000 72.39389
Dibenzo[a,h]pyrene 28.75755 11.80000 60.00000 974.00000 72.39389
Dibenzo[a,e]pyrene 28.79795 11.83333 59.66666 984.00000 72.49489

Coronene 29.75755 11.80000 62.00000 1104.00000 77.39387

5. Results and discussions

The intercorrelation between the physicochemical properties of polycyclic aromatic hydrocarbons,
such as Kovats retention index (RI), acentric factor (ω), octanol-water partition coefficient (log P),
boiling point (BP), enthalpy of formation (∆H f ) and entropy (S ), with graph energy E(Γ) and
edge-weighted energy Ew(Γ), is analysed in Table 4. Also, the intercorrelation between 11 molecular
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descriptors such as atom bond connectivity index (ABC), forgotten index (F), 1st and 2nd Zagreb
invariants (M1 and M2), sum division degree index (SDD), reciprocal Randić index (RR), classical
Randi¢ index (R), redefined Zagreb index (ReZM) with graph energy E(Γ) and edge-weighted energy
Ew(Γ) is listed in Table 5. We observe that the 11 molecular descriptors are highly intercorrelated with
edge-weighted energy Ew(Γ) with r > 0.97, which is highlighted in Table 5.

Table 4. Correlation coefficient r between graph energy E(Γ), edge-weighted energy Ew(Γ),
and physicochemical properties.

Energy log P ω RI BP S ∆H f

Ew(Γ) 0.969 0.937 0.974 0.969 0.913 0.930
E(Γ) 0.900 0.977 0.921 0.900 0.811 0.863

Table 5. Correlation coefficient r between graph energy E(Γ), edge-weighted energy Ew(Γ),
and molecular descriptors.

Degree based
Molecular Descriptors

E(Γ) Ew(Γ)

M1 0.914 0.980
M2 0.909 0.977

ABC 0.914 0.977
ReZM 0.913 0.980

R 0.911 0.974
F 0.911 0.978

HA 0.916 0.979
SCI 0.914 0.979
RR 0.915 0.979

SDD 0.903 0.972
GA 0.911 0.973

The value of r for Ew(Γ) ranges from 0.972 to 0.980.

5.1. Regression models

The quadratic regression models for physico-chemical properties (PPs) such as Kovats retention
index (RI), acentric factor (ω), octanol–water partition coefficient (log P), boiling point (BP), enthalpy
of formation (∆H f ), and entropy (S ) are derived with respect to graph energy E(Γ) and edge-weighted
energy Ew(Γ). The symbols ν, r, F, and S E are used to represent population, correlation coefficient,
F-values, and the standard error of the estimate, respectively. Note that, in general, quadratic models
have very bad predictive power, even if they have good estimating power. The reader is referred to [21]
for diversity in detailed regression analysis.

The quadratic regression model is defined as

PP = a(E(Γ))2 + b(E(Γ)) + c.

The quadratic regression of PP with E(Γ) is as follows:

BP = (0.489)(E(Γ))2 + (−10.219)(E(Γ)) + (375.526).
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ν = 22 r = 0.9230 F = 54.872◦C S E = 39.940.

S = (0.074)(E(Γ))2 + (−2.101)(E(Γ)) + (109.805).

ν = 22 r = 0.8491 F = 24.597◦C S E = 6.838.

ω = (0.000)(E(Γ))2 + (0.020)(E(Γ)) + (0.067).

ν = 22 r = 0.9823 F = 111.040◦C S E = 0.014.

log P = (0.006)(E(Γ))2 + (−0.123)(E(Γ)) + (4.986).

ν = 22 r = 0.9241 F = 55.578◦C S E = 0.460.

RI = (0.462)(E(Γ))2 + (−8.919)(E(Γ)) + (323.656).

ν = 22 r = 0.9428 F = 75.994◦C S E = 33.759.

∆H f = (0.236)(E(Γ))2 + (−4.631)(E(Γ)) + (229.191).

ν = 22 r = 0.8831 F = 33.780◦C S E = 25.526.

The quadratic regression of PP with Ew(Γ) is as follows:

BP = (−0.013)(Ew(Γ))2 + (7.026)(Ew(Γ)) + (3.434).

ν = 22 r = 0.9705 F = 153.726◦C S E = 25.082.

S = (−0.004)(Ew(Γ))2 + (1.118)(Ew(Γ)) + (44.689).

ν = 22 r = 0.9208 F = 52.889◦C S E = 5.055.

ω = (−2.494)(Ew(Γ))2 + (0.007)(Ew(Γ)) + (0.110).

ν = 22 r = 0.9544 F = 41.147◦C S E = 0.023.

log P = (−6.907)(Ew(Γ))2 + (0.070)(Ew(Γ)) + (1.030).

ν = 22 r = 0.9695 F = 149.803◦C S E = 0.294.

RI = (−0.007)(Ew(Γ))2 + (5.987)(Ew(Γ)) + (6.350).

ν = 22 r = 0.9741 F = 175.069◦C S E = 22.976.

∆H f = (−0.015)(Ew(Γ))2 + (4.853)(Ew(Γ)) + (2.607).

ν = 22 r = 0.9386 F = 70.070◦C S E = 18.826.

5.2. Analysis

The following analysis can be made from the quadratic regression models:

• The correlation coefficient r for quadratic regression models gives high predictability for
physicochemical properties with respect to graph energy E(Γ) and edge-weighted energy Ew(Γ).
• The quadratic regression models for E(Γ) give high intercorrelation with a correlation value of

r = 0.9823 for the acentric factor.
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• The degree-2 polynomial regression model for E(Γ) gives appreciable intercorrelation with a
correlation value of r = 0.9230 for the boiling point, r = 0.9241 for the log P, r = 0.9428 for the
retention index.
• The quadratic regression model for E(Γ) is weakly intercorrelation with correlation value r =

0.8491 for the entropy, and r = 0.8831 for the enthalpy.
• The quadratic regression models for Ew(Γ) give high intercorrelation with a correlation value of

r = 0.9705 for the boiling point and r = 0.9741 for retention index.
• The quadratic regression model for Ew(Γ) gives appreciable intercorrelation with a correlation

value of r = 0.9208 for entropy, r = 0.9544 for acentfac, r = 0.9695 for log P, and r = 0.9386 for
the enthalpy.
• From all the 12 quadratic regression models, it has been observed that the significance F is 0.000.

The scattered curve diagram of E(Γ) with physiochemical properties are depicted in Figures 1–6.

Figure 1. The quadratic regression model for boiling point with E(Γ).

Figure 2. The quadratic regression model for entropy with E(Γ).
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Figure 3. The quadratic regression model for acentric factor with E(Γ).

Figure 4. The quadratic regression model for log P with E(Γ).

Figure 5. The quadratic regression model for retention index with E(Γ).
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Figure 6. The quadratic regression model for enthalpy with E(Γ).

The scattered curve diagram of Ew(Γ) with physicochemical characteristics are depicted in
Figures 7–12.

Figure 7. The quadratic regression model for boiling point with Ew(Γ).

Figure 8. The quadratic regression model for entropy with Ew(Γ).
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Figure 9. The quadratic regression model for acentric factor with Ew(Γ).

Figure 10. The quadratic regression model for log P with Ew(Γ).

Figure 11. The quadratic regression model for retention index with Ew(Γ).
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Figure 12. The quadratic regression model for enthalpy with Ew(Γ).

6. Conclusions

This paper puts forward the edge-weighted adjacency matrix Aw(Γ) of a graphical structure Γ. The
energy Ew(Γ) as well as the spectral radius λw

1 of the Aw(Γ) have been studied, and lower and upper
extremes are derived for λw

1 and Ew(Γ) in terms of other graphical parameters. Further, we calculated
the graph energy and edge-weighted energy of 22 BHs by drawing their molecular graphs to check the
predictive potential of the physicochemical characteristics of BHs. Polynomials of degree-2 regression
models were generated for Kovats retention index (RI), acentric factor (ω), octanol-water partition
coefficient (log P), boiling point (BP), enthalpy of formation (∆H f ), and entropy (S ) using theses two
graph energies. We also found correlation coefficients of the physicochemical properties and molecular
descriptors of BHa corresponding to the two graph energies E(Γ) and Ew(Γ).
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Appendix

Input: Python code to calculate eigenvalues and energy of graph

import numpy as np\\
from numpy.linalg import eig\\
def calculate energy(matrix):\\

Convert the input to a numpy array\\
a = np.array(matrix)\\
Calculate eigenvalues and eigenvectors\\
w, v = eig(a)\\
Calculate the energy as the sum of the absolute values of
the eigenvalues energy = np.sum(np.abs(w))\\
return w, energy\\

Define the matrix\\
matrix = [[2, -2, 0, 0],

[-2, 8, -3, -3],
[0, -3, 5, -2],
[0, -3, -2, 5]]}

Call the function and print the results\\
eigenvalues, energy = calculate energy(matrix)\\
print("Eigenvalues of the matrix:", eigenvalues)\\
print("Energy of the matrix:", energy)
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