Research article

Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects

  • Received: 01 July 2024 Revised: 29 July 2024 Accepted: 06 August 2024 Published: 12 August 2024
  • MSC : 34C23, 34D20

  • In ecology, the most significant aspect is that the interactions between predators and prey are extremely complicated. Numerous experiments have shown that both direct predation and the fear induced in prey by the presence of predators lead to a reduction in prey density in predator-prey interactions. In addition, a suitable shelter can effectively stop predators from attacking as well as support the persistence of prey population. There has been less exploration of the effects of not only fear but also refuge factors on the dynamics of predator prey interactions. In this paper, we unveil several conclusions about a predator-prey system with fuzzy parameters, considering the cost of fear in two prey species and the effect of shelter on two prey species and one predator. As the first step of the investigation, the boundedness and non-negativity of the solutions to the system are put forward. Using the Jocabian matrix and Lyapunov function methods, we further analyze the existence and stability of the available equilibria and also the existence of Hopf bifurcation, considering the fear parameter as the bifurcation parameter that has been observed by applying the normal form theory. Finally, numerical simulations help us better understand the dynamics of the model, in which some interesting chaotic phenomena are also exhibited.

    Citation: Xuyang Cao, Qinglong Wang, Jie Liu. Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects[J]. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164

    Related Papers:

  • In ecology, the most significant aspect is that the interactions between predators and prey are extremely complicated. Numerous experiments have shown that both direct predation and the fear induced in prey by the presence of predators lead to a reduction in prey density in predator-prey interactions. In addition, a suitable shelter can effectively stop predators from attacking as well as support the persistence of prey population. There has been less exploration of the effects of not only fear but also refuge factors on the dynamics of predator prey interactions. In this paper, we unveil several conclusions about a predator-prey system with fuzzy parameters, considering the cost of fear in two prey species and the effect of shelter on two prey species and one predator. As the first step of the investigation, the boundedness and non-negativity of the solutions to the system are put forward. Using the Jocabian matrix and Lyapunov function methods, we further analyze the existence and stability of the available equilibria and also the existence of Hopf bifurcation, considering the fear parameter as the bifurcation parameter that has been observed by applying the normal form theory. Finally, numerical simulations help us better understand the dynamics of the model, in which some interesting chaotic phenomena are also exhibited.



    加载中


    [1] A. Lotka, Elements of physical biology, Baltimore: Williams and Wilkins, 1925.
    [2] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Mar. Sci., 3 (1928), 3–51. http://dx.doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [3] X. Gao, H. Zhang, X. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Mathematics, 9 (2024), 18506–18527. http://dx.doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
    [4] A. Singh, Stochastic dynamics of predator-prey interactions, PLoS One, 16 (2021), e0255880. http://dx.doi.org/10.1371/journal.pone.0255880 doi: 10.1371/journal.pone.0255880
    [5] P. Mishra, A. Ponosov, J. Wyller, On the dynamics of predator-prey models with role reversal, Physica D, 461 (2024), 134100. http://dx.doi.org/10.1016/j.physd.2024.134100 doi: 10.1016/j.physd.2024.134100
    [6] C. Clark, Mathematical bioeconomics: the optimal management of renewable resources, New York: Wiley, 1976.
    [7] T. Kar, K. Chaudhuri, Harvesting in a two-prey one-predator fishery: a bioeconomic model, ANZIAM J., 45 (2004), 443–456. http://dx.doi.org/10.1017/s144618110001347x doi: 10.1017/s144618110001347x
    [8] Z. He, D. Ni, S. Wang, Optimal harvesting of a hierarchical age-structured population system, Int. J. Biomath., 12 (2019), 1950091. http://dx.doi.org/10.1142/s1793524519500918 doi: 10.1142/s1793524519500918
    [9] J. Maynard-Smith, Models in ecology, Cambridge: Cambridge University Press, 1974.
    [10] G. Gause, N. Smaragdova, A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 1–18. http://dx.doi.org/10.2307/1087 doi: 10.2307/1087
    [11] R. Cantrell, C. Cosner, On the dynamics of predator-prey models with the beddington-deAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206–222. http://dx.doi.org/10.1006/jmaa.2000.7343 doi: 10.1006/jmaa.2000.7343
    [12] X. Meng, Y. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting, J. Appl. Math. Comput., 63 (2020), 361–389. http://dx.doi.org/10.1007/s12190-020-01321-y doi: 10.1007/s12190-020-01321-y
    [13] D. Pal, G. Mahapatra, G. Samanta, A study of bifurcation of prey-predator model with time delay and harvesting using fuzzy parameters, J. Biol. Syst., 26 (2018), 339–372. http://dx.doi.org/10.1142/S021833901850016X doi: 10.1142/S021833901850016X
    [14] P. Madueme, V. Eze, N. Aguegboh, Dynamics of prey predator model with prey refuge using a threshold parameter, J. Math. Comput. Sci., 11 (2021), 5937–5946. http://dx.doi.org/10.28919/jmcs/6184 doi: 10.28919/jmcs/6184
    [15] T. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math., 185 (2006), 19–33. http://dx.doi.org/10.1016/j.cam.2005.01.035 doi: 10.1016/j.cam.2005.01.035
    [16] A. Sih, J. Petranka, L. Kats, The dynamics of prey refuge use: a model and tests with sunfish and salamander larvae, Am. Nat., 132 (1988), 463–483. http://dx.doi.org/10.1086/284865 doi: 10.1086/284865
    [17] E. Gonzalez-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. http://dx.doi.org/10.1016/s0304-3800(03)00131-5 doi: 10.1016/s0304-3800(03)00131-5
    [18] T. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci., 10 (2005), 681–691. http://dx.doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [19] W. Li, L. Huang, J. Wang, Global asymptotical stability and sliding bifurcation analysis of a general filippov-type predator-prey model with a refuge, Appl. Math. Comput., 405 (2021), 126263. http://dx.doi.org/10.1016/j.amc.2021.126263 doi: 10.1016/j.amc.2021.126263
    [20] A. Thirthar, S. Majeed, M. Alqudah, P. Panja, T. Abdeljawad, Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator, Chaos Soliton. Fract., 159 (2022), 112091. http://dx.doi.org/10.1016/j.chaos.2022.112091 doi: 10.1016/j.chaos.2022.112091
    [21] H. Qi, X. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. http://dx.doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [22] W. Lu, Y. Xia, Multiple periodicity in a predator-prey model with prey refuge, AIMS Mathematics, 10 (2022), 421. http://dx.doi.org/10.3390/math10030421 doi: 10.3390/math10030421
    [23] Q. Wang, S. Zhai, Q. Liu, Z. Liu, Stability and optimal harvesting of a predator-prey system combining prey refuge with fuzzy biological parameters, Math. Biosci. Eng., 18 (2021), 9094–9120. http://dx.doi.org/10.3934/mbe.2021448 doi: 10.3934/mbe.2021448
    [24] S. Zhai, Q. Wang, T. Yu, Fuzzy optimal harvesting of a prey-predator model in the presence of toxicity with prey refuge under imprecise parameters, Math. Biosci. Eng., 19 (2022), 11983–12012. http://dx.doi.org/10.3934/mbe.2022558 doi: 10.3934/mbe.2022558
    [25] J. Brown, J. Laundr, M. Gurung, The ecology of fear: optimal foraging, game theory, and trophic interactions, J. Mammal., 80 (1999), 385–399. http://dx.doi.org/10.2307/1383287 doi: 10.2307/1383287
    [26] G. Trussell, P. Ewanchuk, C. Matassa, The fear of being eaten reduces energy transfer in a simple food chain, Ecology, 87 (2006), 2979–2984. http://dx.doi.org/10.1890/0012-9658(2006)87[2979:tfober]2.0.co;2 doi: 10.1890/0012-9658(2006)87[2979:tfober]2.0.co;2
    [27] M. Clinchy, M. Sheriff, L. Zanette, Predator-induced stress and the ecology of fear, Funct. Ecol., 27 (2013), 56–65. http://dx.doi.org/10.1111/1365-2435.12007 doi: 10.1111/1365-2435.12007
    [28] X. Wang, L. Zanette, X. Zou, Modeling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. http://dx.doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [29] M. Hossain, N. Pal, S. Samanta, J. Chattopadhyay, Fear induced stabilization in an intraguild predation model, Int. J. Bifurcat. Chaos, 30 (2020), 2050053. http://dx.doi.org/10.1142/s0218127420500534 doi: 10.1142/s0218127420500534
    [30] P. Cong, M. Fan, X. Zou, Dynamics of a three-species food chain model with fear effect, Commun. Nonlinear Sci., 99 (2021), 105809. http://dx.doi.org/10.1016/j.cnsns.2021.105809 doi: 10.1016/j.cnsns.2021.105809
    [31] S. Debnath, P. Majumdar, S. Sarkar, U. Ghosh, Chaotic dynamics of a tri-topic foodchain model with beddington-deAngelis functional response in presence of fear effect, Nonlinear Dyn., 106 (2021), 2621–2653. http://dx.doi.org/10.1007/s11071-021-06896-0 doi: 10.1007/s11071-021-06896-0
    [32] D. Sahoo, G. Samanta, Impact of fear effect in a two prey-one predator system with switching behaviour in predation, Differ. Equ. Dyn. Syst., 32 (2024), 377–399. http://dx.doi.org/10.1007/s12591-021-00575-7 doi: 10.1007/s12591-021-00575-7
    [33] L. Zanette, A. White, M. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. http://dx.doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [34] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X
    [35] L. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sciences, 172 (2005), 1–40. http://dx.doi.org/10.1016/j.ins.2005.01.017 doi: 10.1016/j.ins.2005.01.017
    [36] S. Chang, L. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern., 2 (1972), 30–34. http://dx.doi.org/10.1109/TSMC.1972.5408553 doi: 10.1109/TSMC.1972.5408553
    [37] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. http://dx.doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [38] B. Bede, I. Rudas, A. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sciences, 177 (2007), 1648–1662. http://dx.doi.org/10.1016/j.ins.2006.08.021 doi: 10.1016/j.ins.2006.08.021
    [39] A. Khastan, J. Nieto, A boundary value problem for second order fuzzy differential equations, Nonlinear Anal.-Theor., 72 (2010), 3583–3593. http://dx.doi.org/10.1016/j.na.2009.12.038 doi: 10.1016/j.na.2009.12.038
    [40] B. Hassard, N. Kazarinoff, Y. Wan, Theory and application of Hopf bifurcation, Cambridge: Cambridge University Press, 1981.
    [41] Y. Kuznetsov, Elements of applied bifurcation theory, Cham: Springer-Verlag, 2023. http://dx.doi.org/10.1007/978-3-031-22007-4
    [42] D. Pal, G. Mahapatra, G. Samanta, Stability and bionomic analysis of fuzzy parameter based prey-predator harvesting model using UFM, Nonlinear Dyn., 79 (2015), 1939–1955. http://dx.doi.org/10.1007/s11071-014-1784-4 doi: 10.1007/s11071-014-1784-4
    [43] J. Dijkman, H. Haeringen, S. DeLange, Fuzzy numbers, J. Math. Anal. Appl., 92 (1983), 301–341. http://dx.doi.org/10.1016/0022-247X(83)90253-6 doi: 10.1016/0022-247X(83)90253-6
    [44] R. Jafari, W. Yu, Uncertainty nonlinear systems modeling with fuzzy equations, Proceedings of IEEE 16th International Conference on Information Reuse and Integration, 2015,182–188. http://dx.doi.org/10.1109/IRI.2015.36
    [45] K. Miettinen, Nonlinear multiobjective optimization, Boston: Kluwer Academic Publishers, 1999. http://dx.doi.org/10.1007/978-1-4615-5563-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(476) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog