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Abstract: In ecology, the most significant aspect is that the interactions between predators and prey
are extremely complicated. Numerous experiments have shown that both direct predation and the
fear induced in prey by the presence of predators lead to a reduction in prey density in predator-prey
interactions. In addition, a suitable shelter can effectively stop predators from attacking as well as
support the persistence of prey population. There has been less exploration of the effects of not only
fear but also refuge factors on the dynamics of predator prey interactions. In this paper, we unveil
several conclusions about a predator-prey system with fuzzy parameters, considering the cost of fear in
two prey species and the effect of shelter on two prey species and one predator. As the first step of the
investigation, the boundedness and non-negativity of the solutions to the system are put forward. Using
the Jocabian matrix and Lyapunov function methods, we further analyze the existence and stability of
the available equilibria and also the existence of Hopf bifurcation, considering the fear parameter as the
bifurcation parameter that has been observed by applying the normal form theory. Finally, numerical
simulations help us better understand the dynamics of the model, in which some interesting chaotic
phenomena are also exhibited.
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1. Introduction

In population ecology, understanding how predators and primary producers influence nutrient flow
relative to each other is important. Ecosystem interactions and predator-prey relationships are governed
by predation and the delivery of resource processes. The identification of ecological factors that can
alter or control dynamic behavior requires theoretical and experimental research. One way to study
these questions is by means of experimental control, and another useful way is via mathematical
modeling as well as computer simulations. Over decades of theoretical ecology and biomathematics
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development, mathematical modeling has become an indispensable tool for scientists in related fields
to study ecosystems. Since Lotka [1] and Volterra [2], as cornerstones of theoretical ecology, published
the first study of predator-prey dynamics, any species in nature can be a predator or prey, and due to
its prevalence, it has become one of the most popular topics for researchers to study [3-5]. Besides,
because biological resources are renewable and have the most unique development mechanisms, the
over-utilization of biological resources and the destruction of the environment by humans will directly
affect the balance of the ecosystem. Maintaining ecological balance and meeting humans material
needs have attracted the most attention from researchers focused on the scientific management of
renewable resource development [6—8].

Shelter serves as a defense strategy. It refers broadly to a series of behaviors by prey to avoid
predators in order to increase their survival rate. The concept of sanctuary was first developed by
Maynard-Smith [9] and Gause et al. [10], and its popularity has been very high, garnering widespread
attention from many scholars [11-15]. Sih et al. [16] investigated the effects of prey refuge in a
three-species model and concluded that the system’s stability is strongly related to the refuge. Also,
similar findings can be displayed in [17-22]. The two modes of refuge analyzed by Gonzalez-Olivares
et al. [17] have diverse stability domains in terms of the parameter space. Qi et al. [21] ensure the
stability of the system by varying the strength of the refuge.

Through reviewing a large amount of literature, we begin to consider [23,24] as a basis for the two
prey and one predator species that will be modeled in this article. We assume that at a certain time ¢,
the populations of the two prey and one predator are x(f), x,(¢), and y(¢), respectively. Based on the
above, we construct the following model:

d

% =nx; (1 - 1)2_11) —a1x1xy —ci(l —mpx1y — q1Erx,

axz =nrnx|l- 2 arx1xy — c2(1 = my)x2y — g2 Er x5, (1.1)
dt K

dy

o ei(1 —mpx1y + ex(1 —my)xyy — dy — g3 Esy.

The significance of the full parameters is annotated in Table 1.

Table 1. Biological meaning of parameters.

Parameters Biological meaning

ri, 1) Growth rates of prey x; and prey x,

K, K, Carrying capacity of prey x; and prey x,

a,a Interspecific competition between prey x; and prey x,
C1,C Predation coefficients for prey x; and prey x,

my, my Refuge rates of prey x; and prey x,

e, e Conversion factors for prey x; and prey x,

q1,92- 93 Captureability factors for prey x;, prey x, and predator y
E\,E,,E;  Harvesting efforts for prey xi, prey x, and predator y
d Predator y mortality rate

Most species in nature, including humans, are influenced by fear. Fear may cause an abnormal state

AIMS Mathematics Volume 9, Issue 9, 23945-23970.



23947

and behavior to arise. As usual, prey have an innate fear of predators. The ecology of fear is related
to combining the optimal behavior of prey and predators with their population densities [25,26]. In
view of reality, it is a fact that prey fear predators, which is seen as a psychological effect that can
have a lasting impact on prey populations. This psychological influence is often easy to overlook, but
it is necessary to consider it in the context of practical ecology [27]. Wang et al. [28] first considered
the effect of the fear factor on the model and first proposed the fear of prey F(k,y). Afterwards,
some researchers have investigated the effects of the fear effect and predator interferences in some
three-dimensional systems as well as explored the generation of Hopf bifurcation conditions in the
presence of a fear parameter as a bifurcation parameter [29-32]. Zanette et al. [33] observed that
prey will reduce reproducing because of fear of being killed by predators, thus decreasing the risk of
being killed after giving birth, which also leads directly to a decline in prey birth rates. According to
the above discussion, our paper considers the different fears k; caused by predators for the two prey
species.

In reality, when prey feel the crisis of being hunted, they will reproduce less and increase their
survival rate. These conditions about the fear factor F(k;,y) (i = 1, 2) are listed as follows:

1) F(0,y) = 1: prey production does not decrease when the prey does not fear the predator;

2) F(k;,0) = 1: even though the prey will develop a fear of predators and there will be no predators,
prey production will still not decline;

3) kh_r)r(}o F(k;,y) = 0: when the prey’s fear of the predator is very high, this will result in the prey

production tending to zero;
4) lim F(k;, y) = O: prey have a fear of predators, and when predator numbers are too large, this can
y—)00

also lead to prey production tending to zero;

5) % < 0: the greater the prey’s fear of predators, the less productive it will be;
6) 6%’;"’” < 0: predators are inversely proportional to their prey.

For ease of analysis, we draw on Wang et al. [28] to consider the fear effect:

F(ki,y) = i=172), (1.2)

1+kiy

obviously, F(k;,y) (i = 1,2) in (1.2) satisfies conditions 1)-6). Based on the above conditions, this
study will consider the effect of fear on system (1.1) to obtain system (1.3).

de ri Xy X1
——|—aixixo —ci(1 —m)x1y — q1 E1xq,

E 1+k1y K1

dX2 HP.%) X2

dx _ _2) el - —gE (1.3)
7 l+k2y( Kz) arx1xy — c2(1 = my)x2y — g2 Er x5,

dy

i ei(1 —mp)x1y + ex(1 —my)xyy —dy — g3 Esy.

Notably, most biological parameters in much of the literature are fixed constants. However, in
reality, the survival of species is full of unknowns, and all data are not always constant, which can lead
to deviations from the ideal model with fixed parameters. In order to make the model more relevant and
the results more accurate, we cannot just consider fixed parameters. Therefore, to make the study more
convincing, it is necessary to target imprecise parameters. Professor Zadeh [34], who first proposed
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the fuzzy set theory, also argued that the application of fuzzy differential equations is a more accurate
method for modeling biological dynamics in the absence of accurate data conditions [35]. Moreover,
the first introduction of the idea of fuzzy derivatives came from Chang and Zadeh [36]. Further,
Kaleva [37] studied the generalized fuzzy derivatives based on Hukuhara differentiability, the Zadeh
extension principle, and the strong generalized differentiability concept. Bede et al. [38] employed the
notion of strongly generalized differentiability to investigate fuzzy differential equations. Khastan and
Nieto [39] solved the margin problem for fuzzy differential equations in their article. Motivated by

¢, e andd represent all triangular fuzzy numbers (the relevant theories of fuzzy sets are detailed in

Appendix A), then the system (1.3) can be written as

de ﬂxl ( X1

E 1 +k1y K1

be expressed as follows:

dy ’ a @ o
E) = el (1 —mpxy + €5, (1 —my)xoy — dpy — q3E3y,
L

@ a
dt

= efp(1 —m)x1y + e5x(1 — my)x2y — djy — gz Esy.

R
Introducing weighted sum, we change (1.5) to (1.6)

dx1 dx1 “ + dx1 “
— =w|— wy|l—1 ,
dt '\ dt \ar

L R

@—W @a_i_w @a
e~ '\ dr \ar ),

L

e~ '\ar), " \ar),
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- —) —ayxi1x; —ci(1 =m)x1y —q Eixy,

dx; ) X2 —~ &1 ) E
— = —— | —ax1x, — (1 —my)xy — X7,
dr 1+ ko X, 2X1X2 2 2)X2Y — qaL2Xp
dy _ _ -

i 1(1 =mpxiy +ex(1 —mo)xpy — dy — q3E3y,

% j ) lr-i:LZy 1 leyl);_%l ~ digXi = cip(l —m)xy = qiErx,
% : ) erzy 1 -l:llzly;_%l —dipxix = ¢l —mo)xy = g1 B,
% j B lr-%LZy 1 :gzzyl)% — dapXi Xy = Cop(l — m)xoy — q2Enx0s,
% : ) erZy 1 :SZﬁI% — @i — Gl —m)xy — g2Brxs,

(1.4)

(1.5)

(1.6)
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where w; and w, are satisfied with wy + w, = 1, and wy,w, > 0. Simplifying the system (1.6), we
obtain

dx; A A, X%
—_— - — —-A —A4(1 - —q1E1x1,
dr n klyxl 1+ kiy K, 3X1X2 4( mpx1y — q1E1x

d.XQ B B, x%
— = - “Z _ Bixixy — By(1 - — 1 Erx,, (L.7)
7 1 kzyxz T+ ky Ks 3X1 X2 — By(1 — mp)xay — qoEnxy

dy

E = C1(1 — ml)xly + C2(1 — I’I’lz)ny — ng - Q3E3y,

where
Q

— (4 (4 —_ Q
Al = wir{, + warfp, Ay = wir{p + war{,,

Az = wiai, + woaf,,
Ay =wicly + wacl,, By =wirg, + worge, By = wirj, + warg,,
By = wiaj, + waas,, By = wic, + wach,, Ci;=wie], + wrely,

Co = wiey, + waed,, C3 = widy +wady.

The rest of the paper is shown below: In Section 2, we first prove the nonnegativity and boundedness
of the system (1.7). Sections 3 and 4 discuss all possible equilibria and give conditions for the
local asymptotic stability and global asymptotic stability of the equilibria. Immediately after that,
in Section 5, we analyze the Hopf bifurcation by using the normal form theory. In Section 6, we
numerically simulate the theoretical results of Sections 4 and 5. Finally, the article ends with detailed
conclusions.

2. Nonnegativity and boundedness

In this section, we give the following theorem to ensure the boundedness and nonnegativity of the
solutions of the system (1.7).

Theorem 2.1. Provided that the initial values x,(0) > 0, x,(0) > 0, and y(0) > 0, all solutions of
system (1.7) are nonnegative.

Proof. It is not difficult to find that the right half of the system (1.7) fulfills the local Lipschitzian
condition. Integrating both sides of the system (1.7) at the same time yields

!
A Ay x
1) = 0 — — —-A — Ayl - —qg.E|d 0,
x1(t) = x1( )[eXPL(1+k1y T+ ky K, 3X2 — Ag(1 —my)y — qu 1) s| >
!
B, B, x
1) = 0 — — —B — By(1 - —g,E>d 0, 2.1
(1) n()[expfo(l%y ik B Bl —my - 2) s]> 2.1)

y(®) = y(0) [CXPI(Cl(l —myp)x; — Co(1 —my)x, — C3 — q3E3)ds | > 0.
0

If the solution curve starts at any internal point of Ri = {(x1(2), x2(8), (1)) € R® : x1(¢) > 0, x»(¢) > 0,
y(t) > 0}, then x;(¢), x,(#), and y(¢) will always be nonnegative. O

Theorem 2.2. Assume that the initial values x,(0), x,(0), and y(0) are all greater than zero. The
feasible region € is a positive invariant set of the system (1.7) defined by

Q= {(xl(t),xZ(t),y(t)) €R;: Q)ﬂ(t) + QXz(t) +y(1) < ?},
A4 B4 M
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. wied, + wye? wies, + woes
(l.e Q= {(xl(t),xz(t),y(t)) eR:: “—jfxl(r) + —2L 2R xa(t) + y(t) < ¢})
WiCTR + Wach, WiChR + Wach; Hu
where u = min{q,E1, ¢, E», C3 + g3 E3}.
Proof. Define a function
C C
W) = —Lx1(0) + —x2(8) + y(0). (2.2)
Ay B,
After taking the derivative on both sides of (2.2), we obtain
aw C] d)C] C, dxz dy
+ =+ —=. 2.3
dt A4 dr B, dt dt 2.3)
Furthermore, we can obtain
dw C A\ CiA;
— + —Ax; - - -Ci(1-
o TH A4(1 +k1y)( 1X1 X, A, x1X — Ci(1 —my)xy
Cz BzX% CzB3
+——"——|Bix; — — - Cy(1 -
Bl +k2y)( 1X2 5 B, x1X2 — Co(1 — my)xzy
C
+ Ci(1 = m)xiy + Co(1l = mo)xoy = Cay = 3By + oo
4
Ci C, Cou
——E——E+—+, 2.4
A4q1 1X1 B, q2E2x; B, Xy + py (2.4)
C Arx C B, x2
:—I(Alxl— 21)+ 2 (B1x2— 22)
Ay(1 + kyy) K, By(1 + kyy) K
C G,
+ A—Xl(ll q1Ep) + —xz(ll @2E2) + y(u — C3 — g3E3)
4
CiA; (B3
- + X1X2,
Ay B,
. A2K B2K:
where,u = mln{qlEl, qZEz, C3 + CI3E3}. Let ¢1 = 4A ] ,¢2 4IBZZ’ ¢ = %¢1 + g—i([)z, we have
aw 1 C2
— +uW < —d1 + —¢, = ¢. 2.5
7 4¢1 B, ¢r=¢ (2.5)
Therefore, it can be deduced that
W< ? + Ne™, (2.6)
u
where N is a positive constant. Then we can further obtain
: ¢
limsupW < -, (2.7)
t—00 /J
which indicates that the feasible domain € is a positive invariant set. O
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3. Existence of biological equilibria

In this section, we discuss the existence of all equilibria in the system (1.7). All equilibria for
system (1.7) are provided by
(1) Trivial equilibrium P; = (0,0, 0).

(2) Axial equilibrium P, = (x},0,0) exists if A; > ¢, E}, where x{ = KidizgiE) (AlA‘z‘f'El)
(3) Axial equilibrium P5 = (0, x}, 0) exists if B > g, E, where x; = SE-022),

(4) Axial equilibrium Py = (x{,0,y") exists if A; > A;(—TT +q E; and VA, > Ay(1 —m)) + kg, E),
where
K Cs + q3E5 = VA = (Ay(1 = my) + kg E)
: Ci(1- ml)’ v 2k A4(l —my) | (3.1)

A2x1 )
K G E |+ (Asmy — Ay — kg1 Ev)”.

A =4 (kiAs(1 —my)) (Al -

(5) Axial equilibrium Ps = (0,x},y") exists if By > “22 + q2E and vA; > By(1 = my) + kaga B,
where

Cs + q3E3 V= VA; = (B4(1 — my) + kag2 E»)
Cy(1 —my)’ 2kyB4(1 — my) ’

v —
XZ—

3.2
B (3.2)

A (]2E2) + (Bymy — By — ko Ex)*.
2

Ay = 4 (kyB4(1 — my)) (31 -

(6) Axial equilibrium Pg = (x{, x5,0) exists if By > B3x| + q2E», K{K>A3B3 > Ay B, and A3 B K, +
32q1E1 > A3K2Q2E2 + A B,, where

_ A3K1K2(B] — Q2E2) + K]Bz(qlEl — A]) y Kz(Bl — B3)CL1 - q2E2)

i K1K>A3B; — A,B, % = B, G5
(7) Internal equilibrium P; = (x],x5,y") exists, and its value will be given in the proof of
Theorem 3.1.
Theorem 3.1. When g3 > 0 and g4g5 < 0 are met, there is an internal equilibrium P;.
Proof. We derive that from the second equation of the system (1.7)
g1y’ +gy+g =0, (3.4)

where
X
81 = —kaBy(1 —my), g2 = —kyB3x1 — B4(1 —my) — q2E2ky, g3 = | By — FZBz — B3x; — 6]2E2)-
p

It follows from the Descartes law of signs that Eq (3.4) has one and only one solution y* greater than
zero if and only if g3 > 0, i.e., By > ;—2282 + B3x; + ¢»E,. Substituting y* into the algebra expression on
the right side of the first equation of the system (1.7) equals zero; furthermore, we obtain

_ A _ Arxy _ Ayl —my)y* _ 9 E;
Az + Askiy* KAz + KiAsky* As As

X2

(3.5)
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Introduce (3.5) into the right side of the third equation of the system (1.7), which meets zero, it
simplifies to obtain

gax1 — g5 =0, (3.6)
where

Ay Co(1 — my)
= ey =my) - ,
84 [ (1 —my) Kids + KiAskyy”
A1 —my)  AsC(1 —m)(1 —mp)y"  CogzEs(1 —my)
A3 + A3k1y* A3 A3

g5 = —C3—(]3E3 .

Reusing the Descartes law of signs, we can assert that there exists at least one positive solution xj of
Eq (3.6) if and only if g4gs < 0. And then we can deduce that

- Ay _ Arx) A —m)yt gk
A+ Askyt KAz + K Askyy Aj A;
then the interior equilibrium P;(xj, x3, y*) exists. m]

4. Stability analysis

In this section, the Jocabian matrix will be used to prove the local stability of all equilibria.
Moreover, we prove the global stability of the internal equilibrium P; by constructing a Lyapunov
function.

4.1. Local stability

The Jocabian matrix for system (1.7) is given below:

My, My, My
M =My My Moy|, 4.1)
M3 Mz Mz
where
A] 2A2 X1
My = — — —-A — Ay(1 - -q1E;, My, =-Aszxy,
=Ty fy  1+ky K, 3X — Ag(1 —my)y — g1 E; 12 3X]
kiAix; kA, X
Mz = - + — — Au(1 - , My = —B;x,,
13 (1 T kly)2 (1 T k]y)2 K, 4( mi)x; 21 3X2
Bl 232 X2 (42)
My, = - 22 Byxy = Bu(l = my)y — goEs,
n=17 oy 1+ ko Ks 3x1 — By(1 —mo)y — g2
kB kB, X
My; = 221y 22 22 _ By(1 - my)xa,

A+ ky)? A+ ky)? K,
M3, = Ci(1 —my)y, Mz = Cy(l —my)y, Mz3 =Ci(1 —mp)x; + Co(1 —my)x; — C3 — q3E3.

Through simple calculation, we directly draw the conclusion that trivial and axial equilibria are locally
asymptotically stable:
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23953

(1) P1(0,0,0) is locally asymptotically stable if

A B
—1—E1<O and —1—E2<O.
q1 q>

(2) P»(x7,0,0) is locally asymptotically stable if

B B3x]  B3(Cs + 5E
B g <3N 3(Cs + q3E3)

92 92 Ci(1 —my)gs
(3) P5(0, x; ,0) is locally asymptotically stable if
A E < Asx, < A3(Cs + g3E3)
q1 q1 Co(1 —my)qy
(4) P4(x},0,y") is locally asymptotically stable if
B, < B3xl1P + B4(1 — mz)yq'
(1 +ky?) 0 '
(8) P5(0, x3,y") is locally asymptotically stable if
A 3 < A3X£ + A4(1 — ml)y"
gi(l+ky) a '

(6) Ps(x!, x5, 0) is locally asymptotically stable if
Ci(1 =my)x; + Co(1 —my)x;y < C3 + g3 E5.

4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)

We draw the conclusion that the internal equilibrium P7(x], x3,y") is locally asymptotically stable

from the proof of Theorem 4.1.

Theorem 4.1. The internal equilibrium P; is locally asymptotically stable if it exists and the following

conditions are fulfilled:
17[/1 > 0’ lrllll/IZ > 0’ l//?, > O.

Proof. The Jocabian matrix of system (1.7) at (x}, x3,y") is

L L, L
Ly Ls Lef,

L, Ly Lo
where i
L, = —(1:‘—]{21))*);—11 <0, L, =-Asx] <0,
fs = _akiATf*V Al X+ f/izy*ﬁ ()21)2’
Ly=-Bx; <0, Ls= —(lf—kzzm;;—i <0,
¥ 12
te = _(1]?3'1«1 :;2*)2 Bl mm)e fﬁi*)z ();;2) ’

Ly = Cl(l —ml)y* >0, Lg= C2(1 —I’I’I2)y* > 0, Lo = 0.

4.9)

(4.10)

4.11)

AIMS Mathematics Volume 9, Issue 9, 23945-23970.
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Therefore, the characteristic equation at P; can be expressed as

7y’ + g + Y3 =0, (4.12)
where
1 =—L; — Ls,
lﬁz = L1L5 — L6Lg — L3L7 — L2L4, (413)

Y3 = Lg(L1Le — L3Ly) + Ly(L3Ls + Ly Le).
The Routh-Hurwitz criterion shows that the internal equilibrium P; is locally asymptotically stable;

the following conditions need to be met: ¢, > 0, Y1, > 0, and 3 > 0. |

4.2. Global stability

This subsection studies the global asymptotic stability of interior equilibrium P;.

Theorem 4.2. IfCOl’lditiOl’l 4F1F211l2Asz(l + kly)(l + k2y) > (11A3 + 1233)2 (le 4F1F21112(W1V?R +
warl ) wiry, + wary (1 + kiy)(1 + koy) > (li(wiaf, + waaf,) + L(wias, + wzagL))z) holds, then Pq is
globally asymptotically stable.

Proof. We construct a Lyapunov function:

+ 1 [xz —x - xgln(x—j) Fy—y =y 1n(%). (4.14)
X y

V(xi, x2,y) =1 [Xl —x; —x;In (x—l)
o 2

1

Obviously, x; — x7 — x! ln(%) >0@G=1,2)andy—y" —y" ln(y%) > 0, thus V > 0. Taking the derivative
of V(x1, x,,y) over t, one has

dv x; =7\ dx X=X \dx, y—y'dy
= — 41 —_— —_— 4.15
dt 1( xl)dt+2( xz)dt+ydt 415)
where
x| — X dx kA, . . Ay(x) — x7)?
— == —(x1 =Xy —y) - -
xp o dt (1 + kiy)(1 + kiy*) Ki(1 + kiy)(1 + ki y*)
Ak (xyy* — x1y)
_ _ k _A _ k _ k
K+ ko + kly*)(xl x7) 3(x1 = xD — x3)
= Ay(1 —m)(x; — XD =¥,
Rondn BBy -y o B (4.16)
2

v dt (1 +ky) 1+ kay)
B Boky (xpy" — x;)’)
K>(1 + koy)(1 + kpy*)

— By(1 — my)(xp — xZ)(y -y,

K>(1 + koy)(1 + koy*)

(X2 = x3) = Bs(x; — x])(x2 — x3)

_vid
- yy d_}t] =Ci(1 =mp)(x; = x)D@ = y) + Co(1 = my)(xz — x3)(y = y).
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To simplify the calculation, let

Xy =Xy =y — X)) —x(y —¥), 0y — x5y =y —x5) — 00y —y),
1 1

F = s F = ’
KAyt ky) P K1+ kay)(1+ kay®) 4.17)
. Ci(1 -m) /= Cr(1 —my)
1= , b= .
[k (KA + Axxy) + Ag(1 —my) [oko (Ko By + Byxy) + Ay(1 —my)
We obtain
dV *\2 * * %32
o =1 LA(1 + kyy)(xp — x7)” + (L1A3 + L B3)(x) — x))(x2 — x5) + [l Bo(1 + kay)(xn — x5)°)
=-YGY,
(4.18)
where LAs+hB
L e o _ (T1hA(1 + kiy) =
Y - [(xl xl)a ('xz xz)] s G - ( 11A3;—lzB3 Fglsz(l + k2y) .
Therefore, lil_‘t/ < 0if and Ol’lly if 4F1F21112A232(1 + kly)(l + kzy) > (llAg + 1233)2. O

5. Hopf bifurcation

In this section, we will use the normal form theory introduced by Hassard et al. [40] and the
central manifold theory [41] to study the Hopf bifurcation of the system (1.7). When the system (1.7)
undergoes Hopf bifurcation, the corresponding characteristic equation must have a pair of conjugate
pure imaginary roots, that is,

Nip = +iw, i= V-1. (51)

Consider the parameter k; as a bifurcation parameter. When the value of parameter k; changes
near the critical point k7 of Hopf bifurcation, the pure imaginary roots +iw will become a complex
eigenvalue 7 = p + iw. Substituting n = p + iw into Eq (4.12), we need to separate the imaginary and
real parts to get

P+ s+ pYa + pYy = 3p@” — Y @” =0, (5.2)
30°% + Yo + 2001w — @ = 0. (5.3)
By simplifying Eqgs (5.2) and (5.3), we obtain

U3 — 80" = 2pu — 8pWy — Yy — 2097 = 0, (5.4)

at k; = k%, taking the derivative of Eq (5.4) over k; yields

dp ¥ dyr

1 dlﬁ% d 2 2
. _ _ + ). 5.5
ks i 2(dk1 ¥ dk, l/’zdkl [ +Y7) (5.5)
If it satisfies ij vz * 0, the system (1.7) will generate Hopf bifurcation, which indicates that
1 1=K7

when parameter k; crosses the bifurcation critical point kT, the population state evolves from stable
equilibrium to periodic oscillation over time.
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When the system (1.7) undergoes Hopf bifurcation at k; = k7, the final decision condition is also
met. Considering that the characteristic roots of Eq (4.12) are n;, = +iw and 3 = =y, in order to
obtain this condition, we introduce

U=X-X, D=X—-X, B=y-y. (5.6)

Substituting (5.6) into the system (1.7) and separating the linear and nonlinear parts, it can be obtained
that

4| 21 F(z1,22,23)
| = J(P) |2 |+ | Faz1,22:23) |+ (5.7)
23 Z3 F3(z1,22,23)
where
i1 _Jj2 _J3 4
Fizuz )= ) a2 + 0l + Lol + ),
2<j1+ja+3<3
o \
Fa@nmm) = ). mppadied + 0al + 1ol + ), 5.8)
2<j1+ja+j3<3
i1 _ja _J 4
Fy@nam) = Y. Lipdl el + 0Wal + ol + Iz,

2<j1+ja+3<3

where O((|z)] + |z2| + |z3))*) is a fourth-order polynomial function about variables (|z;], |22/, |z3]), while
Liiinjs s jojs» @nd [, ;, ;. can be obtained through calculation:

oy = Ak A X Ad-m) o Ak Ak (0
2(1 + ky*)? (1 +kiy)? K,y 2 ’ (A +ky)?  (L+ky) K’
Alk% Azk% 2x] Alx’l‘k? Azkf’ (x’f)2
ho2 = - —> loo3 = — + )
31 +kiy) 31 +kiy)® K, A +ky (L +ky)* K
o = s oo = A 1 o1 = _ Ak 1
2’ 1 +k1y* Kl’ 3(1 +k1y*)2 Kl’
for1 = fo20 = to30 = for2 = foa1 = ti11 = Li20 = f210 = 1300 = 0,
B]k2 B2k2 X; B4(1 - mz) BlX;k% sz% (x;)z
T vk T U+ ky P K, 2 T (k) (+kyy KG9
Blk§ ng% 2x; leZkg szg (xé)2
M dyy 34k Ko T T k) (I kay ) Ko
B3 Bz 1 szz 1
nio = —7, Np2o = _Tkzy*z’ N2 = 3(14_—](2))*)2?2,

N1 = Na00 = N30 = N111 = Ni20 = Nio2 = Naj0 = Nao1 = Nagp = 0,
_CG(1-m) _G(1-my)
Lot = - loni = — 5
Lo = boo = looo = looz = lozo = loos = lo12 = loo1 = Lini = lioo = lLioe = o = Lot = 1300 = 0.
By introducing a reversible transformation

21 1 0 L \(y
2=1921 92 qsl||y2], (5.10)
23 q31 432 433)\)3
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which ¢2193: — 2231 + 22933 — q23q32 # 0, the expression for the coeflicient g;;(i = 2,3;j=1,2,3) is

LolslyLg + LiL3LsLg — L]LzLé + L3L60.)2 — L§L4L5

q21 = )
L%Lg —21,15L5L¢ + L%Lé + L%a)2
(L§L4 —LiIsle + IsLsLg — Ly Le)w
T I L IaLshs + 2L + La?
s = LiLe — Lens — L3 L4
23 — ’
Ls3Ls — Lo Lo — Lan;s
(5.11)
L2L3L4L5 — LngLg - L§L4L6 + L1L2L5L6 - L1L3w2 - L2L6(,()2
41 = 212 — 2L,LsLsL + L2L2 + L20? ’
w(L1L2L6 + Lolsle — LrlsLy — Lng - L3(,()2)
43 = )
L%Lg —21,15L5Lg + L%Lé + ngz
. Loy~ LiLs + Lins + Lsis — 113
33 =

LsLs — LyLe — L3n3 ’

Li(i=1,2,---,9)is defined in (4.11). So the standard type of system (5.7) can be written as

V1 0 -w 0)(m 5@1,)’2,)’3)
wl=lw 0 O0[|yn|+ Eg()’byz,%) , (5.12)
V3 0 0 n3)\y; F3(y1,y2,¥3)

where

= -1

Fi(y1,y2,y3) 1 0 1 Fi(z1,22,23)

f:g(yhyz,ya) =1921 922 423 Fy(z1,22,23) |- (5.13)
F3(y1,y2,¥3) q31 432 433 F5(z1,22,23)

In Eq (5.13), the coefficients of polynomial F(yy, y,, y3) are Liinis > Wjijnjs and El injse

Based on the central manifold theory, use the center manifold W¢(0, 0, 0) existing at the origin to
reduce the dimension of the system (5.12), that is

WC(O’ Oa 0) = {(}%)’20’3) € R3|)’3 = h(Yl,YZ), h(07 0) = 05 Dh(oa O) = 0} 5 (514)
where
hoy) = D hywyivs + Ol + D). (5.15)
1SV1+V2S3

Through calculation, we can obtain
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_7;00 ‘*‘Fl?)zow2 %20 —7200602
n3(1 +w*)’ 1+ w*

hio=hor =h;; =0, hy = 0 ==

1

hso = 1+ + w6)(7200ﬁ101 —7300773 - 2%20%007730) + oo @? + lon1 lpaow?
3
— lpaow® + 2hoonaoon3w? — Loorsw® — loi1lhoow® — lyzow”),
3 (loo + Lo20w®)(lo11773 + 2a00730 + Anoniw?® = 2t10w* + Mio1mw® — 2Meaon3w°)
B (1 + w0 + wb)
oo (ninomsw + oW — 2ngow?)
L m + w° ’~ (5.16)
(oo + lopow?) 1103w — MoBw? + lonw* + 2Mgaomiw? + 260w + 27110m30°)
12 =
m(1+ w3 + w°)
B looo(2nononzw + 2n110w* = Mi01773)
m + wt ’
h (la00 + lozowz)(lonﬂg + W + Mo1w* + 2o w®)
03 ==

(1 + w3 + w°)

T T T3 9] 4
+ lo11lo20m3 — lozons + Loow™ + 2lponapow
m + wt

Correspondingly, the dynamic properties of the system are limited to the central flow W<(0, 0, 0),
and in conjunction with Eq (5.14), system (5.12) can be simplified as

N U(}’l,yZ))
.= R 5.17
()’2) (N(Yl,yz) -17)
Where 2 2 3 2 2 3
U(yi,y2) = —wys + C1y7 + Oy1ys + Gys + Gayy + Esy1ys + Geyry; + €15, (5.18)

N1, Y2) = Wy + 1Y} + V1Y + J3Y5 + Jayi + Jsyiys + JeV1YVs + J1Vas
in the formula, we have

l = taoo, €2 =t10, €3 =tooo, Ca = haotior + 1300, €5 = ta10, €6 = hootior, €7 =0,

= —_ — - h — — 5.19
J1 = N200, J2 = Ni10s J3 = No20s J4 = N300, J5s = haotiorn, Jo =0, J7 = hoanorr + noso. ( )
We introduce the partial derivative sign
ou PuU N
a—yl(ykf) =U,, W(ka) = Uy a—yg@klﬁ) = Nyypr w00 (5.20)

where subscripts y; and y, indicate partial derivatives for the first and second variable, respectively.
Based on Eq (5.18), it can be obtained that U,, = 0, U,, # 0, N, # 0, N,, = 0, and U,,N,, # 0. In
addition, it ensures that the system (5.18) has pure virtual feature roots +i 4/|U,,N,,|. Thus, it can be
determined that system (1.7) produces Hopf bifurcation; the direction of the bifurcation is determined
by the following equation:

Q=

1
= —(l3+ s+ j5s+ j7) + —(Cils — oj3 — J1j2 — 1it1). (5.21)
1 16w 16w

AIMS Mathematics Volume 9, Issue 9, 23945-23970.



23959

Theorem 5.1. If dd_kp]| f=iE 0, then system (1.7) will generate Hopf bifurcation at interior equilibrium
!

P;. In addition, when j—lfl|kl_k5
e g
supercritical Hopf bifurcation and form a stable periodic orbit, or if lea >0and 0 < ky — ki < 1,

then system (1.7) will generate subcritical Hopf bifurcation and form a stable periodic orbit.

<0, ikals <0and 0 < ky — k¥ < 1, then system (1.7) will generate

6. Numerical simulations

In this section, we first discussed equilibria P; to P; of system (1.7) with distinct values of @, wy, and
w,. Consider the parameter values as follows: | = (2.8,3,3.2), r» = (2.8,3,3.2), ¢; = (0.1,0.2,0.3),
¢ =(0.5,0.6,0.7), a; = (0.1,0.2,0.3), a; = (0.2,0.3,0.4), ¢, = (0.2,0.3,0.4), e; = (0.3,0.4,0.5), and
d= (0.1,0.2,0.3). Tables 2—8 showed that the trivial equilibrium P; retained constant at (0,0,0), the
values of prey x;, prey x,, and predator y always maintained at 0; the values of prey x; in P, and prey
x, in Pj severally decreased with increasing w; under the same «; the values of prey x; and predator
y in P, increased with increasing w;, and for Ps the value of prey x, and predator y rose with growing
wi; the values of prey x; and x; in P¢ decreased with growing wy; and for the same «, considering
interior equilibrium P7, the values of prey xi, prey x,, and predator y decreased with growing wy.

Table 2. The trivial equilibrium P; for k; = 0.1,k, = 0.7,¢q; = 0.7,¢q, = 0.5,95 = 0.7,
E] = 0.3,E2 = 02, E3 = 02, K] = S,Kz = 5,m1 = O.9,m2 =0.3.

wi w, Prata=0 Prata=03 Pirata=06 Prata=0.9
0 1 (0,0,0) (0,0,0) (0,0,0) (0,0,0)
02 0.8 (0,0,0) (0,0,0) (0,0,0) (0,0,0)
04 0.6 (0,0,0) (0,0,0) (0,0,0) 0,0,0)
06 04 (0,0,0) (0,0,0) (0,0,0) (0,0,0)
08 0.2 (0,0,0) (0,0,0) (0,0,0) (0,0,0)
1 0 (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table 3. The axial equilibrium P, for k; = 0.1,k, = 0.7,q, =
E] = O.3,E2 = 02, E3 = 02, Kl = 5,K2 = 5,m1 = O.9,m2 =0.3.

0.7,q2 = O.S,Q3 = 07,

w1

w2

Pzata:O

P, ata = 0.3

P ata = 0.6

P, ata =0.9

0
0.2
0.4
0.6
0.8
1

1
0.8
0.6
0.4
0.2
0

(5.3393,0,0)
(5.0521,0,0)
(4.7804,0,0)
(4.5230,0,0)
(4.2788,0,0)
(4.0469,0,0)

(5.1224,0,0)
(4.9280,0,0)
(4.7409, 0, 0)
(4.5608,0,0)
(4.3872,0,0)
(4.2197,0,0)

(4.9144,0,0)
(4.8069,0,0)
(4.7017,0,0)
(4.5988,0,0)
(4.4980,0,0)
(4.3994,0,0)

(4.7148,0,0)
(4.6888,0,0)
(4.6629,0,0)
(4.6372,0,0)
(4.6116,0,0)
(4.5861,0,0)

AIMS Mathematics

Volume 9, Issue 9, 23945-23970.



23960

Table 4. The axial equilibrium P; for k; = 0.7,k, = 0.1,¢; = 0.7, = 0.5,95 = 0.7,
E1 = 0.3,E2 = 02, E3 = 02, Kl = 5, K2 = 5,m1 = 0.3,1’1’12 =0.9.

Table 5. The axial equilibrium P, for ky = 0.3,k, = 0.7,q, =

Wi

wa

P3ata/:O

P3ata:0.3

P3at01:0.6

P3 ata =09

0
0.2
0.4
0.6
0.8
1

1
0.8
0.6
0.4
0.2
0

(0,5.5357,0)
(0,5.2431,0)
(0,4.9662,0)
(0,4.7039,0)
(0,4.4551,0)
(0,4.2187,0)

(0,5.3147,0)
(0,5.1166,0)
(0,4.9260, 0)
(0,4.7424,0)
(0,4.5655,0)
(0,4.3949,0)

(0,5.1027,0)
(0,4.9932,0)
(0,4.8861,0)
(0,4.7812,0)
(0,4.6785,0)
(0,4.5779,0)

(0,4.8993,0)
(0,4.8728,0)
(0,4.8465,0)
(0,4.8202,0)
(0,4.7942,0)
(0,4.7682,0)

E,=03,E,=02,E;=0.2,K; =20,K, =20,m; =0.2,m; = 0.6.

0.7,qZ = O.S,Q3 = 07,

wi

ws

P4ata:0

P4 ata =03

P4 ata =0.6

P4 ata =09

0
0.2
0.4
0.6
0.8
1

1
0.8
0.6
0.4
0.2
0

(0.4800, 0,0.1496)
(0.6222,0,0.1858)
(0.8000, 0, 0.2224)
(1.0286, 0, 0.2595)
(1.3333,0,0.2969)
(1.7600, 0,0.3343)

(0.5838,0,0.1767)
(0.6971,0,0.2022)
(0.8306, 0, 0.2280)
(0.9902, 0,0.2539)
(1.1845,0,0.2801)
(1.4261,0,0.3062)

(0.7059, 0, 0.2040)
(0.7802,0,0.2188)
(0.8623,0,0.2335)
(0.9534,0,0.2484)
(1.0551,0,0.2633)
(1.1692,0,0.2782)

(0.8516,0,0.2317)
(0.8732,0,0.2354)
(0.8954,0,0.2391)
(0.9181, 0, 0.2428)
(0.9415,0,0.2465)
(0.9655,0,0.2502)

Table 6. The axial equilibrium Ps for k; = 0.3,k, = 0.7,¢; = 0.7,¢q, = 0.5,95 = 0.7,
El = 03, E2 = 02, E3 = 02, K1 = 20, K2 = 20,m1 = 0.8,7’”2 = 0.6.

Wi

w»

P5atcx:0

P5 ata =0.3

P5 ata = 0.6

P5 ata =09

0
0.2
0.4
0.6
0.8
1

1
0.8
0.6
0.4
0.2
0

(0,0.1920,0.3638)
(0,0.2435,0.3899)
(0,0.3048,0.4160)
(0,0.3789, 0.4422)
(0,0.4706,0.4683)
(0,0.5867,0.4942)

(0,0.2298,0.3833)
(0,0.2697,0.4016)
(0,0.3150,0.4199)
(0,0.3668,0.4383)
(0,0.4268,0.4566)
(0,0.4970,0.4748)

(0,0.2727,0.4029)
(0,0.2981,0.4134)
(0,0.3255,0.4239)
(0,0.3551,0.4343)
(0,0.3872,0.4448)
(0,0.4222,0.4553)

(0,0.3220,0.4226)
(0,0.3291,0.4252)
(0,0.3363,0.4278)
(0,0.3437,0.4304)
(0,0.3513,0.4330)
(0,0.3590,0.4357)

Table 7.

E] = 06, E2 = 0.1,E3 = 02, Kl = 5,K2 = 5,m1 = O.9,m2 =04.

The axial equilibrium Pg for k; = 0.3,k = 04,9, = 07,4, = 05,95 = 0.7,

w1

w2

P(,ata:0

Pg ata =0.3

P6 ata =0.6

Pgata = 0.9

0
0.2
0.4
0.6
0.8
1

1
0.8
0.6
0.4
0.2
0

(4.9826, 3.8455, 0)
(4.5369, 3.4395, 0)
(4.1543,3.0858, 0)
(3.8232,2.7740, 0)
(3.5351,2.4958, 0)
(3.2834,2.2448, 0)

(4.6419,3.5356,0)
(4.3577,3.2745,0)
(4.1016,3.0366, 0)
(3.8700,2.8184,0)
(3.6599,2.6172,0)
(3.4690,2.4307,0)

(4.3385, 3.2568, 0)
(4.1901,3.1191,0)
(4.0500, 2.9883, 0)
(3.9177,2.8636,0)
(3.7926,2.7447,0)
(3.6742,2.6311,0)

(4.0671,3.0043,0)
(4.0331,2.9724,0)
(3.9995,2.9408, 0)
(3.9665,2.9097,0)
(3.9338,2.8789,0)
(3.9017,2.8485,0)
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Table 8. The interior equilibrium P; for k; = 0.4,k, = 0.5,9; = 0.6,q, = 04,953 = 0.2,
E1 = 02, Ez = 0.3,E3 = 02, Kl = 100, K2 = 100,m1 = O.9,m2 =0.3.

Wi

w»

P7ata/:0

P7ata/:O.3

0

0.2
0.4
0.6
0.8

1

0.8
0.6
0.4
0.2

(1.7240,3.6276, 1.1986)
(1.6168,3.5123,1.0583)
(1.5417,3.4296,0.9337)
(1.4309, 3.2886,0.7930)
(1.4291,3.2451,0.6884)
(1.3764,2.9890, 0.5245)

(1.5910,3.4597,1.0271)
(1.5042,3.3223,0.9139)
(1.4211,3.1793,0.8023)
(1.3913,3.1413,0.7269)
(1.3195,3.0467,0.6350)
(1.2797,2.9766,0.5529)

P7ata=0.6

P7 ata =09

(1.7066,3.7444,1.0113)
(1.5291, 3.4203,0.8678)
(1.5273,3.4215, 0.8306)
(1.4894,3.3737,0.7779)
(1.4594,3.3320,0.7279)
(1.4328,3.2552,0.6687)

(1.5325,3.4231,0.7999)
(1.4899,3.3773,0.7762)
(1.4789,3.3677,0.7638)
(1.4685,3.3587,0.7516)
(1.4590, 3.3504,0.7397)
(1.4124,3.2841,0.7105)

Considering four sets of different initial values, it could be seen from Figure 1 that different orbits
eventually converged to the same value, which concluded that the interior equilibrium of the system
(1.7) fulfills the character of globally asymptotical stability. Figure 2 plotted the bifurcation graph of
system (1.7) with the horizontal coordinates k;, and the Hopf bifurcation of the system occurred with
k, taking values in the range of 0.01 < k; < 0.7. When 0.01 < k; < 0.384, the system oscillates
periodically, while it maintains a stable steady-state when 0.384 < k; < 0.7. Therefore, based on
Figure 2, it could be concluded that the fear of prey x; for predator y affected the stability of the system.
We further observed that as k; increased, the prey x; density continued to decrease while the predator
y density kept increasing. Thus, the result also suggested that greater fear of predators had a negative
impact on prey populations while having a positive impact on predator populations. Correspondingly,
Figures 3 and 4 showed the waveform plots and phase diagram at k; = 0.1 and k; = 0.7, respectively.

In addition, Figure 5 also plots the bifurcation graph with changing m,. As can be seen in Figure 5,
m; took values from 0.3 to 1, in which the system also underwent a Hopf bifurcation. When the value
my ranged from 0.3 to 0.657, the system (1.7) was stable; nevertheless, it would become unstable
at 0.657 < m; < 1. Correspondingly, Figures 6 and 7 showed the waveform plots and phase diagram
atm; = 0.6 and m; = 0.9, respectively.

Further, we find an interesting dynamic phenomenon through some numerical simulations.
System (1.7) appears as a chaotic phenomenon, as shown in Figure 8.
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(7.259,0.869,1.139)

Figure 1. Global stability of the internal equilibrium P; = (5.665, 1.668, 2.047) of system
(1.7) 1s given by the following parameter values: @ = 1,w; + wy, = 1,A; = 2.0,4, = 2.0,
B] = 20, B2 = 20, k] = 02, k2 = 0.1,6[1 = 04, qr = 04, qsz = 02, E] = 02, E2 = 02, E3 =
0.2,A3 = 0.1,B3 = 0.1,A4 = 0.3,B4 = 06, K] = 10, Kz = 10,m1 = 0.4,17’12 = 04, C1 = 01,
C,=02,C5=05.

0.5 0.6 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ky

Figure 2. Hopf bifurcation occurs as a bifurcation parameter k;, and the remaining
parameters take the following values: @ = 1,w; + w, = 1, A; =3.0,A, =3.0,B, =3.0, B, =
3.0,k = 04,9, = 0.6, = 04,95 = 02,E, = 02,FE, = 02,E3 = 02,A; = 0.2,B; =
0.1,A, =0.3,B4=0.6,K, = 10,K, =70,m; =0.9,m, =0.3,C; =0.1,C, =0.2,C3 = 0.5.
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Figure 3. Waveform plots and phase diagram of system (1.7) with k; = 0.1, and @ =
I,W] +wy = 1.
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Figure 4. Waveform plots and phase diagram of system (1.7) with k; = 0.7, and a@ =
1L,w+wy=1.
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7. Conclusions

In this work, we develop a model of one-predator and two-prey interactions in a fuzzy environment,
examine the effects of fear and prey refuge on the system, and provide insight into the dynamic
complexity. The proofs of the theoretical parts of this paper are based on system (1.7). It has been
proven that all equilibria in system (1.7) are locally asymptotically stable, and interior equilibrium
P7 is also globally asymptotically stable. We have been further concerned about the appearance and
direction of Hopf bifurcation. With the support of theoretical research, our numerical simulations have
been able to display a wealth of charts and graphs.

First of all, different equilibria are displayed from Tables 2—8 with different «, wy, w,, respectively.
Throughout Figure 1, we have verified the global asymptotical stability of interior equilibrium P,
and find that the system is from unstable to stable with the increase of fear k;, which demonstrates
that the fear effect may be an important factor influencing the stability of the system (see Figures
2—-4). Furthermore, it has also been observed that an increase in prey refuge m; leads to oscillatory
phenomena (see Figures 5-7). Finally, through studying the Hopf bifurcation, we have discovered
some interesting biological phenomena, namely that system (1.7) appears to be in a chaotic state (see
Figure 8).
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Appendix A

Definition 1. [34] Fuzzy set: A fuzzy set i in a universe of discourse S is denoted by the set of pairs
7= {(s, t5(s)) : s € S,

where the mapping pz © S — [0,1] is the membership function of the fuzzy set 7 and M5 IS the
membership value or degree of membership of s € S in the fuzzy set h.

Definition 2. [42] a-cut of fuzzy set: For any a € (0, 1], the a-cut of fuzzy iet% defined by h, = {s :
H5(s)) > a} is a crisp set. For a = 0 the support of i is defined as iy = Supp(%i) = {s € R, uz(s) > 0}.

Definition 3. [43] Fuzzy number: A fuzzy number satisfying the property S = R is called a convex
Sfuzzy set.

AIMS Mathematics Volume 9, Issue 9, 23945-23970.


http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2005.01.017
http://dx.doi.org/http://dx.doi.org/10.1109/TSMC.1972.5408553
http://dx.doi.org/http://dx.doi.org/10.1016/0165-0114(87)90029-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2006.08.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2009.12.038
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-031-22007-4
http://dx.doi.org/http://dx.doi.org/10.1007/s11071-014-1784-4
http://dx.doi.org/http://dx.doi.org/10.1016/0022-247X(83)90253-6
http://dx.doi.org/http://dx.doi.org/10.1109/IRI.2015.36
http://dx.doi.org/http://dx.doi.org/10.1007/978-1-4615-5563-6

23970

Definition 4. [44] Triangular fuzzy number: A triangular fuzzy number (TFN) n o= (b1, by, b3)
represent fuzzy set of the real line R satisfying the property that the membership function y5 : R— [0, 1]
can be espressed by

s—=b; .
b1 <s<b
by — b, if by <s<b,,

—=J) by—3s
Hi=9 = if by<s<b
by — by if by <s<b;,

0 otherwise.

Hence, the a-cut of triangular fuzzy number meets boundedness and encapsulation on
[hiL(@), hig(@)], in which hy(@) = infs: py(s) > @ = by + a(b, — by) and hg(@) = sup{s : p5(s) >
a} = b3 + a(b3 - bz)

Lemma 1. [45] In weighted sum method, w; stands for the weight of jth objective. w;g; represent a
utility function for jth objective, and the total utility function n is represented by

I
ﬂ':Zngj, J=L2-,1
J

where w; > 0 and Zi w; = 1 are satisfied.
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