The nabla fractional-order uncertain difference equation with Caputo-type was analyzed in this article. To begin, the existence and uniqueness theorem of solutions for nabla Caputo uncertain difference equations with almost surely bounded uncertain variables was presented. Furthermore, the uncertainty distributions of the solutions for the proposed equations were obtained by establishing a connection between the solutions of equations and their $ \alpha $-paths based on new comparison theorems. Finally, an application of the uncertain difference equations in a logistic population model involving Allee effect was provided and examples were performed to demonstrate the validity of the theoretical results presented.
Citation: Qinyun Lu, Ya Li, Hai Zhang, Hongmei Zhang. Uncertainty distributions of solutions to nabla Caputo uncertain difference equations and application to a logistic model[J]. AIMS Mathematics, 2024, 9(9): 23752-23769. doi: 10.3934/math.20241154
The nabla fractional-order uncertain difference equation with Caputo-type was analyzed in this article. To begin, the existence and uniqueness theorem of solutions for nabla Caputo uncertain difference equations with almost surely bounded uncertain variables was presented. Furthermore, the uncertainty distributions of the solutions for the proposed equations were obtained by establishing a connection between the solutions of equations and their $ \alpha $-paths based on new comparison theorems. Finally, an application of the uncertain difference equations in a logistic population model involving Allee effect was provided and examples were performed to demonstrate the validity of the theoretical results presented.
[1] | C. Coll, A. Herrero, D. Ginestar, E. Sánchez, The discrete fractional order difference applied to an epidemic model with indirect transmission, Appl. Math. Model., 103 (2022), 636–648. https://doi.org/10.1016/j.apm.2021.11.002 doi: 10.1016/j.apm.2021.11.002 |
[2] | Y. Chu, S. Bekiros, E. Zambrano-Serrano, O. Orozco-López, S. Lahmiri, H. Jahanshahi, et al., Artificial macro-economics: a chaotic discrete-time fractional-order laboratory model, Chaos Soliton. Fract., 145 (2021), 110776. https://doi.org/10.1016/j.chaos.2021.110776 doi: 10.1016/j.chaos.2021.110776 |
[3] | Md. Uddin, S. Sohel Rana, S. Işık, F. Kangalgil, On the qualitative study of a discrete fractional order prey-predator model with the effects of harvesting on predator population, Chaos Soliton. Fract., 175 (2023), 113932. https://doi.org/10.1016/j.chaos.2023.113932 doi: 10.1016/j.chaos.2023.113932 |
[4] | K. Oprzȩdkiewicz, E. Gawin, The practical stability of the discrete, fractional order, state space model of the heat transfer process, Arch. Control Sci., 28 (2018), 463–482. https://doi.org/10.24425/acs.2018.124712 doi: 10.24425/acs.2018.124712 |
[5] | J. Diazt, T. Osler, Differences of fractional order, Math. Comp., 28 (1974), 185–202. https://doi.org/10.1090/s0025-5718-1974-0346352-5 doi: 10.1090/s0025-5718-1974-0346352-5 |
[6] | F. Atici, P. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–12. https://doi.org/10.14232/ejqtde.2009.4.3 doi: 10.14232/ejqtde.2009.4.3 |
[7] | M. Wang, B. Jia, C. Chen, X. Zhu, F. Du, Discrete fractional Bihari inequality and uniqueness theorem of solutions of nabla fractional difference equations with non-Lipschitz nonlinearities, Appl. Math. Comput., 376 (2020), 125118. https://doi.org/10.1016/j.amc.2020.125118 doi: 10.1016/j.amc.2020.125118 |
[8] | A. Hioual, A. Ouannas, G. Grassi, T. Oussaeif, Nonlinear nabla variable-order fractional discrete systems: asymptotic stability and application to neural networks, J. Comput. Appl. Math., 423 (2023), 114939. https://doi.org/10.1016/j.cam.2022.114939 doi: 10.1016/j.cam.2022.114939 |
[9] | B. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. http://dx.doi.org/10.1007/978-3-540-73165-8 |
[10] | X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Making, 9 (2010), 69–81. https://doi.org/10.1007/s10700-010-9073-2 doi: 10.1007/s10700-010-9073-2 |
[11] | Y. Zhu, Uncertain fractional differential equations and an interest rate model, Math. Method. Appl. Sci., 38 (2015), 3359–3368. https://doi.org/10.1002/mma.3335 doi: 10.1002/mma.3335 |
[12] | Q. Lu, Y. Zhu, Z. Lu, Uncertain fractional forward difference equations for Riemann-Liouville type, Adv. Differ. Equ., 2019 (2019), 147. https://doi.org/10.1186/s13662-019-2093-5 doi: 10.1186/s13662-019-2093-5 |
[13] | P. Mohammed, A generalized uncertain fractional forward difference equations of Riemann-Liouville type, J. Math. Res., 11 (2019), 43–50. https://doi.org/10.5539/jmr.v11n4p43 doi: 10.5539/jmr.v11n4p43 |
[14] | Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, Comput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884 |
[15] | P. Mohammed, T. Abdeljawad, F. Jarad, Y. Chu, Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type, Math. Probl. Eng., 2020 (2020), 6598682. https://doi.org/10.1155/2020/6598682 doi: 10.1155/2020/6598682 |
[16] | H. Srivastava, P. Mohammed, C. Ryoo, Y. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497. doi: 10.1016/j.jksus.2021.101497 |
[17] | H. Srivastava, P. Mohammed, J. Guirao, Y. Hamed, Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations, Discrete Cont. Dyn.-S, 15 (2022), 427–440. https://doi.org/10.3934/dcdss.2021083 doi: 10.3934/dcdss.2021083 |
[18] | Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernet. Syst., 41 (2010), 535–547. https://doi.org/10.1080/01969722.2010.511552 doi: 10.1080/01969722.2010.511552 |
[19] | L. Sheng, Y. Zhu, Optimistic value model of uncertain optimal control, Int. J. Uncertain. Fuzz., 21 (2013), 75–87. https://doi.org/10.1142/S0218488513400060 doi: 10.1142/S0218488513400060 |
[20] | Z. Zhang, X. Yang, Uncertain population model, Soft Comput., 24 (2020), 2417–2423. https://doi.org/10.1007/s00500-018-03678-6 doi: 10.1007/s00500-018-03678-6 |
[21] | C. Gao, Z. Zhang, B. Liu, Uncertain Logistic population model with Allee effect, Soft Comput., 27 (2023), 11091–11098. https://doi.org/10.1007/S00500-023-08673-0 doi: 10.1007/S00500-023-08673-0 |
[22] | D. Chen, Y. Liu, Uncertain Gordon-Schaefer model driven by Liu process, Appl. Math. Comput., 450 (2023), 128011. https://doi.org/10.1016/j.amc.2023.128011 doi: 10.1016/j.amc.2023.128011 |
[23] | Z. Liu, Uncertain growth model for the cumulative number of COVID-19 infections in China, Fuzzy Optim. Decis. Making, 20 (2021), 229–242. https://doi.org/10.1007/s10700-020-09340-x doi: 10.1007/s10700-020-09340-x |
[24] | C. Ding, T. Ye, Uncertain logistic growth model for confirmed COVID-19 cases in Brazil, Journal of Uncertain Systems, 15 (2022), 2243008. https://doi.org/10.1142/S1752890922430085 doi: 10.1142/S1752890922430085 |
[25] | G. Evelyn Hutchinson, Circular causal systems in ecology, Ann. NY Acad. Sci., 50 (1948), 221–246. https://doi.org/10.1111/j.1749-6632.1948.tb39854.x doi: 10.1111/j.1749-6632.1948.tb39854.x |
[26] | H. Merdan, Ö. Gümüş, Stability analysis of a general discrete-time population model involving delay and Allee effects, Appl. Math. Comput., 219 (2012), 1821–1832. https://doi.org/10.1016/j.amc.2012.08.021 doi: 10.1016/j.amc.2012.08.021 |
[27] | H. Karakaya, Ş. Kartal, İ. Öztürk, Qualitative behavior of discrete-time Caputo-Fabrizio logistic model with Allee effect, Int. J. Biomath., 17 (2024), 2350039. https://doi.org/10.1142/S1793524523500390 doi: 10.1142/S1793524523500390 |
[28] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 406910. https://doi.org/10.1155/2013/406910 doi: 10.1155/2013/406910 |
[29] | Y. Zhu, Existence and uniqueness of the solution to uncertain fractional differential equation, J. Uncertain. Anal. Appl., 3 (2015), 5. https://doi.org/10.1186/s40467-015-0028-6 doi: 10.1186/s40467-015-0028-6 |
[30] | G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3 |