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1. Introduction

Fractional-order calculus is a refinement and extension of integer-order derivative and integral to
arbitrary order. Fractional-order differential equations (FDEs) have been a powerful tool for describing
many real-world systems with the memory and hereditary properties. In recent years, with the
popularization of computer technology, discrete fractional-order calculus, a generalization of integer-
order difference and sum to arbitrary order, is receiving increasing attention. FDEs have been a very
promising tool to characterize the discrete systems with the memory and hereditary properties, for
instance, biology [1], economics [2], population dynamics [3], and heat transfer [4]. Delta fractional-
order difference and sum are defined in [5]. However, delta fractional-order sum will change the
domain of a function performed, as do also delta fractional-order difference. Fortunately, the nabla
fractional-order difference proposed by Atici and Eloe overcomes this deficiency [6] and has gained
considerable interest [7, 8]. Compared with the Riemann-Liouville FDEs, the initial conditions of the
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Caputo ones will be more easily obtained for modeling the practical problems. Consequently, Caputo
type nabla fractional-order difference is considered in this paper.

In the real world, systems would be inevitably affected by uncertainty. The uncertainty theory
proposed by Liu in 2007 [9] is an effective tool to deal with the uncertainty influenced by subjective
and imprecise factors. Systems affected by the uncertainty above are called uncertain systems, driven
by uncertain differential or difference equations [10]. To describe the uncertain systems with memory
effects, the fractional-order uncertain differential equation was first introduced by Zhu in 2015 [11].
Immediately, fractional-order uncertain difference equations (FUDEs) with Riemann-Liouville type
have been proposed in [12]. It may be a potential tool to model discrete systems with uncertain
factors and memory effects. Currently, some properties of solutions to FUDEs have been mentioned
in [13–17]. Existence and uniqueness and the uncertainty distribution of the solution for the FUDEs
with fractional-order delta difference are developed in [13,14,16,17]. Existence and uniqueness of the
solution for the FUDEs with Riemann-Liouville type fractional-order nabla difference and fractional-
order between 0 and 1 are provided in [15]. Therefore, this article is dedicated to existence and the
uncertainty distribution of the solution for nabla Caputo FUDEs (CFUDEs) with any order.

It is worth noting that FDEs have been widely utilized in the fields of physics, engineering, and
control. Unfortunately, few people have applied uncertainty theory to discrete systems in real-world
applications. Recently, uncertainty theory is successfully employed in optimal control [18,19], logistic
model [20–22], and infectious disease simulation [23, 24]. A logistic population model incorporating
the Allee effect based on the uncertainty theory in the continuous case was proposed in [21]. In fact, as
early as 1948, Hutchinson highlighted that the events from nature are not continuous [25] and discrete
maps may better describe the evolution of populations. Moreover, the stability results of a general
discrete population model with Allee effect are investigated and analyzed, and a discrete logistic
equation involving Allee effect in the Caputo-Fabrizio sense is defined in [26] and [27], respectively.
As a consequence, this paper presents a novel effort to expand the uncertain logistic population model
from its continuous form to the discrete case.

Inspired by the references mentioned, this article mainly studies the uncertainty distribution of
solutions to CFUDEs by the obtained comparison theorems and presents an application of the proposed
equations in a class of logistic growth models. The specific contributions of this paper are concluded
in the following:

i) Existence and uniqueness of a class of CFUDEs with almost surely bounded uncertain variables
and any fractional-order is proposed by the Banach fixed theorem, which is different from the equations
investigated in [12, 13, 15, 16].

ii) Uncertainty distributions of solutions to CFUDEs are given based on new comparison theorems
of Caputo fractional-order difference equations. The Lipschitz constant of coefficient functions of
CFUDEs here is not bounded by the fractional-order, which does not agree with the results of FUDEs
with Riemann-Liouville type in [14].

iii) A novel uncertain logistic population model with Allee effect is presented as a discrete extension
of the logistic population model in [21].

The organization of this article is as below: In Section 2, we will review the relevant knowledge of
the uncertainty theory and nabla fractional-order difference first. The existence and uniqueness theorem
of solutions for CFUDEs with almost surely bounded uncertain variables will be presented and proven
in Section 3. Uncertainty distributions of solutions to CFUDEs will be obtained by establishing a
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new comparison principle in Section 4. Finally, in Section 5, a discrete uncertain population model
involving Allee effect will be introduced, along with an example.

2. Preliminaries

The fundamental facts about uncertainty theory and nabla fractional-order difference could be
referenced to [9] and [28], respectively.

In this article, Γ is a nonempty set named universal set and L is a σ-algebra over Γ. A set function
M defined on σ-algebra L stands for uncertain measure. The triple (Γ,L,M) is called an uncertainty
space. E denotes a set whose uncertain measure is 0. More details would be found in [9].

Definition 2.1. [9] An uncertain variable ξ is a measurable function from an uncertainty space
(Γ,L,M) to a set of real numbers R, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event called the element in L.

Let ξ be an uncertain variable. Then, its uncertainty distribution Φ is defined by

Φ(x) =M{ξ 6 x},∀x ∈ R.

For example, consider ξ is a linear uncertain variable L(a1, a2) with an uncertainty distribution

Φ(x) =


0,
(x − a1)/(a2 − a1),
1,

x 6 a1,

a1 < x < a2,

x > a2,

where a1 and a2 are real numbers with a1 < a2. See Figure 1.

Figure 1. Uncertainty distribution L(a1, a2) of linear uncertain variable.

The uncertain variables ξ1, ξ2, · · · , ξm are said to be independent if

M{

m⋂
i=1

(ξi ∈ Bi)} =

m∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1,B2, · · · ,Bm of real numbers. If the independent uncertain variables ξ1, ξ2, · · · , ξm

have the same uncertainty distribution, then they are called to be independent identically distribution
(i.i.d.) uncertain variables.
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Definition 2.2. [9] For each γ ∈ Γ \ E, an uncertain variable ξ is almost surely bounded if and only
if there is a positive real number r such that

M{|ξ(γ)| 6 r} = 1.

For linear uncertain variable L(a1, a2), denote W = |a1|
∨
|a2|. It follows that |ξ(γ)| 6 W for any

γ ∈ Γ \ {(ξ < a1)
⋃

(ξ > a2)}. Thereby, ξ is almost surely bounded.

Definition 2.3. [28] Let y be defined on Na = {a, a + 1, · · · }. Then the nabla left fractional sum of
order ν > 0 is defined by

∇−νa y(t) =
1

Γ(ν)

t∑
s=a+1

[t − ρ(s)]ν−1y(s), t ∈ Na+1,

where the backward jump operator ρ(s) = s − 1, the rising function tν =
Γ(t+ν)
Γ(t) , and Γ(t) is the gamma

function.

Definition 2.4. [28] For any function f defined on Na, n − 1 < ν < n, n ∈ N1, then

∇νa f (t) = ∇n∇−(n−ν)
a f (t)

is called the Riemann-Liouville-like fractional-order difference.
The Caputo-like fractional-order difference is given by

C∇νa f (t) = ∇−(n−ν)
a ∇n f (t).

Definition 2.5. [12] Assume that ν > 0, a ∈ R and there exists an uncertain sequence ζt indexed by
t ∈ Na. The nabla fractional-order sum of order ν for ζt is given by

∇−νa ζt =
1

Γ(ν)

t∑
s=a+1

(t − ρ(s))ν−1ζs,∀t ∈ Na,

where ζt is an uncertain variable for a fixed t.
The nabla fractional-order difference of uncertain sequence ζt with Caputo-type is defined by

C∇νaζt = ∇−(n−ν)
a ∇nζt,∀t ∈ Na,

where n − 1 < ν < n, and n ∈ N1 .

Lemma 2.1. [28] For p > 0 , q > −1, t ∈ Na, one has

∇−p
a (t − a)q =

Γ(q + 1)
Γ(q + p + 1)

(t − a)p+q.

Lemma 2.2. [28] Assume that function f is defined on Na and ν > 0, and p is a positive integer. We
have

(∇−νa ∇
p f )(t) = (∇p∇−νa f )(t) −

p−1∑
k=0

(t − a)ν−p+k

Γ(ν + k − p + 1)
∇k f (a).
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Lemma 2.3. [28] Suppose that function h is defined on Na and k is a nonnegative integer. The
following equality holds:

(∇−νa
C∇νah)(t) = h(t) −

n−1∑
k=0

(t − a)k

k!
∇kh(a),

where ν ∈ (n − 1, n] and n is a positive integer. In particular, if 0 < ν 6 1, then

(∇−νa
C∇νah)(t) = h(t) − h(a), t ∈ Na.

3. Existence and uniqueness theorem

In this section, the following CFUDE will be analyzed:

(C∇νa+n−1y)(t) = P(t, y(t)) + Q(t, y(t))ζt, t ∈ Na+n (3.1)

with the initial conditions (i.c.s)

∇iy(t) |t=a+n−1= yi, i = 0, 1, · · · , n − 1, (3.2)

where C∇νa+n−1 denotes the Caputo-like nabla difference with n − 1 < ν 6 n, a ∈ R, n is a positive
integer, t ∈ J = Na+n

⋂
[a, τ], P, Q are two functions defined on J × R, and ζa+n, ζa+n+1, · · · , ζt are

mutually independent and almost surely bounded uncertain variables with the bound M.
Following the approach of Theorem 2 in [12], the existence and uniqueness of the solution of the

CFUDE (3.1) subject to i.c.s (3.2) will be demonstrated by the Banach fixed point theorem.

Theorem 3.1. Let functions P(t, y) and Q(t, y) satisfy the Lipschitz condition

|P(t, y1) − P(t, y2)| + |Q(t, y1) − Q(t, y2)| 6 L|y1 − y2|

Additionally, the Lipschitz constant L meets the inequality below:

L <
Γ(ν + 1)Γ(τ + 1 − a − n)

(1 + M)Γ(τ + 1 − a − n + ν)
.

Then, the CFUDE (3.1) subject to i.c.s (3.2) for t ∈ Na+n
⋂

[a, τ] has a unique solution almost surely.

Proof. We define a nonempty set and a norm as follows:

lk
a = {x|x = {x(t)}ka+n, k ∈ N1}, ‖ x ‖= max

t∈Na+n
⋂

[a,τ]
|x(t)|,

where {x(t)}ka+n is a finite real sequence having k terms. It is obvious that (lk
a, ‖ · ‖) is a Banach space.

For any Xt, Yt ∈ lk
a, the definition of the operator U is given as follows:

UYt =

n−1∑
i=0

(t − a − n + 1)i

i!
yi +

1
Γ(ν)

t∑
s=a+n

[t − ρ(s)]ν−1[P(s, y(s)) + Q(s, y(s))ζs].

As ζt is an almost surely bounded uncertain variable with the bound M for each t ∈ Na+n
⋂

[a, τ],
there is a positive real number M such that |ζ(γ)| 6 M for any γ ∈ Γ \ E.

AIMS Mathematics Volume 9, Issue 9, 23752–23769.



23757

By Lemma 2.1, for any given γ ∈ Γ \ E, we get

‖ UXt(γ) − UYt(γ) ‖ = max
t∈Na+n

⋂
[a,τ]
|UXt(γ) − UYt(γ)|

6
1

Γ(ν)
max

t∈Na+n
⋂

[a,τ]

t∑
s=a+n

[t − ρ(s)]ν−1

× [|P(s, Xs(γ)) − P(s,Ys(γ))| + |Q(s, Xs(γ)) − Q(s,Ys(γ))ζs|]

6
1

Γ(ν)
max

t∈Na+n
⋂

[a,τ]

t∑
s=a+n

[t − ρ(s)]ν−1

× [|P(s, Xs(γ)) − P(s,Ys(γ))| + M|Q(s, Xs(γ)) − Q(s,Ys(γ))|]

6
L(1 + M)

Γ(ν)
max

t∈Na+n
⋂

[a,τ]

t∑
s=a+n

[t − ρ(s)]ν−1|Xs(γ) − Ys(γ)|

6 L(1 + M) ‖ Xt(γ) − Yt(γ) ‖ max
t∈Na+n

⋂
[a,τ]

(∇−νa+n−1(t − (a + n − 1))0)

= L(1 + M) ‖ Xt(γ) − Yt(γ) ‖ max
t∈Na+n

⋂
[a,τ]

(t − (a + n − 1))ν

Γ(ν + 1)

=
L(1 + M)(τ + 1 − a − n)ν

Γ(ν + 1)
‖ Xt(γ) − Yt(γ) ‖

=
L(1 + M)Γ(τ + 1 − a − n + ν)

Γ(ν + 1)Γ(τ + 1 − a − n)
‖ Xt(γ) − Yt(γ) ‖ .

According to L < Γ(ν+1)Γ(τ+1−a−n)
(1+M)Γ(τ+1−a−n+ν) , the operator U is a contraction mapping in lk

a. Consequently,
a unique fixed point Xt(γ) for CFUDE (3.1) of U in lk

a can be obtained by the Banach fixed point

theorem. Furthermore, let Xt(γ) = lim
m→∞

Xm
t (γ), where Xm

t (γ) = U(Xm−1
t (γ)) with X0

t (γ) =
n−1∑
i=0

(t−a−n+1)i

i! yi.

Obviously, X0
t (γ) is an uncertain variable.

Note that functions P and Q are Lipschitz continuous. So, the operator U is measurable for any
given t ∈ Na+n

⋂
[a, τ]. Since a real-valued measurable function of uncertain variables is an uncertain

variable, X1
t , X2

t , · · · , Xn
t , · · · are uncertain variables. Therefore, Xt(γ) = lim

m→∞
Xm

t (γ) is an uncertain
variable by Theorem 3 in [29].

Consequently, the CFUDE (3.1) subject to i.c.s (3.2) has the unique solution Xt for t ∈ Na+n
⋂

[a, τ]
almost surely. �

Example 3.1. Consider the CFUDE as follows:C∇1.5
2 y(t) =

siny(t)
10+t2 + 0.1ζt, t ∈ N3

⋂
[1, 5],

y(2) = ∇y(2) = 0,
(3.3)

where ζ3, ζ4, ζ5 are mutually independent uncertain variables with the same linear uncertainty
distribution L(0, 1).

Considering ν = 1.5, n = 2, τ = 5, a = 1,M = 1, it is easy to validate that

|P(t, y1) − P(t, y2)| + |Q(t, y1) − Q(t, y2)| 6 0.1|y1 − y2|
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and
Γ(1.5 + 1)Γ(5 + 1 − 1 − 2)

(1 + 1)Γ(5 + 1 − 1 − 2 + 1.5)
≈ 0.11 > 0.1.

By Theorem 3.1, the CFUDE (3.3) has a unique solution almost surely.

4. Uncertainty distribution of the solutions to CFUDEs

Uncertainty distribution of solutions to CFUDEs will be presented in this section. The concept of
α-path for the proposed CFUDEs will be first introduced, which provides a way to analyze the behavior
of the solutions. Novel comparison theorems for FDEs will be provided, and a link between solutions
of CFUDEs and their α-paths will be established based on the proposed comparison theorems.

Definition 4.1. The CFUDE (3.1) with i.c.s (3.2) is called to have an α-path Xα
t if it is the solution of

the corresponding FDE
C∇νa+nXα

t = P(t, Xα
t ) + |Q(t, Xα

t )|Υ−1(α),

with the same i.c.s (3.2), where α ∈ (0, 1) and Υ−1(α) is the inverse uncertainty distribution of ζt, i.e.,
for each t ∈ Na+n

⋂
[a, τ], ζt has the same regular uncertainty distribution, the inverse function with

Υ−1(α).

In Example 3.1, the associated FDE of CFUDE (3.3)C∇1.5
2 y(t) =

siny(t)
10+t2 + 0.1Υ−1(α), t ∈ N3

⋂
[1, 5],

y(2) = ∇y(2) = 0,

has a solution

y(t) =
1

Γ(1.5)

t∑
s=3

(t − ρ(s))0.5[
siny(s)
10 + s2 + 0.1α].

Consequently, the CFUDE (3.3) has an α-path

yαt =
1

Γ(1.5)

t∑
s=3

(t − ρ(s))0.5[
siny(s)
10 + s2 + 0.1α].

In order to obtain a correlation between solutions of CFUDEs and their α-paths, the comparison
theorems of the FDEs in the Caputo form will be innovated.

Inspired by [14], we present a comparison theorem for FDEs with Caputo difference when 0 < ν <1.

Theorem 4.1. For ν ∈ (0, 1), z(t, u) and h(t, u) are two real-valued functions defined on R+ × R. Let
h(t, u) be Lipschitz continuous with respect to u. If u1(t) and u2(t) are, respectively, unique solutions of
the following FDEs: (C∇νau)(t) = z(t, u(t)), t ∈ Na+1,

u(a) = u0,

and (C∇νau)(t) = h(t, u(t)), t ∈ Na+1,

u(a) = u0.
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(i) When z(t, u) 6 h(t, u), u1(t) 6 u2(t) for t ∈ Na;
(ii) When z(t, u) > h(t, u), u1(t) > u2(t) for t ∈ Na+1.

Proof. (i) Assume that the condition u1(t) 6 u2(t) is not valid. There exists at least one t0 ∈ Na such
that u1(t0) > u2(t0) holds. Let u(t) = u1(t) − u2(t) and t1 = min{t ∈ Na+1 : u1(t) > u2(t)}. It is obvious
that

u(t1) > 0, (4.1)

u(t) 6 0, t ∈ Na ∩ [0, t1 − 1]. (4.2)

From the definition of the Caputo difference operator, we can conclude that

(C∇νau)(t1) =
1

Γ(1 − ν)

t1∑
s=a+1

(t1 − ρ(s))−ν∇u(s)

=
1

Γ(1 − ν)

t1∑
s=a+1

(t1 − s + 1)−ν(u(s) − u(s − 1))

=
1

Γ(1 − ν)
(t1 − a)−ν[u(a + 1) − u(a)]

+
1

Γ(1 − ν)
(t1 − a − 1)−ν[u(a + 2) − u(a + 1)] + · · ·

+
1

Γ(1 − ν)
(2)−ν[u(t1 − 1) − u(t1 − 2)] +

1
Γ(1 − ν)

(1)−ν[u(t1) − u(t1 − 1)]

= u(t1) + (−ν)u(t1 − 1) +
−ν(1 − ν)

2
u(t1 − 2)

+
−ν(−ν + 1)(−ν + 2)

6
u(t1 − 3) + · · · +

−νΓ(t1 − a − 1 − ν)
Γ(1 − ν)Γ(t1 − a)

u(a + 1). (4.3)

On the other hand, from (4.2), we have

(C∇νau)(t1) = (C∇νau1)(t1) − (C∇νau2)(t1)
= z(t1, u1(t1)) − h(t1, u2(t1))
6 h(t1, u1(t1)) − h(t1, u2(t1))
6 −Lh(u1(t1) − u2(t1)) = −Lh(u(t1)). (4.4)

Combining (4.3) and (4.4), it can be obtained that

(1 + Lh)u(t1) 6 νu(t1 − 1) +
ν(1 − ν)

2
u(t1 − 2)

+
ν(−ν + 1)(−ν + 2)

6
u(t1 − 3) + · · · +

νΓ(t1 − a − 1 − ν)
Γ(1 − ν)Γ(t1 − a)

u(a + 1). (4.5)

For each 0 < ν < 1, the coefficient to the right side of the inequality (4.5) is always nonnegative. In
fact, using z(t, u) 6 h(t, u), we can see that

u(a + 2) = u1(a + 2) − u2(a + 2)
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= [u0 + νz(a + 1, u(a + 1)) + z(a + 2, u(a + 2))]
− [u0 + νh(a + 1, u(a + 1)) + h(a + 2, u(a + 2))]

= ν(z(a + 1, u(a + 1)) − h(a + 1, u(a + 1)))
+ z(a + 2, u(a + 2)) − h(a + 2, u(a + 2)) 6 0.

This verifies that t1 > a+2. It is evident that Γ(t1−a−1−ν)
Γ(1−ν) =

Γ((t1−a−2)+(1−ν))
Γ(1−ν) = (1−ν)(2−ν) · · · (t1−a−3) > 0,

when t1 > a + 2. Therefore, νΓ(t1−a−1−ν)
Γ(1−ν)Γ(t1−a) > 0 is valid for 0 < ν < 1.

Since Lipschitz constant Lh > 0 and the right side of the inequality (4.5) is nonpositive, we can see
u(t1) 6 0, which is in conflict with (4.1).

(ii) The proof can be similar to the proof of (i). �

In the sequel, Theorem 4.1 will be extended to the case of the fractional-order ν ∈ (n − 1, n).

Theorem 4.2. For ν ∈ (n−1, n), z(t, u) and h(t, u) are two real-valued functions defined on R+×R. Let
h(t, u) be Lipschitz continuous with respect to u. If u1(t) and u2(t) are, respectively, unique solutions
for the following FDEs: (C∇νa+n−1u)(t) = z(t, u(t)), t ∈ Na+n,

∇iu(t) |t=a+n−1= ui, i = 0, 1, · · · , n − 1,
(4.6)

and (C∇νa+n−1u)(t) = h(t, u(t)), t ∈ Na+n,

∇iu(t) |t=a+n−1= ui, i = 0, 1, · · · , n − 1.
(4.7)

(i) When z(t, u) 6 h(t, u), u1(t) 6 u2(t) for t ∈ Na+n−1;
(ii) When z(t, u) > h(t, u), u1(t) > u2(t) for t ∈ Na+n.

Proof. (i) Given that C∇νa+n−1u(t) =C ∇
µ
b∇

n−1u(t) , where b = a + n − 1 and µ = 1 − n + ν ∈ (0, 1), then
the FDEs (4.6) and (4.7) can be transformed into the case of the fractional-order ν ∈ (0, 1).

Denote y(t) = ∇n−1u(t). By Lemma 2.2, we can derive that

u(t) =

n−2∑
i=0

ti

Γ(i + 1)
ui +

1
Γ(n − 1)

t∑
s=0

(t − ρ(s))n−2y(s). (4.8)

Hence, the FDEs (4.6) and (4.7) can be written as

C∇
µ
by(t) = z(t,

n−2∑
i=0

ti

Γ(i + 1)
ui +

1
Γ(n − 1)

t∑
s=0

(t − ρ(s))n−2y(s)) (4.9)

and

C∇
µ
by(t) = h(t,

n−2∑
i=0

ti

Γ(i + 1)
ui +

1
Γ(n − 1)

t∑
s=0

(t − ρ(s))n−2y(s)) (4.10)

with the same initial condition y0 = y(b) = un−1.
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From assumption z(t, u) 6 h(t, u), we can obtain

z(t,
n−2∑
i=0

ti

Γ(i + 1)
ui +

1
Γ(n − 1)

t∑
s=0

(t − ρ(s))n−2y(s))

6 h(t,
n−2∑
i=0

ti

Γ(i + 1)
ui +

1
Γ(n − 1)

t∑
s=0

(t − ρ(s))n−2y(s)).

Let y1 and y2 be the unique solutions of the FDEs (4.9) and (4.10), respectively. Then, it is easy to
validate that y1(t) 6 y2(t) by Theorem 4.1.

Thus, from Eq (4.8), we obtain u1(t) 6 u2(t).
(ii) The proof is similar to the proof of (i). �

Remark 4.1. In comparison with the results presented in [14] for the Riemann-Liouville type, the
comparison theorem obtained in this paper is established based on the properties of the Caputo
backward difference operator. Moreover, the range of the Lipschitz constant in Theorem 4.2 is not
restricted by the fractional-order.

Remark 4.2. Comparing with the results presented in [17] for the Liouville-Caputo type, the order
is extended to be a real number between adjacent positive integers and eliminates the monotonicity
conditions. These modifications create a foundation for proposing the uncertainty distributions of the
solutions to CFUDEs.

Based on the existence and uniqueness theorem and comparison theorems, the uncertainty
distributions of solutions of CFUDEs with bounded and symmetrical uncertain variables can be further
analyzed. The definition of the symmetrical uncertain variable is first revisited.

Definition 4.2. [9] Assuming that a regular uncertainty distribution Υ(x) exists for an uncertain
variable ξ, we call ξ symmetrical if

Υ(x) + Υ(−x) = 1.

For example, the linear uncertain variable L(−a, a) is symmetrical, which can be obtained from
Figure 1.

Furthermore, an important lemma that reveals the relationship between the solutions of CFUDEs
and their α-paths can be presented.

Lemma 4.1. Suppose that CFUDE (3.1) with i.c.s (3.2) has a solution Xt and an α-path Xα
t . If P +

|Q|Υ−1(α) is Lipschitz continuous with respect to y, and the uncertain variables ζa+n, ζa+n+1, · · · , ζt in
the CFUDE (3.1) are i.i.d. almost surely bounded and symmetrical for any t ∈ Na+n

⋂
[a, τ], then we

obtain

M{Xt 6 Xα
t } = α, M{Xt > Xα

t } = 1 − α.

Proof. The proof can refer to Theorem 4.1 in [14].
To begin, write

F+ = {t ∈ Na+n ∩ [a, τ] : Q(t, x) > 0},
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F− = {t ∈ Na+n ∩ [a, τ] : Q(t, x) < 0};

W+ = {γ|ζt(γ) 6 ζ−1(α), t ∈ F+},

W− = {γ|ζt(γ) > ζ−1(1 − α), t ∈ F−}.

It is clear that F+∩F−1 = ∅ and F+∪F−1 = Na+n∩[a, τ]. Since ζa+n, ζa+n+1, · · · , ζt in the CFUDE (3.1)
are i.i.d. and symmetrical for t ∈ Na+n ∩ [a, τ], we have

M{W+ ∩W−} =M{W+} ∧M{W−} = α

and
Φ−1(1 − α) + Φ−1(α) = 0.

Hence, the inequality Q(t, x)ζt(γ) 6 |Q(t, x)|Φ−1(α) holds for each γ ∈ W+ ∩W− and t ∈ Na+n ∩ [a, τ].
Note that Xt(γ) and Xα

t are, respectively, the unique solution and α-path of CFUDE (3.1) with i.c.s (3.2)
for each γ ∈ W+ ∩ W−, and it can be deduced that Xt(γ) 6 Xα

t by Theorem 4.2. Thus, we obtain
W+ ∩W− ⊆ {Xt 6 Xα

t ,∀t ∈ Na+n ∩ [a, τ]}. Moreover, based on the monotonicity theorem in [9], we can
derive the following inequality:

M{{Xt 6 Xα
t ,∀t ∈ Na+n ∩ [a, τ]} >M{W+ ∩W−} = α.

On the other hand, denote Ω+ = {γ|ξt(γ) > Φ−1(α), t ∈ F+},Ω− = {γ|ξt(γ) < Φ−1(1 − α), t ∈ F−}.
Similarly, we obtain Ω+

⋂
Ω− ⊆ {Xt > Xα

t ,∀t ∈ Na+n
⋂

[a, τ]}, which leads to

M{Xt > Xα
t ,∀t ∈ Na+n ∩ [a, τ]} >M{Ω+ ∩Ω−} = 1 − α.

SinceM{Xt > Xα
t ,∀t ∈ Na+n ∩ [a, τ]} +M{Xt 6 Xα

t ,∀t ∈ Na+n ∩ [a, τ]} 6 1, we obtain

M{Xt 6 Xα
t ,∀t ∈ Na+n ∩ [a, τ]} = α,

M{Xt > Xα
t ,∀t ∈ Na+n ∩ [a, τ]} = 1 − α.

�

Theorem 4.3. Suppose that CFUDE (3.1) with i.c.s (3.2) has a solution Xt and an α-path Xα
t . If

P + |Q|Υ−1(α) is Lipschitz continuous with respect to y, and the uncertain variables ζa+n, ζa+n+1, · · · ,
ζt in the CFUDE (3.1) are i.i.d. almost surely bounded and symmetrical, then the inverse uncertainty
distribution of Xt could be formulated by

Υ−1
t (α) = Xα

t .

Proof. The proof of the theorem refers to the Theorem 5.1 in [14].
Note that

{Xt 6 Xα
t ,∀t} ⊃ {Xt 6 Xα

t ,∀t ∈ Na+n ∩ [a, τ]},

and
{Xt > Xα

t ,∀t} ⊃ {Xt > Xα
t ,∀t ∈ Na+n ∩ [a, τ]}.

According to the monotonicity of uncertain measure in [9], we have

M{Xt 6 Xα
t ,∀t} >M{Xt 6 Xα

t ,∀t ∈ Na+n ∩ [a, τ]} = α, (4.11)
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and

M{Xt > Xα
t ,∀t} >M{Xt > Xα

t ,∀t ∈ Na+n ∩ [a, τ]} = 1 − α. (4.12)

M{Xt 6 Xα
t } and M{Xt > Xα

t } are opposite events with each other for each t ∈ Na+n ∩ [a, τ], which
meansM{Xt 6 Xα

t } +M{Xt > Xα
t } = 1. It follows from Eqs (4.11) and (4.12) thatM{Xt 6 Xα

t } = α.
Thus, Υ−1

t (α) = Xα
t is the inverse uncertainty distribution of Xt. �

Example 4.1. In this example, we deal with the following CFUDE:
C∇0.25
−1 y(t) = 0.025y2(t) + ζt, y0 = y(0) = 0.5, t ∈ N0

⋂
[0, 2], (4.13)

where ζ0, ζ1, ζ2 are independent with the same uncertainty distribution L(−3, 3).
As a result, Eq (4.13) has a unique solution almost surely, which can be easily confirmed through

Theorem 3.1.
Consider

P(t, y) + |Q(t, y)|Υ−1(α) = 0.025y2(t) + 6α − 3.

It is easy to see that the above formula is Lipschitz continuous with respect to y ∈ [−3, 3]
for 0 < α <1. According to Lemma 2.3, the inverse distribution of the solution of Eq (4.13) could
be determined by solving the following FDE:

y(t) = y0 +
1

Γ( 1
4 )

t∑
s=0

(t − ρ(s))−
3
4 (0.025y2(s) + 6α − 3), t ∈ N0

⋂
[0, 2].

Therefore, the uncertainty distribution Φt(x) of the solution of Eq (4.13) is as shown in Figure 2
with y0 = 0.5. In fact, the solution of Eq (4.13) is an uncertain sequence, which is an uncertain variable
for each given t. The point (−1.87, 0.09) in Figure 2 means that there is 9% possibility that the solution
of Eq (4.13) takes the value as −1.87 at t = 0. It can also been seen from Figure 2 that Φt(x) is a
monotonic increasing function about x for each t.

Figure 2. Uncertainty distribution of the solution of Eq (4.13).
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Remark 4.3. The uncertainty distribution of the solution for the proposed CFUDE shows that at a
time t the solution takes a value with a possibility.

Corollary 4.1. Suppose that CFUDE (3.1) with i.c.s (3.2) has a solution Xt and an α-path Xα
t . If

P + |Q|Υ−1(α) is Lipschitz continuous with respect to y, the uncertain variables ζa+n, ζa+n+1, · · · , ζt in
the CFUED (3.1) are i.i.d. almost surely bounded and symmetrical and the expected valued E[Xt]
exists, then

E[Xt] =

∫ 1

0
Xα

t dα.

Proof. It can be directly inferred from Theorem 4.3. �

5. Discrete uncertain logistic model

An uncertain model with Allee effect has been proposed in [21] as the equation below:

dNt

dt
= ANt(1 −

Nt

K
)(1 −

U
Nt

) + σNt(1 −
Nt

K
)(1 −

U
Nt

)
dCt

dt
,

where Nt denotes the size or density of population at time t, A stands for the maximum average rate
of change, U stands for the minimum density, K is the environment capacity, σ is considered as the
intensity of the noise and the noise term dCt

dt is taken as an uncertain variable.
Hutchinson has pointed out that the events from the natural world are not successive in [25]

and discrete maps can better describe the evolution of populations. Furthermore, the fractional
difference equation and the corresponding fractional delayed logistic maps have been introduced
in [30]. Moreover, a discrete logistic equation with Allee effect in Caputo-Fabrizio sense from a
nonlinear fractional differential equation has been defined in [27]. These prompt us to generalize the
uncertain logistic population model in [21] from a continuous framework to a discrete framework.

Inspired by the aforementioned research, this article focuses on the following form of uncertain
logistic population model

C∇νaNt = ANt(1 −
Nt

K
)(1 −

U
Nt

) + σNt(1 −
Nt

K
)(1 −

U
Nt

)ζt, t ∈ Na+1

⋂
[a, τ], (5.1)

where the noise term ζt for each t ∈ Na+1
⋂

[a, τ] is considered as a linear uncertain variable.
This model comprehensively considers Allee effect and uncertain factors, making it more

meaningful and reasonable in practical applications and theoretical research. Furthermore, in ecology,
population dynamics are better described using a discrete-time model, rather than a continuous case,
particularly when the population has nonoverlapping generations.

Remark 5.1. The uncertainty distribution of solutions would be used to analyze the statistical
characteristics of population dynamics with uncertainty described by uncertain FDEs. For example,
the expected value of the solution can reflect the trend of the average population growth rate, while
variance can reflect the intensity of the impact of uncertain factors on the population growth process
and population volatility.
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Example 5.1. In 1999, the number of red-crowned cranes in the Xiaosanjiang Plain of China was 115.
If we substitute A = 0.1,K = 119,U = 8, σ = 0.1, and N0=115 as the initial condition into the
uncertain model considered above, the Eq (5.1) can be transformed into the following form:C∇0.5

−1 Nt = 0.1Nt(1 − Nt
119 )(1 − 8

Nt
) + 0.1Nt(1 − Nt

119 )(1 − 8
Nt

)ζt,

N0 = 115,
(5.2)

where t ∈ N1
⋂

[0, 3] and ζ1, ζ2, ζ3 are mutually independent uncertain variables with the same
uncertainty distribution L(−1, 1).

Therefore, the system has a unique solution almost surely, a fact that can be confirmed by
Theorem 3.1.

Consider

P(t, y) + |Q(t, y)|Υ−1(α) = 0.1(−
y2

119
+

127
119

y − 8) + 0.1| −
y2

119
+

127
119

y − 8|(2α − 1).

It is easy to see that the above formula is Lipschitz continuous with respect to y ∈ [114, 118].
According to Lemma 2.3, the inverse distribution of the solution for the system can be concluded

by solving the following FDE:

Nt = N0 +
1

Γ( 1
2 )

t∑
s=1

(t − ρ(s))−
1
2 [(0.1Ns)(1 −

Ns

119
)(1 −

8
Ns

)

+ 0.1|Ns(1 −
Ns

119
)(1 −

8
Ns

)|(2α − 1)], t ∈ N1

⋂
[0, 3].

Therefore, the uncertainty distribution Ψt(x) of the solution for the system is shown in Figure 3 with
N0 = 115.

Figure 3. Uncertainty distribution of the solution Nt of Eq (5.2).

Moreover, as illustrated in Figure 3, we can see that when t = 1, the value of α is 0.3 with
N1=115.2062. This indicates that the belief degree regarding the count of red-crowned cranes in the
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the Xiaosanjiang Plain of China was 115.2062 in 2000 ,which is 30%. The α-path of the solution Nt of
Eq (5.2), which shows the possibility of the evolution of red-crowned cranes in the Xiaosanjiang Plain
of China, is revealed in Figure 4. For example, there is a 90% probability that evolution of red-crowned
cranes can be characterized by the discrete points labeled by *. From Figure 3, it is shown that Ψt(x) is
a monotonic increasing function about x for each fixed t. It can be also known that α-path Nα

t is also a
monotonic increasing function about t for the same α from Figure 4, which shows that the quantity of
red-crowned cranes increases over time in the short term for the same possibility.

Figure 4. α-path of the solution Nt of Eq (5.2).

Additionally, Table 1 displays the expected values obtained according to Corollary 4.1.

Table 1. The expected value of Nt.

t 1 2 3
E[Nt] 115.3189 115.4698 115.5715

The table displays the expected values of solution for the proposed logistic equation, which
were 115.3189, 115.4698, and 115.5715, respectively, showing the average values of population
density and size in Xiaosanjiang Plain, China in 2000, 2001, and 2002.

6. Conclusions

The existence and uniqueness theorem and uncertainty distribution of solutions for the proposed
Caputo fractional-order equations are provided in this article. Based on the results achieved, a new
discrete logistic model involving Allee effect is introduced and analyzed. However, the stability of the
proposed fractional-order equations is not involved, which is a crucial aspect. Therefore, our future
work is primarily devoted to the Mittag-Leffler stability and finite-time stability of the solutions for
CFUDEs.
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