Research article Special Issues

BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces

  • Received: 27 May 2024 Revised: 29 June 2024 Accepted: 02 July 2024 Published: 05 August 2024
  • MSC : 26D10, 47B47, 47G10

  • In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.

    Citation: Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan. BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces[J]. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139

    Related Papers:

  • In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.



    加载中


    [1] G. Gao, A. Hussain, $(L^p, L^q)$-boundedness of Hausdorff operators with power weight on Euclidean spaces, Anal. Theor. Appl., 31 (2015), 101–108. https://doi.org/10.4208/ata.2015.v31.n2.1 doi: 10.4208/ata.2015.v31.n2.1
    [2] X. Lin, L. Sun, Some estimates on the Hausdorff operator, Acta Sci. Math., 78 (2012), 669–681. https://doi.org/10.1007/BF03651391 doi: 10.1007/BF03651391
    [3] J. Chen, D. Fan, J. Li, Hausdorff operators on function spaces, Chinese Ann. Math., 33 (2012), 537–556. https://doi.org/10.1007/s11401-012-0724-1 doi: 10.1007/s11401-012-0724-1
    [4] E. Liflyand, F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^{1}(\mathbb R), $ Proc. Am. Math. Soc., 128 (2000), 1391–1396. https://doi.org/10.1090/S0002-9939-99-05159-X
    [5] E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in $H^{p}$ spaces, $0 < p < 1, $ Stud. Math., 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4
    [6] D. Fan, X. Lin, Hausdorff operator on real Hardy spaces, Analysis, 34 (2014), 319–337. https://doi.org/10.1515/anly-2012-1183 doi: 10.1515/anly-2012-1183
    [7] M. Ruzicka, Electroreological fluids: Modeling and mathematical theory, Lecture Notes in Math., Springer: Berlin/Heidelberg, Germany, 2000.
    [8] W. Orlicz, Über konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–211. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
    [9] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [10] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [11] A. Nekavinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R})$, Math. Inequal. Appl., 7 (2004), 255–265.
    [12] D. C. Uribe, A. Fiorenza, Variable exponent Lebesgue space: Foundations and harmonic analysis, Birkhauser: Basel, Switzerland, 2013.
    [13] L. Diening, P. Harjulehto, P. Hästö, M. Ru$\breve{\rm{z}}$icka, Lebesgue and Sobolev spaces with variable exponent, Lect. Notes Math., Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [14] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in nonstandard function spaces: Variable exponent Lebesgue and amalgam spaces, Birkauser, Heidelberg, 1 (2016).
    [15] K. P. Ho, Extrapolation to Herz spaces with variable exponents and applications, Rev. Mat. Complut., 33 (2020), 437–463. https://doi.org/10.1007/s13163-019-00320-3 doi: 10.1007/s13163-019-00320-3
    [16] K. P. Ho, Spherical maximal function, maximal Bochner-Riesz mean and geometrical maximal function on Herz spaces with variable exponents, Rend. Circ. Mat. Palerm., 70 (2021), 559–574. https://doi.org/10.1007/s12215-020-00511-8 doi: 10.1007/s12215-020-00511-8
    [17] M. Z. Abidin, M. Marwan, N. Ullah, A. M. Zidan, Well-Posedness in variable-exponent function spaces for the three-dimensional micropolar fluid equations, J. Math., 2023. https://doi.org/10.1155/2023/4083997
    [18] A. Hussain, I. Khan, A. Mohamed, Variable Herz-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 33 (2024). https://doi.org/10.1186/s13660-024-03110-8
    [19] T. Iwaniec, C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Ration. Mech. An., 119 (1992), 129–143.
    [20] L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92 (1997), 249–258.
    [21] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
    [22] R. Bandaliyev, K. Safarova, On Hardy type inequalities in grand Lebesgue spaces $L_{p)}$ for $0 < p \le1$, Linear Multilinear A., 70 (2022), 6053–6066. https://doi.org/10.1080/03081087.2021.1944968 doi: 10.1080/03081087.2021.1944968
    [23] S. G. Samko, S. M. Umarkhadzhiev, Weighted Hardy operators in grand Lebesgue spaces on $\mathbb R^n$, J. Math. Sci., 268 (2022), 509–522. https://doi.org/10.1007/s10958-022-06208-w doi: 10.1007/s10958-022-06208-w
    [24] A. P. Singh, P. Jain, R. Panchal, On quasi-grand Lebesgue spaces and the Hausdorff operator, Bull. Malays. Math. Sci. Soc., 47 (2024), 14. https://doi.org/10.1007/s40840-023-01618-8 doi: 10.1007/s40840-023-01618-8
    [25] V. Kokilashvili, A. Meskhi, Maximal and Calderon-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (2014), 447–461. https://doi.org/10.1515/gmj-2014-0047 doi: 10.1515/gmj-2014-0047
    [26] H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 1 (2020), 2020. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [27] M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes, 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
    [28] S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20231130 doi: 10.3934/math.20231130
    [29] R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [30] R. Gong, N. M. Vempati, Q. Wu, P. Xie, Boundedness and compactness of Cauchy-type integral commutators on weighted Morrey spaces, J. Aust. Math. Soc., 113 (2022), 3656. https://doi.org/10.1017/S1446788722000015 doi: 10.1017/S1446788722000015
    [31] A. Hussain, A. Ajaib, Some results for commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
    [32] A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
    [33] Y. Sun, J. Zhao, Two-weighted estimates for multilinear Hausdorff operators and commutators on stratified groups, J. Pseudo-Differ. Oper., 13 (2022), 49. https://doi.org/10.1007/s11868-022-00480-9 doi: 10.1007/s11868-022-00480-9
    [34] N. Sarfraz, F. Gürbüz, Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator, Int. J. Nonlinear Sci. Numer. Simulat., 24 (2023), 2281–2292. https://doi.org/10.1515/ijnsns-2020-0290 doi: 10.1515/ijnsns-2020-0290
    [35] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. https://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
    [36] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [37] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253.
    [38] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palerm., 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
    [39] S. Lu, L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(534) PDF downloads(60) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog