Research article Special Issues

Martingale transforms in martingale Hardy spaces with variable exponents

  • Received: 31 May 2024 Revised: 27 June 2024 Accepted: 01 July 2024 Published: 15 July 2024
  • MSC : 60G42, 60G46

  • In this paper, we considered the boundedness of Burkholder's martingale transforms for martingale Hardy spaces with variable exponents. In addition, through martingale transforms, some characterizations of predictable variable exponent martingale Hardy spaces were also provided.

    Citation: Tao Ma, Jianzhong Lu, Xia Wu. Martingale transforms in martingale Hardy spaces with variable exponents[J]. AIMS Mathematics, 2024, 9(8): 22041-22056. doi: 10.3934/math.20241071

    Related Papers:

  • In this paper, we considered the boundedness of Burkholder's martingale transforms for martingale Hardy spaces with variable exponents. In addition, through martingale transforms, some characterizations of predictable variable exponent martingale Hardy spaces were also provided.



    加载中


    [1] E. Acerbi, G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. https://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
    [2] H. Aoyama, Lebesgue spaces with variable exponent on a probability space, Hiroshima Math. J., 39 (2009), 207–216. https://doi.org/10.32917/hmj/1249046337 doi: 10.32917/hmj/1249046337
    [3] J. S. Bansah, Martingale transforms between Martingale Hardy-amalgam spaces, Abstr. Appl. Anal., 2021 (2021), 8810220. https://doi.org/10.1155/2021/8810220 doi: 10.1155/2021/8810220
    [4] C. Bennett, R. Sharpley, Interpolation of operators, Boston: Academic Press, 1988. https://doi.org/10.1016/s0079-8169(08)x6053-2
    [5] D. Breit, L. Diening, S. Schwarzacher, Finite element approximation of the $p(\cdot)$-Laplacian, SIAM J. Numer. Anal., 53 (2015), 551–572. https://doi.org/10.1137/130946046 doi: 10.1137/130946046
    [6] A. C. Bronzi, E. A. Pimentel, G. C. Rampasso, E. V. Teixeira, Regularity of solutions to a class of variable-exponent fully nonlinear elliptic equations, J. Funct. Anal., 279 (2020), 108781. https://doi.org/10.1016/j.jfa.2020.108781 doi: 10.1016/j.jfa.2020.108781
    [7] D. L. Burkholder, Martingale transforms, Ann. Math. Statist., 37 (1966), 1494–1504. https://doi.org/10.1214/aoms/1177699141 doi: 10.1214/aoms/1177699141
    [8] J. A. Chao, R. L. Long, Martingale transforms and Hardy spaces, Probab. Th. Rel. Fields, 91 (1992), 399–404. https://doi.org/10.1007/BF01192064 doi: 10.1007/BF01192064
    [9] J. A. Chao, R. L. Long, Martingale transforms with unbounded multipliers, Proc. Amer. Math. Soc., 114 (1992), 831–838. https://doi.org/10.2307/2159413 doi: 10.2307/2159413
    [10] W. Chen, R. Han, M. T. Lacey, Weighted estimates for one-sided martingale transforms, Proc. Amer. Math. Soc., 148 (2020), 235–245. https://doi.org/10.1090/proc/14665 doi: 10.1090/proc/14665
    [11] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, foundations and harmonic analysis, Heidelberg: Birkhäuser/Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [12] D. V. Cruz-Uribe, D. Wang, Variable Hardy spaces, Indiana Univ. Math. J., 63 (2014), 447–493. https://doi.org/10.1512/iumj.2014.63.5232 doi: 10.1512/iumj.2014.63.5232
    [13] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl., 7 (2004), 245–253. https://doi.org/10.7153/mia-07-27 doi: 10.7153/mia-07-27
    [14] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657–700. https://doi.org/10.1016/j.bulsci.2003.10.003 doi: 10.1016/j.bulsci.2003.10.003
    [15] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [16] T. Galazka, A. Osekowski, Sharp estimates for martingale transforms with unbounded transforming sequences, Electron. J. Probab., 28 (2023), 66. https://doi.org/10.1214/23-ejp953 doi: 10.1214/23-ejp953
    [17] A. M. Garsia, Martingale inequalities: seminar notes on recent progress, Mass.-London-Amsterdam: W. A. Benjamin, Inc., 1973.
    [18] Z. Hao, Atomic decomposition of predictable martingale Hardy space with variable exponents, Czechoslovak Math. J., 65 (2015), 1033–1045. https://doi.org/10.1007/s10587-015-0226-x doi: 10.1007/s10587-015-0226-x
    [19] M. He, L. Yu, Martingale transforms between Hardy-Lorentz spaces, Statist. Probab. Lett., 137 (2018), 46–53. https://doi.org/10.1016/j.spl.2018.01.012 doi: 10.1016/j.spl.2018.01.012
    [20] K.-P. Ho, Doob's inequality, Burkholder-Gundy inequality and martingale transforms on martingale Morrey spaces, Acta Math. Sci., 38 (2018), 93–109. https://doi.org/10.1016/S0252-9602(17)30119-4 doi: 10.1016/S0252-9602(17)30119-4
    [21] K.-P. Ho, Martingale transforms and fractional integrals on rearrangement-invariant martingale Hardy spaces, Period. Math. Hung., 81 (2020), 159–173. https://doi.org/10.1007/s10998-020-00318-1 doi: 10.1007/s10998-020-00318-1
    [22] K.-P. Ho, Martingale transforms on Banach function spaces, Electron. Res. Arch., 30 (2022), 2247–2262. https://doi.org/10.3934/era.2022114 doi: 10.3934/era.2022114
    [23] Y. Jiao, F. Weisz, L. Wu, D. Zhou, Real interpolation for variable martingale Hardy spaces, J. Math. Anal. Appl., 491 (2020), 124267. https://doi.org/10.1016/j.jmaa.2020.124267 doi: 10.1016/j.jmaa.2020.124267
    [24] Y. Jiao, F. Weisz, L. Wu, D. Zhou, Variable martingale Hardy spaces and their applications in Fourier analysis, Diss. Math., 550 (2020), 1–67. https://doi.org/10.4064/dm807-12-2019 doi: 10.4064/dm807-12-2019
    [25] Y. Jiao, L. Wu, M. Popa, Operator-valued martingale transforms in rearrangement invariant spaces and applications, Sci. China Math., 56 (2013), 831–844. https://doi.org/10.1007/s11425-013-4570-8 doi: 10.1007/s11425-013-4570-8
    [26] Y. Jiao, D. Zeng, D. Zhou, New variable martingale Hardy spaces, Proc. Roy. Soc. Edinb. A, 152 (2022), 450–478. https://doi.org/10.1017/prm.2021.17 doi: 10.1017/prm.2021.17
    [27] Y. Jiao, D. Zhou, Z. Hao, W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal., 10 (2016), 750–770. https://doi.org/10.1215/17358787-3649326 doi: 10.1215/17358787-3649326
    [28] Y. Jiao, Y. Zuo, D. Zhou, L. Wu, Variable Hardy-Lorentz spaces $H^{p(\cdot), q}(\mathbb{R}^n)$, Math. Nachr., 292 (2019), 309–349. https://doi.org/10.1002/mana.201700331 doi: 10.1002/mana.201700331
    [29] H. Kempka, J. Vybíral, Lorentz spaces with variable exponents, Math. Nachr., 287 (2014), 938–954. https://doi.org/10.1002/mana.201200278 doi: 10.1002/mana.201200278
    [30] M. Kikuchi, On some inequalities for martingale transforms in Banach function spaces, Acta Sci. Math., 80 (2014), 289–306. https://doi.org/10.14232/actasm-012-542-3 doi: 10.14232/actasm-012-542-3
    [31] M. Kikuchi, On martingale transform inequalities in certain quasi-Banach function spaces, Boll. Unione Mat. Ital., 12 (2019), 485–514. https://doi.org/10.1007/s40574-018-0184-y doi: 10.1007/s40574-018-0184-y
    [32] P. Liu, M. Wang, Burkholder-Gundy-Davis inequality in martingale Hardy spaces with variable exponent, Acta Math. Sci., 38 (2018), 1151–1162. https://doi.org/10.1016/S0252-9602(18)30805-1 doi: 10.1016/S0252-9602(18)30805-1
    [33] R. L. Long, Martingale spaces and inequalities, Beijing: Peking University Press, 1993.
    [34] J. Lu, F. Weisz, D. Zhou, Real interpolation of variable martingale Hardy spaces and BMO spaces, Banach J. Math. Anal., 17 (2023), 47. https://doi.org/10.1007/s43037-023-00270-5 doi: 10.1007/s43037-023-00270-5
    [35] E. Nakai, G. Sadasue, Maximal function on generalized martingale Lebesgue spaces with variable exponent, Statist. Probab. Lett., 83 (2013), 2168–2171. https://doi.org/10.1016/j.spl.2013.06.007 doi: 10.1016/j.spl.2013.06.007
    [36] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. https://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
    [37] M. Ružička, Electrorheological fluids: modeling and mathematical theory, Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104029
    [38] L. Tang, $L^{p(\cdot), \lambda(\cdot)}$ regularity for fully nonlinear elliptic equations, Nonlinear Anal. Theor., 149 (2017), 117–129. https://doi.org/10.1016/j.na.2016.10.016 doi: 10.1016/j.na.2016.10.016
    [39] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Berlin: Springer, 1994. https://doi.org/10.1007/BFb0073448
    [40] F. Weisz, Doob's and Burkholder-Davis-Gundy inequalities with variable exponent, Proc. Amer. Math. Soc., 149 (2021), 875–888. https://doi.org/10.1090/proc/15262 doi: 10.1090/proc/15262
    [41] L. Wu, D. Zhou, C. Zhuo, Y. Jiao, Riesz transform characterizations of variable Hardy-Lorentz spaces, Rev. Mat. Complut., 31 (2018), 747–780. https://doi.org/10.1007/s13163-018-0262-9 doi: 10.1007/s13163-018-0262-9
    [42] X. Yan, D. Yang, W. Yuan, C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822–2887. https://doi.org/10.1016/j.jfa.2016.07.006 doi: 10.1016/j.jfa.2016.07.006
    [43] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(576) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog