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1. Introduction

Variable exponent Lebesgue space Lp(·)(Rn), as an extension of the classical Lebesgue space Lp(Rn),
has attracted more and more attention due to its wide application in calculus of variations, fluid
dynamics, partial differential equations, and harmonic analysis; see, for instance, [1, 5, 6, 11, 15, 37,
38, 43]. The essential difficulty in the studying of this type of space is how to find a condition that
ensures the boundedness of the Hardy-Littlewood maximal operator. To this end, Diening [13, 14]
came up with a great idea, that is, imposing the log-Hölder continuity condition on variable exponents.
From then on, the research on Lebesgue spaces with variable exponents has made rapid progress. The
interested readers may consult [12,28,29,36,41,42] for more latest developments on variable Lebesgue
spaces.

The classical martingale Hardy space, as an indispensable part of martingale theory, has been
systematically investigated in monographs [17, 33, 39]. In recent years, martingale Hardy spaces with
variable exponents have achieved fruitful results along with the developments of variable Lebesgue
spaces mentioned above. Now, consider (Ω,F ,P) as a probability space and p(·) as a variable exponent
on Ω. Jiao et al. first studied variable martingale Hardy spaces Hp(·)(Ω) concerned with Lp(·)(Ω) in [27].
Due to the lack of metrics in abstract probability spaces, instead of the log-Hölder continuity condition,
they provided a new condition without metric characterization to describe Doob’s maximal inequality
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on Lp(·)(Ω). Hao [18] established atomic decompositions of predictable martingale Hardy spaces
Pp(·)(Ω). The Burkholder-Davis-Gundy inequality in Hp(·)(Ω) was considered by Liu and Wang [32]
as well as Weisz [40]. The definitions of relevant martingale spaces are given in §2.3. Also, we refer
the readers to [2, 23, 24, 26, 34, 35] for more results about martingale Hardy spaces in the context of
variable exponents.

The first rigorous research on martingale transforms is attributed to Burkholder [7]. Specially, the
author proved that the martingale transform Tv f of an L1(Ω)-bounded f converges a.e. on the set
{M(v) < ∞}, where M(v) denotes Doob’s maximal function of the adapted process v = (vn)n≥0; for the
definition of martingale transform Tv f , refer to §2.1. Several years later, Chao and Long [8, 9] derived
the boundedness of Tv from classical martingale Hardy space Hq(Ω) to Hr(Ω), where

v ∈ Vp(Ω) :=
{
v : ‖M(v)‖Lp(Ω) < ∞

}
and

1
r

=
1
p

+
1
q
.

Furthermore, they used these boundedness properties to characterize the predictable martingale Hardy
spaces via martingale transform Tv. Let X be a Banach function space (see [4]) over (Ω,F ,P) and wX
be the naturally defined weak space associated with X. Recently, Kikuchi [30] and [31], respectively,
provided necessary and sufficient conditions for X to have the following properties:

‖Tv f ‖X . ‖ f ‖X and ‖Tv f ‖wX . ‖ f ‖wX,

where f is a uniformly integrable martingale and M(v) is bounded by one. Very recently, using
extrapolation theory, Ho [22] also established the boundedness of martingale transforms on Banach
function spaces. In particular, under the assumption that the filtration (Fn)n≥0 is composed of atomic
sub-σ-algebras and p(·) satisfies 1 < p− < p+ < ∞ and condition (2.2) (see §2.3 below), the author
proved that

‖Tv f ‖Lp(·)(Ω) . ‖ f ‖Lp(·)(Ω)

holds for any f ∈ Lp(·)(Ω) and uniformly bounded v. The interested readers can look up literature [3,
10, 16, 19–21, 25] for more results about martingale transforms.

Following the above line of research, especially inspired by Chao and Long [8,9], we are committed
to investigating the boundedness of Burkholder’s martingale transforms in variable martingale Hardy
spaces Hp(·)(Ω). We also use martingale transforms to characterize predictable martingale Hardy spaces
with variable exponents. The main results of the present paper are stated in §3. It should be noted that
our results extend corresponding results in [8, 9].

At the end of this section, we make some conventions. In this paper, we always use the symbol N to
denote the natural number set. Throughout the present paper, C denotes the absolute positive constant
which may differ from line to line, while the positive constant depending only on p(·) is denoted by
Cp(·). Regardless of a ≤ Cb or a ≤ Cp(·)b, we abbreviate it as a . b. If a . b and b . a, we write a ≈ b.
For a measurable set A, its characteristic function is denoted by χA.

2. Preliminaries

In this section, some preliminary knowledge to be used later is provided.
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2.1. Martingales and martingale transforms

Let (Ω,F ,P) be a probability space with a filtration (Fn)n≥0, that is, (Fn)n≥0 is a sequence of non-
decreasing sub-σ-algebras of F satisfying F =

∨
n≥0 Fn. The conditional expectation of any integrable

function g with respect to Fn is denoted by E(g|Fn). An integrable sequence f = ( fn)n≥0, which is
adapted to (Fn)n≥0, is called a martingale, if E( fn+1|Fn) = fn for all n ∈ N. Denote the set of all
martingales relative to (Fn)n≥0 byM. For convenience, we always suppose that for any f ∈ M, f0 = 0.
The martingale difference sequence {d fn}n≥0 of f ∈ M is defined by d fn = fn − fn−1 (with convention
f−1 = 0).

Let f ∈ M and let v = (vn)n≥0 be a process adapted to the same filtration (Fn)n≥0. Define the
martingale transform Tv f = (Tv fn)n≥0 as

Tv f0 = 0 and Tv fn =

n∑
m=1

vm−1d fm, n ≥ 1.

It is obvious that Tv f ∈ M. Now, consider µ to be a stopping time with respect to (Fn)n≥0. Then, the
martingale f ∈ M stopped at µ, which is denoted by f µ = ( f µn )n≥0 = ( fµ∧n)n≥0, is a special martingale
transform with vn−1 = χ{µ≥n} (n ∈ N).

2.2. Variable exponent Lebesgue spaces Lp(·)(Ω)

Consider (Ω,F ,P) to be a probability space. The so-called variable exponent is a positive F -
measurable function p(·) defined on Ω. For convenience, denote

p−(G) := inf
x∈G

p(x), p+(G) := sup
x∈G

p(x),

where G is a measurable subset of Ω. If G = Ω, we further abbreviate p−(Ω) and p+(Ω) as p− and p+,
respectively. Denote by P(Ω) the set of all variable exponents p(·) satisfying 0 < p− ≤ p+ < ∞. Let
p(·) ∈ P(Ω) be such that p− ≥ 1. Define its conjugate exponent p′(·) point-wisely by the equation

1
p′(·)

= 1 −
1

p(·)
.

Given a variable exponent p(·), the variable Lebesgue space Lp(·)(Ω) consists of all F -measurable
functions f for which there exists some s > 0 such that ρp(·)( f /s) < ∞, where

ρp(·)( f ) :=
∫

Ω

(
| f (x)|

)p(x)dP.

It is well-known that the variable Lebesgue space Lp(·)(Ω) becomes a quasi-Banach space if we equip
it with the following quasi-norm:

‖ f ‖Lp(·)(Ω) := inf
{
s > 0 : ρp(·)( f /s) ≤ 1

}
.

Also, it is clear that the variable Lebesgue space Lp(·)(Ω) reduces to the classical Lebesgue space Lp(Ω)
once p(·) degenerates into the constant p.

At the end of this subsection, we collect two results that will be used in the sequel.
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Lemma 2.1 ( [11, Corollary 2.28]). Let p(·), q(·), r(·) ∈ P(Ω) be such that

1
r(x)

=
1

p(x)
+

1
q(x)

.

Then, for all f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω), we have f g ∈ Lr(·)(Ω) and

‖ f g‖Lr(·)(Ω) . ‖ f ‖Lp(·)(Ω)‖g‖Lq(·)(Ω).

Lemma 2.2 ( [11, Proposition 2.21 and Corollary 2.22]). Let p(·) ∈ P(Ω) and f ∈ Lp(·)(Ω).

1) If ‖ f ‖Lp(·)(Ω) > 0, then
ρp(·)( f /‖ f ‖Lp(·)(Ω)) = 1;

2) ‖ f ‖Lp(·)(Ω) < 1 (= 1, > 1) if, and only if, ρp(·)( f ) < 1 (= 1, > 1).

2.3. Martingale Hardy spaces with variable exponents

In this subsection, we recall some basic notation and useful results of variable martingale Hardy
spaces Hp(·)(Ω), which were first investigated by Jiao et al. [27]. A martingale f ∈ M is said to be an
Lp(·)(Ω)-martingale, if every fn is in Lp(·)(Ω). Also, we define

‖ f ‖Lp(·)(Ω) := sup
n∈N
‖ fn‖Lp(·)(Ω)

in this case. Furthermore, we say that f is a bounded Lp(·)(Ω)-martingale when ‖ f ‖Lp(·)(Ω) is finite, and
we also abbreviate it as f ∈ Lp(·)(Ω).

For f ∈ M, define

M( f ) := sup
n∈N
| fn|, S ( f ) :=

 ∞∑
n=1

|d fn|
2


1
2

and s( f ) :=

 ∞∑
n=1

E
(
|d fn|

2|Fn−1
)

1
2

,

where M( f ), S ( f ) and s( f ) are respectively referred to as the maximal function, the square function,
and the conditional square function of f . Moreover, we denote the set, which consists of nonnegative,
nondecreasing, and adapted function sequences λ = (λn)n≥0 with λ∞ = limn→∞ λn, as Γ. Given p(·) ∈
P(Ω), set

Γ[Pp(·)]( f ) :=
{
λ ∈ Γ : | fn| ≤ λn−1, λ∞ ∈ Lp(·)(Ω)

}
,

Γ[Qp(·)]( f ) :=
{
λ ∈ Γ : S n( f ) ≤ λn−1, λ∞ ∈ Lp(·)(Ω)

}
,

where

S n( f ) :=

 n∑
m=1

|d fm|
2


1
2

.

Now, the variable martingale Hardy spaces tied in with Lp(·)(Ω) are defined as:

H s
p(·)(Ω) :=

{
f ∈ M : ‖ f ‖Hs

p(·)(Ω) =
∥∥∥s( f )

∥∥∥
Lp(·)(Ω)

< ∞
}
;

HS
p(·)(Ω) :=

{
f ∈ M : ‖ f ‖HS

p(·)(Ω) =
∥∥∥S ( f )

∥∥∥
Lp(·)(Ω)

< ∞
}
;
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HM
p(·)(Ω) :=

{
f ∈ M : ‖ f ‖HM

p(·)(Ω) =
∥∥∥M( f )

∥∥∥
Lp(·)(Ω)

< ∞
}
;

Pp(·)(Ω) :=
{
f ∈ M : ‖ f ‖Pp(·)(Ω) = inf

λ∈Γ[Pp(·)]( f )
‖λ∞‖Lp(·)(Ω) < ∞

}
;

Qp(·)(Ω) :=
{
f ∈ M : ‖ f ‖Qp(·)(Ω) = inf

λ∈Γ[Qp(·)]( f )
‖λ∞‖Lp(·)(Ω) < ∞

}
.

Obviously, these variable martingale Hardy spaces Hp(·)(Ω) go back to classical martingale Hardy
spaces Hp(Ω), when p(·) = p is a constant (see [39]).

Different from Rn, the abstract probability space (Ω,F ,P) lacks metrics. In order to obtain
Doob’s maximal inequality on Lp(·)(Ω), Jiao et al. [27] imposed the following condition without metric
characterization on variable exponent p(·), that is, for all B ∈ F ,

P(B)p−(B)−p+(B) ≤ Cp(·), (2.1)

where Cp(·) ≥ 1 is a constant depending only on p(·). Under this condition, the authors also
characterized the dual spaces of H s

p(·)(Ω) as variable Lipschitz spaces Λ2(1/p(·)− 1)(Ω) defined below.

Definition 2.3 ( [27, Definition 5.5]). Let α(·) ∈ P(Ω) and let 1 ≤ r < ∞. Define Λr(α(·))(Ω) to be the
space of all functions f ∈ Lr(Ω) such that

‖ f ‖Λr(α(·))(Ω) := sup
τ∈T

‖ f − f τ‖Lr(Ω)

‖χ{τ<∞}‖L 1
α(·)

(Ω)‖χ{τ<∞}‖Lr(Ω)
< ∞.

Remark 2.4. If α(·) = α is a constant, then the variable Lipschitz spaces Λr(α(·))(Ω) are just the
classical Lipschitz spaces Λr(α)(Ω) defined by Weisz in [39].

Lemma 2.5 ( [27, Theorem 5.6]). Let p(·) ∈ P(Ω) satisfy (2.1). If 0 < p− ≤ p+ ≤ 1, then

(H s
p(·)(Ω))∗ = Λ2(α(·))(Ω),

where α(x) = 1/p(x) − 1.

It should be noted that, to better describe Doob’s maximal inequality on variable martingale spaces
Lp(·)(Ω), Jiao et al. [24, 27] and Weisz [40] also supposed that the filtration (Fn)n≥0 is composed of
atomic sub-σ-algebras. That is, every Fn is generated by, at most, countable atoms. Here, we say
that the Fn-measurable set B is an Fn-atom if the measure of B is positive, and if for an arbitrary Fn-
measurable subset A of B with P(A) < P(B), it implies P(A) = 0. Denote A =

⋃
n≥0A(Fn), where

A(Fn) is the collection of all Fn-atoms. With this assumption to (Fn)n≥0, in [24, 40], the variable
exponent p(·) only needs to satisfy condition (2.1) for all atoms, namely,

P(A)p−(A)−p+(A) ≤ Cp(·), ∀A ∈ A. (2.2)

Lemma 2.6 ( [24, Theorem 4.5]). Suppose that (Fn)n≥0 consists of atomic sub-σ-algebras and p(·) ∈
P(Ω) satisfies (2.2). Then,

1) ‖ f ‖HM
p(·)(Ω) . ‖ f ‖Hs

p(·)(Ω), if 0 < p− ≤ p+ < 2;

2) ‖ f ‖HM
p(·)(Ω) . ‖ f ‖Pp(·)(Ω), ‖ f ‖HS

p(·)(Ω) . ‖ f ‖Qp(·)(Ω);
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3) ‖ f ‖Hs
p(·)(Ω) . ‖ f ‖Pp(·)(Ω);

4) ‖ f ‖Pp(·)(Ω) ≈ ‖ f ‖Qp(·)(Ω).

Lemma 2.7 ( [40, Theorem 3]). Suppose that (Fn)n≥0 consists of atomic sub-σ-algebras and p(·) ∈
P(Ω) satisfies (2.2). If 1 ≤ p− ≤ p+ < ∞, then

‖ f ‖HM
p(·)(Ω) ≈ ‖ f ‖HS

p(·)(Ω).

Remark 2.8. To be precise, Weisz [40] proposed the following new condition on p(·):

P(A)1/p−(A)−1/p+(A) ≥ Kp(·), ∀A ∈ A, (2.3)

where 0 < Kp(·) < 1. However, it is easy to see that (2.3) is equivalent to (2.2) when p(·) ∈ P(Ω).

3. Martingale transforms in variable martingale Hardy spaces

In this section, we mainly establish the boundedness of martingale transforms in Hp(·)(Ω). At the
end of this section, in some sense, we also provide characterizations of predictable martingale Hardy
spaces via martingale transforms.

Let T be an operator from martingale space X to another martingale space Y . If T is bounded from
X to Y , i.e., there exists a constant C > 0 such that for all f ∈ X,

‖T f ‖Y ≤ C‖ f ‖X,

then we say that T is of type (X,Y). For p(·) ∈ P(Ω), denote by Vp(·)(Ω) the class of all adapted
sequences v = (vn)n≥0 such that ‖M(v)‖Lp(·)(Ω) < ∞, namely,

Vp(·)(Ω) :=
{
v : ‖v‖Vp(·)(Ω) := ‖M(v)‖Lp(·)(Ω) < ∞

}
.

In [9, Theorem 1], Chao and Long proved that Tv is bounded from Xq(Ω) to Xr(Ω) if X ∈ {H s,HS },
where 0 < p, q < ∞, v ∈ Vp(Ω), and 1/r = 1/p + 1/q. Now, we extend their results to variable
martingale setting.

Theorem 3.1. Let p(·), q(·) ∈ P(Ω) and let 1/r(x) = 1/p(x) + 1/q(x). If v ∈ Vp(·)(Ω), then Tv is of types
(H s

q(·)(Ω),H s
r(·)(Ω)) and (HS

q(·)(Ω),HS
r(·)(Ω)) with ‖Tv‖ . ‖v‖Vp(·)(Ω).

Proof. From the definitions of operators s and S , it is easy to find the following point-wise estimations

s(Tv f ) ≤ M(v)s( f )

and
S (Tv f ) ≤ M(v)S ( f ).

Combining these and Lemma 2.1, we obtain the desired results. �

By a duality argument, we further obtain the following theorem.

Theorem 3.2. Let p(·), α(·) ∈ P(Ω) satisfy (2.1) and 1/α− < p−. If v ∈ Vp(·)(Ω), then Tv is of type
(Λ2(α(·))(Ω),Λ2(β(·))(Ω)), where β(x) = α(x) − 1/p(x).
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Proof. Define two new variable exponents r(·) and q(·), respectively, by equations

r(x) =
1

1 + α(x)
and

1
p(x)

+
1

q(x)
= 1 + α(x).

Then, α(x) = 1/r(x) − 1, β(x) = 1/q(x) − 1 and 1/r(x) = 1/p(x) + 1/q(x). Since 1/α− < p−, we have
q(·) ∈ P(Ω).

For any given g ∈ Λ2(α(·))(Ω), set

LTvg( f ) := E[ f Tvg], ∀ f ∈ L2(Ω).

Note that Tv is self-adjoint, that is,

E[ f Tvg] =

∞∑
n=1

E[d fnvn−1dgn] = E[gTv f ].

From Lemma 2.5 and Theorem 3.1, it follows that

|LTvg( f )| = |E[gTv f ]| . ‖g‖Λ2(α(·))(Ω)‖Tv f ‖Hs
r(·)(Ω) . ‖v‖Vp(·)(Ω)‖g‖Λ2(α(·))(Ω)‖ f ‖Hs

q(·)(Ω).

Note also that 0 < q− ≤ q+ ≤ 1. It is easy to see from the proof of [27, Theorem 4.2] that L2(Ω) is
dense in H s

q(·)(Ω). Therefore, Tvg ∈ (H s
q(·)(Ω))∗ = Λ2(β(·))(Ω) and

‖Tvg‖Λ2(β(·))(Ω) . ‖v‖Vp(·)(Ω)‖g‖Λ2(α(·))(Ω).

The proof is complete. �

Remark 3.3. Let p(·) = p, α(·) = α be such that 0 < 1/α < p < ∞, and let v ∈ Vp(Ω). Then, Tv

is of type (Λ2(α)(Ω),Λ2(β)(Ω)), where β = α − 1/p. This result was first proved by Chao and Long
in [9, Theorem 2].

Applying Theorem 3.1 and martingale inequalities in Hp(·)(Ω), we further prove the boundedness of
martingale transform Tv in variable martingale Hardy spaces consisting of predictable martingales.

Theorem 3.4. Suppose that (Fn)n≥0 is composed of atomic sub-σ-algebras. If p(·), q(·) ∈ P(Ω)
satisfy (2.2), v ∈ Vp(·)(Ω), and 1/r(x) = 1/p(x) + 1/q(x), then Tv is of types (Pq(·)(Ω), Pr(·)(Ω)) and
(Qq(·)(Ω),Qr(·)(Ω)) with ‖Tv‖ . ‖v‖Vp(·)(Ω).

Proof. First, we assume that f ∈ Pq(·)(Ω). By the definition of ‖ f ‖Pq(·)(Ω), there exists a sequence
λ = (λn)n≥0 ∈ Γ[Pq(·)]( f ) satisfying

| fn| ≤ λn−1 and ‖λ∞‖Lq(·)(Ω) ≤ 2‖ f ‖Pq(·)(Ω).

Thus, |d fn| ≤ | fn| + | fn−1| ≤ 2λn−1 and

|d(Tv f )n| = |vn−1d fn| ≤ 2Mn−1(v)λn−1 =: ρn−1,

where Mn−1(v) = sup0≤m≤n−1 |vm|. From Lemma 2.6, as well as Theorem 3.1, we find that

‖Tv f ‖HM
r(·)(Ω) . ‖Tv f ‖Hs

r(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖Hs
q(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖Pq(·)(Ω)

AIMS Mathematics Volume 9, Issue 8, 22041–22056.
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is valid for 0 < r− ≤ r+ < 2. On the other hand, for 1 ≤ r− ≤ r+ < ∞, combining Lemma 2.7 with
Theorem 3.1 and Lemma 2.6, we obtain

‖Tv f ‖HM
r(·)(Ω) ≈ ‖Tv f ‖HS

r(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖HS
q(·)(Ω)

. ‖v‖Vp(·)(Ω)‖ f ‖Qq(·)(Ω) ≈ ‖v‖Vp(·)(Ω)‖ f ‖Pq(·)(Ω).

Hence, for all r(·) ∈ P(Ω),
‖Tv f ‖HM

r(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖Pq(·)(Ω).

Note that
|Tv fn| ≤ |Tv fn−1| + |d(Tv f )n| ≤ Mn−1(Tv f ) + ρn−1,

where Mn−1(Tv f ) = sup0≤m≤n−1 |Tv fm| and

‖ρ∞‖Lr(·)(Ω) . ‖M(v)‖Lp(·)(Ω)‖λ∞‖Lq(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖Pq(·)(Ω).

Consequently,
‖Tv f ‖Pr(·)(Ω) . ‖Tv f ‖HM

r(·)(Ω) + ‖ρ∞‖Lr(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖Pq(·)(Ω).

Taking a similar argument for Qq(·)(Ω), we complete the proof. �

Further on, let us consider the boundedness of Tv on HM
p(·)(Ω). Our method is the following Davis’s

decomposition for HM
p(·)(Ω), which was given by Weisz [40] without proof. For the convenience of

readers, we provide a detailed proof here.

Lemma 3.5. Assume that (Fn)n≥0 is composed of atomic sub-σ-algebras. Let p(·) ∈ P(Ω) satisfy (2.2)
and 1 ≤ p− ≤ p+ < ∞. If f ∈ HM

p(·)(Ω), then there exist h ∈ Gp(·)(Ω) and g ∈ Pp(·)(Ω) such that f = g + h
with

‖h‖Gp(·)(Ω) . ‖ f ‖HM
p(·)(Ω) and ‖g‖Pp(·)(Ω) . ‖ f ‖HM

p(·)(Ω),

where we say that h ∈ Gp(·)(Ω), if

‖h‖Gp(·)(Ω) :=

∥∥∥∥∥∥∥
∞∑

n=1

|dhn|

∥∥∥∥∥∥∥
Lp(·)(Ω)

< ∞.

Proof. Let f ∈ HM
p(·)(Ω). Take a nonnegative, nondecreasing, and adapted function sequence λ =

(λn)n≥0 with λ∞ ∈ Lp(·)(Ω) and Mn( f ) ≤ λn (∀n ∈ N). Now, we consider the following two sequences:

h0 = 0, hn :=
n∑

i=1

[
d fiχ{λi>2λi−1} − E(d fiχ{λi>2λi−1}|Fi−1)

]
, n ≥ 1

and

g0 = 0, gn :=
n∑

i=1

[
d fiχ{λi≤2λi−1} − E(d fiχ{λi≤2λi−1}|Fi−1)

]
, n ≥ 1.

It is obvious that h = (hn)n≥0 and g = (gn)n≥0 are both martingales such that f = h + g. Moreover,
λi < 2(λi − λi−1) on the set {λi > 2λi−1} and, thus,

|d fi|χ{λi>2λi−1} ≤ 2Mi( f )χ{λi>2λi−1} ≤ 2λiχ{λi>2λi−1} ≤ 4(λi − λi−1).
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Therefore,

n∑
i=1

|dhi| ≤

n∑
i=1

|d fi|χ{λi>2λi−1} +

n∑
i=1

E
(
|d fi|χ{λi>2λi−1}

∣∣∣Fi−1)

≤ 4λn + 4
n∑

i=1

E(λi − λi−1|Fi−1).

From this and [40, Theorem 2], we conclude that

‖h‖Gp(·)(Ω) . ‖λ∞‖Lp(·)(Ω) +

∥∥∥∥∥∥∥
∞∑

i=1

(λi − λi−1)

∥∥∥∥∥∥∥
Lp(·)(Ω)

≈ ‖λ∞‖Lp(·)(Ω).

Furthermore, it is easy to see that

|d fi|χ{λi≤2λi−1} ≤ 2λiχ{λi≤2λi−1} ≤ 4λi−1,

which implies that
|dgn| ≤ 8λn−1.

Consequently,

Mn(g) ≤ Mn−1( f ) + Mn−1(h) + |dgn|

≤ 13λn−1 + 4
n−1∑
i=1

E(λi − λi−1|Fi−1).

Combining this and [40, Theorem 2], we deduce that

‖g‖Pp(·)(Ω) . ‖λ∞‖Lp(·)(Ω).

Finally, we just need to take λn = Mn( f ). The proof is complete. �

Theorem 3.6. Suppose that (Fn)n≥0 is composed of atomic sub-σ-algebras. If p(·), q(·) ∈ P(Ω)
satisfy (2.2), 1 ≤ q− ≤ q+ < ∞, v ∈ Vp(·)(Ω), and 1/r(x) = 1/p(x) + 1/q(x), then Tv is of type
(HM

q(·)(Ω),HM
r(·)(Ω)) with ‖Tv‖ . ‖v‖Vp(·)(Ω).

Proof. Let f ∈ HM
q(·)(Ω). By Lemma 3.5, we can find g ∈ Pq(·)(Ω) and h ∈ Gq(·)(Ω) such that f = g + h

and
‖g‖Pq(·)(Ω) . ‖ f ‖HM

q(·)(Ω), ‖h‖Gq(·)(Ω) . ‖ f ‖HM
q(·)(Ω).

Hence,
‖Tv f ‖HM

r(·)(Ω) . ‖Tvh‖HM
r(·)(Ω) + ‖Tvg‖HM

r(·)(Ω) ≤ ‖Tvh‖Gr(·)(Ω) + ‖Tvg‖Pr(·)(Ω),

where the last inequality is due to the following fact and Lemma 2.6:

M(Tvh) ≤
∞∑

n=1

|d(Tvh)n|.
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Now, we claim that
‖Tvh‖Gr(·)(Ω) . ‖v‖Vp(·)(Ω)‖h‖Gq(·)(Ω). (3.1)

In fact, we only need to note that |d(Tvh)n| ≤ M(v)|dhn|, then Lemma 2.1 yields (3.1). According to
Theorem 3.4 and (3.1), we conclude that

‖Tv f ‖HM
r(·)(Ω) . ‖v‖Vp(·)(Ω)

(
‖h‖Gq(·)(Ω) + ‖g‖Pq(·)(Ω)

)
.

Consequently,
‖Tv f ‖HM

r(·)(Ω) . ‖v‖Vp(·)(Ω)‖ f ‖HM
q(·)(Ω).

This completes the proof. �

Remark 3.7. If we take all the variable exponents in Theorem 3.6 as constant exponents, then we
obtain [33, Theorem 5.2.6] in the framework of atomic σ-algebras.

In [17, 33, 39], authors proved that the elements of Xr(Ω) are martingale transforms of the ones in
Xq(Ω), where X ∈ {H s, P,Q} and r < q < ∞. Inspired by this, we study the same problem in the context
of variable exponents. To our surprise, we obtain the same result without the assumptions of atomic
σ-algebras and condition (2.2), which are important for Theorems 3.4 and 3.6. Instead, we only need
r(·) and q(·) to satisfy certain measurability. Our results are stated as follows:

Theorem 3.8. Let q(·), r(·) ∈ P(Ω) be such that r+ < q− and 1/r(x) = 1/p(x) + 1/q(x). If r(·) and q(·)
are both F0-measurable, then for any f ∈ Xr(·)(Ω), there exist a martingale g ∈ Xq(·)(Ω) and a sequence
v ∈ Vp(·)(Ω) such that f = Tvg with

‖v‖Vp(·)(Ω) ≤ max
{
‖ f ‖r+/p−

Xr(·)(Ω), ‖ f ‖
r−/p+

Xr(·)(Ω)

}
and

‖g‖Xq(·)(Ω) ≤

(
q+

r−

)1/2

max
{
‖ f ‖r+/q−

Xr(·)(Ω), ‖ f ‖
r−/q+

Xr(·)(Ω)

}
,

where X ∈ {H s, P,Q}.

Remark 3.9. Indeed, such measurability assumption to variable exponents was also considered by
Aoyama [2] to characterize Doob’s maximal inequality on Lp(·)(Ω). According to the following proof
of Theorem 3.8, one can see that the measurability assumption of r(·) and q(·) is used to ensure that v
is an adapted process with respect to (Fn)n≥0, and so Tv is a martingale transform.

Before proving Theorem 3.8, we first state and prove the following simple but useful result.

Lemma 3.10. Let p(·), r(·) ∈ P(Ω). If f ∈ Lr(·)(Ω), then | f (·)|r(·)/p(·) ∈ Lp(·)(Ω) and∥∥∥| f (·)|r(·)/p(·)
∥∥∥

Lp(·)(Ω)
≤ max

{
‖ f ‖r+/p−

Lr(·)(Ω), ‖ f ‖
r−/p+

Lr(·)(Ω)

}
.

Proof. If ‖ f ‖Lr(·)(Ω) = 0, then f = 0 a.e., so there is nothing to prove. Therefore, we may assume that
‖ f ‖Lr(·)(Ω) > 0. To begin, we observe that

ρp(·)
(
| f (·)|r(·)/p(·)) =

∫
Ω

| f (x)|r(x)dx = ρr(·)( f ).
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If ‖ f ‖Lr(·)(Ω) = 1, by Lemma 2.2, we have
∥∥∥| f (·)|r(·)/p(·)

∥∥∥
Lp(·)(Ω)

= 1. If ‖ f ‖Lr(·)(Ω) = a > 1, denote λ = ar+/p− .
Then,

ρp(·)
(
| f (·)|r(·)/p(·)/λ

)
=

∫
Ω

| f (x)|r(x)λ−p(x)dx

=

∫
Ω

(
| f (x)|

a

)r(x) ar(x)

λp(x) dx

≤
ar+

λp−
ρr(·)( f /a) = 1,

where the last equality is because of Lemma 2.2. This implies that∥∥∥| f (·)|r(·)/p(·)
∥∥∥

Lp(·)(Ω)
≤ ‖ f ‖r+/p−

Lr(·)(Ω).

If ‖ f ‖Lr(·)(Ω) = b < 1, denote µ = br−/p+ . Similarly, we can deduce that

ρp(·)
(
| f (·)|r(·)/p(·)/µ

)
≤ 1,

that is, ∥∥∥| f (·)|r(·)/p(·)
∥∥∥

Lp(·)(Ω)
≤ ‖ f ‖r−/p+

Lr(·)(Ω).

�

Applying the lemma above, we can now prove Theorem 3.8.

Proof of Theorem 3.8. We shall prove this theorem in three cases: X = H s, X = Q, and X = P.
(i) Case 1: X = H s. Since r+ < q−, it is easy to see that p(·) ∈ P(Ω). Given f ∈ H s

r(·)(Ω), set

vn−1(x) := [sn( f )(x)]r(x)/p(x) and gn(x) :=
n∑

m=1

[sm( f )(x)]−r(x)/p(x)d fm(x),

where sn( f )(x) :=
(∑n

m=1 E(|d fm|
2|Fm−1)(x)

)1/2
. Since r(·) and q(·) are F0-measurable, v = (vn)n≥0 is an

adapted process and g = (gn)n≥0 is a martingale such that f = Tvg. Moreover, by Lemma 3.10, we get

‖v‖Vp(·)(Ω) =
∥∥∥[s( f )(·)]r(·)/p(·)

∥∥∥
Lp(·)(Ω)

≤ max
{
‖ f ‖r+/p−

Hs
r(·)(Ω), ‖ f ‖

r−/p+

Hs
r(·)(Ω)

}
.

Note that

s2
n(g)(x) =

n∑
m=1

[s2
m( f )(x)]−r(x)/p(x)E

(
|d fm|

2
∣∣∣Fm−1

)
(x).

We further deduce that

s2
n(g)(x) =

n∑
m=1

s2
m( f )(x) − s2

m−1( f )(x)
[s2

m( f )(x)]r(x)/p(x)

≤

∫ s2
n( f )(x)

0

dα
αr(x)/p(x) =

[s2
n( f )(x)]1−r(x)/p(x)

1 − r(x)/p(x)
=

q(x)
r(x)

[s2
n( f )(x)]r(x)/q(x),
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which means that

s(g)(x) ≤
(
q+

r−

)1/2

[s( f )(x)]r(x)/q(x).

By Lemma 3.10, we obtain

‖g‖Hs
q(·)(Ω) ≤

(
q+

r−

)1/2 ∥∥∥[s( f )(·)]r(·)/q(·)
∥∥∥

Lq(·)(Ω)

≤

(
q+

r−

)1/2

max
{
‖ f ‖r+/q−

Hs
r(·)(Ω), ‖ f ‖

r−/q+

Hs
r(·)(Ω)

}
.

(ii) Case 2: X = Q. Let f ∈ Qr(·)(Ω). Consider λ = (λn)n≥0 to be the least majorant of (S n( f ))n≥0

with convention S 0( f ) = 0. Set

vn(x) := λn(x)r(x)/p(x) and gn(x) :=
n∑

m=1

λm−1(x)−r(x)/p(x)d fm(x).

Then, f = Tvg, and Lemma 3.10 gives that

‖v‖Vp(·)(Ω) =
∥∥∥λ∞(·)r(·)/p(·)

∥∥∥
Lp(·)(Ω)

≤ max
{
‖λ∞‖

r+/p−
Lr(·)(Ω), ‖λ∞‖

r−/p+

Lr(·)(Ω)

}
= max

{
‖ f ‖r+/p−

Qr(·)(Ω), ‖ f ‖
r−/p+

Qr(·)(Ω)

}
.

Furthermore, applying twice Abel rearrangement, we have

S 2
n(g)(x) =

n∑
m=1

λm−1(x)−2r(x)/p(x)|d fm(x)|2

=

n∑
m=1

S 2
m( f )(x) − S 2

m−1( f )(x)
(λ2

m−1(x))r(x)/p(x)

=
S 2

n( f )(x)
(λ2

n−1(x))r(x)/p(x)
+

n−1∑
m=1

S 2
m( f )(x)

[
1

(λ2
m−1(x))r(x)/p(x)

−
1

(λ2
m(x))r(x)/p(x)

]

≤
λ2

n−1(x)
(λ2

n−1(x))r(x)/p(x)
+

n−1∑
m=1

λ2
m−1(x)

[
1

(λ2
m−1(x))r(x)/p(x)

−
1

(λ2
m(x))r(x)/p(x)

]
=

n∑
m=1

λ2
m−1(x) − λ2

m−2(x)
(λ2

m−1(x))r(x)/p(x)
(with convention λ−1(x) = 0)

≤

∫ λ2
n−1(x)

0

dα
αr(x)/p(x) =

(λ2
n−1(x))1−r(x)/p(x)

1 − r(x)/p(x)
≤

q(x)
r(x)

(λ2
n−1(x))r(x)/q(x).

Hence,

S n(g)(x) ≤
(
q+

r−

)1/2

(λn−1(x))r(x)/q(x).

Consequently,

‖g‖Qq(·)(Ω) ≤

(
q+

r−

)1/2 ∥∥∥(λ∞(·))r(·)/q(·)
∥∥∥

Lq(·)(Ω)
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=

(
q+

r−

)1/2

max
{
‖ f ‖r+/q−

Qr(·)(Ω), ‖ f ‖
r−/q+

Qr(·)(Ω)

}
.

(iii) Case 3: X = P. In this case, we can take a similar argument as Case 2. �
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