Citation: Rukhsar Ikram, Amir Khan, Aeshah A. Raezah. Impact of supervise neural network on a stochastic epidemic model with Levy noise[J]. AIMS Mathematics, 2024, 9(8): 21273-21293. doi: 10.3934/math.20241033
[1] | P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach, Physica A, 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243 doi: 10.1016/j.physa.2020.124243 |
[2] | J. Amador, D. Armesto, A. Gómez-Corral, Extreme values in SIR epidemic models with two strains and cross-immunity, Math. Biosci. Eng., 16 (2019), 1992–2022. https://doi.org/10.3934/mbe.2019098 doi: 10.3934/mbe.2019098 |
[3] | K. Okuwa, H. Inaba, T. Kuniya, Mathematical analysis for an age-structured SIRS epidemic model, Math. Biosci. Eng., 16 (2019), 6071–6102. https://doi.org/10.3934/mbe.2019304 doi: 10.3934/mbe.2019304 |
[4] | S. Kim, J. H. Byun, I. H. Jung, Global stability of an SEIR epidemic model where empirical distribution of incubation period is approximated by Coxian distribution, Adv. Differ. Equ., 2019 (2019), 469. https://doi.org/10.1186/s13662-019-2405-9 doi: 10.1186/s13662-019-2405-9 |
[5] | H. Qi, L. Liu, X. Meng, Dynamics of a nonautonomous stochastic SIS epidemic model with double epidemic hypothesis, Complexity, 2017 (2017), 4861391. https://doi.org/10.1155/2017/4861391 doi: 10.1155/2017/4861391 |
[6] | Q. Liu, D. Jiang, Dynamical behavior of a stochastic multigroup SIR epidemic model, Physica A, 526 (2019), 120975. https://doi.org/10.1016/j.physa.2019.04.211 doi: 10.1016/j.physa.2019.04.211 |
[7] | Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8–15. https://doi.org/10.1016/j.aml.2017.04.021 doi: 10.1016/j.aml.2017.04.021 |
[8] | Z. Liu, C. Tian, A weighted networked SIRS epidemic model, J. Differ. Equations, 269 (2020), 10995–11019. https://doi.org/10.1016/j.jde.2020.07.038 doi: 10.1016/j.jde.2020.07.038 |
[9] | C. M. Kribs-Zaleta, J. X. Velasco-Hernández, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183–201. https://doi.org/10.1016/S0025-5564(00)00003-1 doi: 10.1016/S0025-5564(00)00003-1 |
[10] | X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor. Biol., 253 (2008), 1–11. https://doi.org/10.1016/j.jtbi.2007.10.014 doi: 10.1016/j.jtbi.2007.10.014 |
[11] | S. M. A. Rahman, X. Zou, Modelling the impact of vaccination on infectious diseases dynamics, J. Biol. Dyn., 9 (2015), 307–320. https://doi.org/10.1080/17513758.2014.986545 doi: 10.1080/17513758.2014.986545 |
[12] | W. Halota, M. Muszyska, M. Pawowska, Hepatitis B virus serologic markers and anti-hepatitis B vaccination in patients with diabetes, Med. Sci. Monit., 8 (2002), 516–519. |
[13] | X. Duan, S. Yuan, X. Li, Global stability of an SVR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528–540. https://doi.org/10.1016/j.amc.2013.10.073 doi: 10.1016/j.amc.2013.10.073 |
[14] | P. Raúl, C. Vargas-De-León, P. Miramontes, Global stability results in a SVIR epidemic model with immunity loss rate depending on the vaccine-age, Abstr. Appl. Anal., 2015 (2015), 341854. http://doi.org/10.1155/2015/341854 doi: 10.1155/2015/341854 |
[15] | Y. Geng, J. Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, Math. Method. Appl. Sci., 40 (2017), 4917–4927. https://doi.org/10.1002/mma.4357 doi: 10.1002/mma.4357 |
[16] | W. Li, Y. Ding, Stability and branching analysis of a class of time-delay SVIR model with saturation incidence, Journal of Lanzhou University of Arts and Science (Natural Science Edition), 32 (2018), 1–6. |
[17] | R. Zhang, S. Liu, Traveling waves for SVIR epidemic model with nonlocal dispersal, Math. Biosci. Eng., 16 (2019), 1654–1682. https://doi.org/10.3934/mbe.2019079 doi: 10.3934/mbe.2019079 |
[18] | S. Liao, W. Yang, A SVIR optimal control model with vaccination, (Chinese), Journal of Southwest University (Natural Science), 37 (2015), 72–78. https://doi.org/10.13718/j.cnki.xdzk.2015.01.011 doi: 10.13718/j.cnki.xdzk.2015.01.011 |
[19] | Z. Wang, R. Xu, Global dynamics of an SVIR epidemiological model with infection age and nonlinear incidence, J. Biol. Syst., 25 (2017), 419–440. https://doi.org/10.1142/S0218339017500206 doi: 10.1142/S0218339017500206 |
[20] | T. Khan, A. Khan, G. Zaman, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos Soliton. Fract., 108 (2018), 123–128. https://doi.org/10.1016/j.chaos.2018.01.036 doi: 10.1016/j.chaos.2018.01.036 |
[21] | M. Song, W. Zuo, D. Jiang, T. Hayat, Stationary distribution and ergodicity of a stochastic cholera model with multiple pathways of transmission, J. Frank. Inst., 357 (2020), 10773–10798. https://doi.org/10.1016/j.jfranklin.2020.04.061 doi: 10.1016/j.jfranklin.2020.04.061 |
[22] | Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage, Chaos Soliton. Fract., 139 (2020), 110013. https://doi.org/10.1016/j.chaos.2020.110013 doi: 10.1016/j.chaos.2020.110013 |
[23] | A. Lahrouz, A. Settati, A. Akharif, Effects of stochastic perturbation on the SIS epidemic system, J. Math. Biol., 74 (2017), 469–498. https://doi.org/10.1007/s00285-016-1033-1 doi: 10.1007/s00285-016-1033-1 |
[24] | Z. Cao, W. Feng, X. Wen, L. Zu, M. Cheng, Dynamics of a stochastic SIQR epidemic model with standard incidence, Physica A, 527 (2019), 121180. https://doi.org/10.1016/j.physa.2019.121180 doi: 10.1016/j.physa.2019.121180 |
[25] | Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003 |
[26] | X.-B. Zhang, X.-H. Zhang, The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size, Appl. Math. Model., 91 (2021), 749–767. https://doi.org/10.1016/j.apm.2020.09.050 doi: 10.1016/j.apm.2020.09.050 |
[27] | S. Wang, G. Hu, T. Wei, L. Wang, Permanence of hybrid competitive Lotka-Volterra system with Lévy noise, Physica A, 540 (2020), 123116. https://doi.org/10.1016/j.physa.2019.123116 doi: 10.1016/j.physa.2019.123116 |
[28] | A. El Koufi, A. Bennar, N. Yousfi, Dynamics behaviors of a hybrid switching epidemic model with levy noise, Appl. Math. Inform. Sci., 15 (2021), 131–142. http://dx.doi.org/10.18576/amis/150204 doi: 10.18576/amis/150204 |
[29] | Y. Zhou, S. Yuan, D. Zhao, Threshold behavior of a stochastic SIS model with Levy jumps, Appl. Math. Comput., 275 (2016), 255–267. https://doi.org/10.1016/j.amc.2015.11.077 doi: 10.1016/j.amc.2015.11.077 |
[30] | Y. Liu, Y. Zhang, Q. Wang, A stochastic SIR epidemic model with Lévy jump and media coverage, Adv. Differ. Equ., 2020 (2020), 70. https://doi.org/10.1186/s13662-020-2521-6 doi: 10.1186/s13662-020-2521-6 |
[31] | J. Wu, Dynamics of a two-predator one-prey stochastic delay model with Lévy noise, Physica A, 539 (2020), 122910. https://doi.org/10.1016/j.physa.2019.122910 doi: 10.1016/j.physa.2019.122910 |
[32] | M. El Fatini, I. Sekkak, Lévy noise impact on a stochastic delayed epidemic model with Crowly-Martin incidence and crowding effect, Physica A, 541 (2020), 123315. https://doi.org/10.1016/j.physa.2019.123315 doi: 10.1016/j.physa.2019.123315 |
[33] | A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc |
[34] | Y. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. https://doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002 |