
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(8): 21273–21293.
DOI:10.3934/math.20241033
Received: 20 March 2024
Revised: 03 June 2024
Accepted: 12 June 2024
Published: 02 July 2024

Research article

Impact of supervise neural network on a stochastic epidemic model with
Levy noise

Rukhsar Ikram1,∗, Amir Khan1 and Aeshah A. Raezah2

1 Department of Mathematics & Statistics, University of Swat, KPK, Pakistan
2 Department of Mathematics, Faculty of Science, King Khalid University, Abha 62529, Saudi

Arabia

* Correspondence: Email: ikramrukhsar@gmail.com.

Abstract: This paper primarily focused on analyzing a stochastic SVIR epidemic model that
incorporates Levy noises. The population may be divided into four distinct compartments: vulnerable
class (S), vaccinated individuals (V), infected individuals (I), and recovered individuals (R). To
achieve this, we chose existing and unique techniques as the most feasible solution. In the nexus, the
stochastic model was theoretically analyzed using a suitable Lyapunov function. This analysis broadly
covered the existence and uniqueness of the non-negative solution, as well as the dynamic properties
related to both the disease-free equilibrium and the endemic equilibrium. In order to eradicate diseases,
a stochastic threshold value denoted as “R0” was used to determine if they may be eradicated. If
R0 < 1, it means that the illnesses have the potential to become extinct. Moreover, we provided
numerical performance results of the proposed model using the artificial neural networks technique
combined with the Bayesian regularization method. We firmly believe that this study will establish
a solid theoretical foundation for comprehending the spread of an epidemic, the implementation of
effective control strategies, and addressing real-world issues across various academic disciplines.
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1. Introduction

An epidemic is a significant disease caused by various pathogens that pose a threat to human health.
It can be spread from person to animal, animal to animal, or person to person. Human survival and
development have always been challenged by infectious diseases. Humans have been engaged in a
long battle against such diseases.

For instance, in 1988, Sungai Nipah, a village in Malaysia, experienced an outbreak of the Nipah
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virus (Niv) [1]. The continued emergence of new major infectious diseases in the new century (such
as SARS in 2003, A/H1H1 flu in 2009 and MERS in 2012), and the epidemic of the novel coronavirus
(COVID-19) have had a tremendous influence on the normal social life and people’s health. As a
result, the study of how infectious illnesses are transmitted has always been a key area of research in
academia.

For a significant duration of time, “chamber” models have been the primary mathematical systems
used in the theory of epidemics. These systems are still widely used and constantly being developed.
Many scholars [2–8] have studied the classic “chamber” systems, such as (SIS), (SIR) or (SIRS).
Vaccination is the most effective way to prevent infectious illnesses, according to evidence. Moreover,
prevention is regarded as one of the primary strategies to control these illnesses. Consequently,
the (SVIR) model of infectious illnesses with vaccination is extremely important. Recently, some
researchers have studied the dynamic behavior of the original classical model and proposed the SVIR
model. A chamber “V” was added to the (SIS) model by Velasco-Hernandez and Kribs-Zaleta [9].
This chamber shows that rather than going straight to the vulnerable people, the population recovering
from the illness returns to the immune compartment. On the basis of this, Lin and Takeuchi [10]
constructed a (SVIR) system with a continuous vaccination strategy. Later, Ashrafu and Zou [11]
developed a vaccination distribution model with vaccination priority. The model of vaccination
strategy is not perfect. From a biological perspective, they neglected the possibility that recipients
of vaccinations might contract the disease again if they are not completely immune. In real life,
vaccines do not always provide complete protection against infections. However, they greatly reduce
the likelihood of getting infected [12].

Therefore, in the system of infectious illnesses, the case of incomplete immunity must be taken into
account.

The article [13] describes a simple (SVIR) epidemic system that takes the age of vaccination into
account. It states that the system allows for vaccinated individuals to become vulnerable again once
the vaccine protective properties diminish over time. Based on this, the SVIR infectious disease
model was examined, and techniques for combining the LaSalle invariance principle, Itô’s formula,
the Lyapunov method, and a numerical simulation were presented in order to analyse the (SVIR)
model’s global dynamics [14]. Moreover, the corresponding continuous model was given to the
Mickens nonstandard finite difference format by Geng and Xu [15]. Based on this model [16,17], many
researchers have also examined age and time lag. Liao and Yang [18] examined the best control for
the basics deterministic (SVIR) model. Wang and Xu [19] constructed a nonlinear incidence rate into
the (SIS) epidemiological system of ilness age and then examined the corresponding characteristic
equation to establish the local stability of every steady state of the system.

In the real world, population models are constantly subjected to random and complex variations.
A more appropriate approach to modeling epidemics would be to employ stochastic models.
Additionally, research has demonstrated that stochastic models are more grounded in reality than
deterministic ones. Numerous researchers [20–23] have shown interest in stochastic epidemic systems
perturbation in the last few years. Cao et al. [24] developed a stochastic epidemic system with
quarantine and standard incidence rate. They also defined the parameters for the disease’s extinction
based on white noise and basic reproductive value of the stochastic model. To illustrate the persistence,
they showed the system’s stationary distribution. White noise’s effect on the basic (SIRS) model and
the global stability of a deterministic (SIR) epidemic model with a ratio-dependent incidence rate
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were both studied by Cai et al. [25]. Sufficient conditions have been proven for both the extinction
and the existence of only one endemic stationary distribution, depending on the threshold value. In all
the cited works above, while abrupt environmental disruptions like tsunamis, volcanoes, or hurricanes.
can affect population systems, the suggested models were disturbed by white noise. This kind of
phenomenon was not clear within the traditional stochastic model. Thus, incorporating the Levy jump
process into the underlying population pattern is one way to solve the problem (see, [26–29]). The
dynamics of a (SIR) epidemic system with media coverage were studied by Lui et al. [30], who also
explored the conditions related to the persistence and extinction of interactive populations. In [31],
Jian Wu investigated the stability of a stochastic model consisting of one prey and two predators with
Levy noise and delay. Motivated by the above discussions, we reformulated the (SVIR) epidemic
model with white and Levy noises [10].

dS(t) =

(
Λ −

βS(t)I(t)
N(t)

− (d + ρ)S(t)
)

dt + α1S(t)dW1(t) +

∫
X

p1(K)S(t−)D̃(dt, dK),

dV(t) =

(
ρS(t) −

β1V(t)I(t)
N(t)

− (δ1 + d)V(t)
)

dt + α2V(t)dW2(t) +

∫
X

p2(K)V(t−)D̃(dt, dK),

(1.1)

dI(t) =

(
βI(t)S(t)
N(t)

+
β1VI(t)
N(t)

− (δ + d)I(t)
)

dt + α3I(t)dW3(t) +

∫
X

p3(K)I(t−)D̃(dt, dK),

dR(t) = (δI(t) + δ1V(t) − dR(t)) dt + α4R(t)dW4(t) +

∫
X

p4(K)R(t−)D̃(dt, dK).

The population’s recruiting rate and natural mortality ratio are denoted by Λ. Let δ denote the
infection-related recovery rate and β the disease transmission rate when susceptible individuals come
into contact with individuals who are ill. People who have recovered are said to have acquired
immunity, often referred to as natural immunity, against the infection.

LetV represent a newly defined group, distinct from others, that quantifies the density of vaccines
initiating the vaccination process, with the objective of incorporating the vaccination program. The
individuals within the groupV are distinct from those in groups S and R. Let ρ represent the frequency
of individuals; those who are vulnerable are introduced to the vaccinations process. Subsequent to the
procedure, individuals will acquire immunity induced by the vaccine. Let δ1 denote the average rate
(and thus the average duration) of those who become immune and become part of the population
that has recovered. In this case, we do not distinguish between natural immunity and immunity
resulting from vaccinations, because vaccine-induced immunity can also endure for a long period.
We assume that prior to developing immunity, coming into contact with infected individuals carries a
risk of infection with the vaccinations at a rate of β1. As individuals undergo vaccination, they may
acquire temporary immunity or become better at identifying characteristics associated with disease
transmission, thus potentially reducing the quantity of effective contacts with infected individuals. It is
possible to consider that the parameter β may exceed the parameter β1.
W1(t), W2(t), W3(t) and W4(t) are Brownian motions defined on the complete probability

space (Ω,F ,P) with filtration {F }t≥0, satisfying the identical assumptions (i.e., it is growing and
right continuous while F holds all P-empty sets); αi(i = 1, ..., 4) represents the intensity of white
noise. The left limit for S(t),V(t),I(t) and R(t) are S(t−),V(t−),I(t−) and R(t−), respectively.
D̃(dt, dK) = D(dt, dK) − υ(K)dt,K is a Poisson counting measure with characteristics measure υ
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on the measurable subset X of [0,∞), with υ(X) < ∞, and pi : Z × Ω → R, (i = 1, ..., 4), show the
impact of random perturbation, which is considered to be bounded and continuous with regard to υ and
is B(X) × Ft-measurable.

The remaining sections of this article are organized as follows: In Section 2, we examine an
existence analysis of the feasible or positive root to the system 1.1. To reduce the epidemic, we use a
stochastic threshold in Section 3. In Section 4, we present ample evidence to establish the persistence
of mean for an epidemic. Section 5 presents the numerical performance of the proposed model using
Bayesian regularization neural networks (BRNNs).

2. Well-posedness for the system

The current section of this article uses the methods described in [32] to demonstrate the existence
and uniqueness of the non-negative globalized solution of the stochastic disease problem 1.1. Two
standardized suppositions, (A1) and (A2), are used to support this assertion.

(A1). For every Q > 0, such that LQ > 0∫
X
|Ki(z1, (K)) − Ki(z2, (K))|2Vdx ≤ LQ|z1 − z2|

2, i = 1, ..., 4,

with |(K)1| ∨ |(K)2| ≤ Q, where

K1(z, (K)) = p1((K)) z f or z = S(t−),
K2(z, (K)) = p2((K)) z f or z = V(t−),
K3(z, (K)) = p3((K)) z f or z = I(t−),
K4(z, (K)) = p4((K)) z f or z = R(t−).

(A2). | ln(1 + pi((K)) | ≤ m, for pi((K)) > −1, i = 1, ..., 4, with non-negative constant ′m′.

Theorem 2.1. For every t ≥ 0, model (1.1) will fulfill only one characteristic of the global output
(S,V,I,R) ∈ R4

+ for the starting approximation (S(0),V(0),I(0),R(0)) ∈ R4
+.

Proof. Drifting and mixing are localized Lipschitzian, because by assumption (A1), then t and ζe for
any initial approximation (S(0),V(0),I(0),R(0)) ∈ R4

+, we suppose (S,V,I,R) on t ∈ [0, ζe) is only
one localized solution. To justify the globalized solution, we have to show that ζe = ∞ a.s. First, we
show that (S,V,I,R) can never tend to ∞ in a defined time interval. Suppose f0 > 0 large enough
for (S(0),V(0),I(0),R(0)) belonging to the interval [ 1

f0
, f0]. For every constant, let us establish the

stopping time f ≤ f0.

ζ f = inf
{

t ∈ [0, ζe)\(S,V,I,R) <
(1

f
, f

)}
. (2.1)

It is obvious that ζ+ ≤ ζe when we set inf φ = ∞; this implies ζ+ = ∞. a.s., which demonstrates that
ζe = +∞ a.s. Next, by assuming ζ+ < ∞, then 0 < Υ exists, implying that

P{Υ ≥ ζk} > 0.

By taking into account the function, one can use it in the following way H : R4
+ → R+ from the C2

space as described.

V(S,V,I,R) = (S − lnS) + (V − lnV) + (I − lnI) + (R − lnR) − 4. (2.2)
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Applying the Itos on Eq (2.2), for every t ∈ [0, ζ+],

dV(S,V,I,R) = LV(S,V,I,R) + α1(−1 + S)dW1(t)
+ α2(−1 +V)dW2(t) + α3(−1 + I)dW3(t) + α4(−1R)dW4(t)

+

∫
X

[p1((K))S − ln(1 + p1(K))]D̃(dt, d(K))

+

∫
X

[p2((K))V − ln(1 + p2(K))]D̃(dt, d(K))

+

∫
X

[p3((K))I − ln(1 + p3(K))]D̃(dt, d(K))

+

∫
X

[p4((K))R − ln(1 + p4(K))]D̃(dt, d(K)).

(2.3)

According to A2, we get

LV ≤ Λ + ρ + 4d + δ + δ1 + β +
α1

2 + α2
2 + α3

2 + α4
2

2

+

∫
X

[p1(K) − ln(1 + p1(K)]n(dK)

+

∫
X

[p2(K) − ln(1 + p2(K)]n(dK)

+

∫
X

[p3(K) − ln(1 + p3(K)]n(dK)

+

∫
X

[p4(K) − ln(1 + p4(K)]n(dK) := K.

(2.4)

When considering expectations and taking integration on both sides of Eq (2.3) from 0 to ζm ∧ Υ,

0 < E
[
V(S(ζ f ∧ Υ),V(ζ f ∧ Υ),I(ζ f ∧ Υ),R(ζ f ∧ Υ))

]
≤V(S(0),V(0),I(0),R(0)) + E

[ ∫ ζ f∧Υ

0
K

]
≤V(S(0),V(0),I(0),R(0)) + ΥK.

(2.5)

We get P(ζ f ) ≥ ε, for f1 ≤ f , by taking ζ f = {ζ f ≤ Υ}. Moreover, there exists S(ζ f , ω),
V(ζ f ,ζ),I(ζ f ,ζ),R(ζ f ,ζ)) equals to 1

f or f for each ζ in ζ f .
As V(S(ζ f ),V(ζ f ),I(ζ f ),R(ζ f )) ≥ 1

f − 1 + ln f or f − 1 − ln f . So

E
[(

f − 1 − ln f ) ∧ (
1
f
− 1 + ln f

)]
≤ V

(
S(ζ f ),V(ζ f ),I(ζ f ),R(ζ f )

)
. (2.6)

According to P(ζ+ < T ) and Eq (2.5), we have

≤ ε
[(1

f
− 1 + ln f

)
∧

(
f − 1 − ln f

)]
≤ E

[
1Ω(ω)V

(
S(ζ f ),V(ζ f ),I(ζ f ),R(ζ f )

)]
≤ V(S(0),V(0),I(0),R(0)) + KΥ.

(2.7)

1Ω(ω) denotes the Ω. Then, f tends to ∞, to reach the contradiction ∞ > V
(
S(0),V(0),I(0),R(0)

)
+

MT = ∞. Therefore, the system has unique well posedness. �
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3. Extinction for the system

To reduce the impact of a disease in the society over time, certain necessary conditions are
derived from studying the dynamic behavior of the epidemic. In this section, we will explore the
necessary conditions for the eradication of the disease through stochastic techniques. For the stochastic
system 1.1, the threshold value R0, can be shown as

R0 =
Λβ

d(δ + d +
α2

3
2 +

∫
X

[p3(K) − ln(1 + p3(K)]n(dK)
. (3.1)

Here, the following notations are assigned:

〈z〉 =
1
t

∫ t

0
z(r)dr.

Lemma 1. If model (1.1), (S(t),V(t),I(t),R(t)) are the root with initial approximation
(S(0),V(0),I(0),R(0)) ∈ R4

+, then a.s.,

lim
t→∞

N(t)
t

= 0. (3.2)

Moreover, if d > 1
2 (α2

1 ∨ α
2
2 ∨ α

2
3 ∨ α

2
4), then

lim
t→∞

1
t

∫ t

0
S(s)dW1(s) = 0,

lim
t→∞

1
t

∫ t

0
V(s)dW2(s) = 0,

lim
t→∞

1
t

∫ t

0
I(s)dW3(s) = 0,

lim
t→∞

1
t

∫ t

0
R(s)dW4(s) = 0 a.s.

(3.3)

Theorem 3.1. Assume (S,V,I,R) is the root of model (1.1) with starting approximation
(S(0),V(0),I(0),R(0)) ∈ R4. Further, If d > α2

1∨α
2
2∨α

2
3∨α

2
4

2 , and R0, is less than 1, then

lim
t→∞

ln〈I(t)〉
t

< 0, a.s.

Here, the exponential mapping of I(t) goes to 0 a.s., demonstrating that the illness vanishes with
chance one. Moreover,

lim
t→∞

ln〈S(t)〉 =
Λ

(d + ρ)
,

lim
t→∞

ln〈V(t)〉 =
ρΛ

(δ1 + d)(ρ + d)
,

lim
t→∞

ln〈I(t)〉 = 0,

lim
t→∞

ln〈R(t)〉 =
δ1ρΛ

(δ1 + d)(d + ρ)
.

(3.4)
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Proof. Using the suggested system 1.1 in direct integration, we get the following calculations:

S(t)
t
−
S(0)

t
= Λ −

β 〈I(t)〉 〈S(t)〉
〈N(t)〉

− (d + ρ) 〈S(t)〉 +
α1

t

∫ t

0
S(s)dW1(s)

+
1
t

∫ t

0

[ ∫
X

p1(ρ)S(t−)D̃(dt, dK)
]
ds,

V(t) −V(0)
t

= ρ 〈S(t)〉 −
β1 〈V(t)〉 〈I(t)〉
〈N(t)〉

− (d + δ1) 〈V(t)〉 +
α2

t

∫ t

0
V(s)dW2(s)

+
1
t

∫ t

0

[ ∫
X

p2(K)V(t−)D̃(dt, dK)
]
ds,

I(t)
t
−
I(0)

t
=
β 〈S(t)〉 〈I(t)〉
〈N(t)〉

−
β1 〈V(t)〉 〈I(t)〉
〈N(t)〉

− (d + δ) 〈I(t)〉 +
α3

τ

∫ t

0
I(s)dW3(s)

+
1
t

∫ t

0

[ ∫
X

p3(K)I(t−)D̃(dt, dK)
]
ds,

R(t)
t
−
R(0)

t
= δ1 〈V(t)〉 + δ 〈I(t)〉 〉R(t)〉 +

α4

t

∫ t

0
R(s)dW4(s)

+
1
t

∫ t

0

[ ∫
X

p4(K)R(t−)D̃(dt, dK)
]
ds.

(3.5)

Equation (3.5) makes it easy to calculate the value of 〈S〉 .

d 〈S〉 = Λ +
α1

t

∫ t

0
S(s)dW1(s) +

1
t

∫ t

0

[ ∫
X

p1(K)S(t−)D̃(dt, dK)
]
ds

+
α2

t

∫ t

0
V(s)dW2(s) +

1
t

∫ t

0

[ ∫
X

p2(K)S(t−)D̃(dt, dK)
]
ds

+
α3

t

∫ t

0
I(s)dW3(s) +

1
t

∫ t

0

[ ∫
X

p3(K)S(t−)D̃(dt, dK)
]
ds

−(d + δ) 〈I〉 − d 〈S〉 − (δ1 + d) 〈V〉

−

[
N − R(0)

t
+
N(0) − R(0)

t

]
. (3.6)

Computation becomes

〈S(t)〉 =
Λ

d
−

(δ1 + d)
d

〈V〉 −
(δ + d)

d
〈I〉 + Ω(t), (3.7)

where

Ω(t) =
1
d

{
α1

t

∫ t

0
S(s)dW1(s) +

1
t

∫ t

0

[ ∫
X

p1(K)S(t−)D̃(dt, dK)
]
ds

+
α2

t

∫ t

0
V(s)dW2(s) +

1
t

∫ t

0

[ ∫
X

p2(K)S(t−)D̃(dt, dK)
]
ds

+
α3

t

∫ t

0
I(s)dW3(s) +

1
t

∫ t

0

[ ∫
X

p3(K)S(t−)D̃(dt, dK)
]
ds

−

[
N(t) − R(t)

t
+
N(0) − R(0)

t

]}
.

(3.8)
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To solve the third Equation of the model (1.1), we will utilize Ito’s formula:V = lnI(t)

d lnI = LVdt + α3dW3(t) +

∫
X

[ln(1 + p3(K))]D̃(dt, dK), (3.9)

where

LV =

[
βS

N
+
β1V

N
− (δ + d) −

α2
3

2

]
dt −

∫
X

[p3(K) − ln(1 + p3)]n(dK). (3.10)

By integrating Eq (3.9) and dividing with t over the interval [0, t], we acquire

lnI(t)
t
−

lnI(0)
t

=
β〈S〉

〈N〉
+
β1〈V〉

〈N〉
− (d + δ) +

α2
3

2
+
α3

t

∫ t

0
dW3(s)

+
1
t

∫
X

[ln(1 + p3(K))]D̃(dt, dK) −
∫
X

[p3(K) − ln(1 + p3(K))]n(dK)

≤β 〈S〉 + β1 − (δ + d) +
α2

3

2
+

1
t

∫
X

[ln(1 + p3(K))]D̃(dt, dK)

+
α3

t

∫ t

0
dW3(s) −

∫
X

[p3(K) − ln(1 + p3(K))]n(dK). (3.11)

Using Eq (3.7), then

lnI(t) − lnI(0)
t

≤β
[
Λ

d
−

d + δ1

d
〈V〉 −

(δ + d)
d
〈I〉 + Ω(t)

]
+ β1 − (δ + d) −

α2
3

2

+
α3

t

∫ t

0
dW3(s) −

∫
X

[p3(K) − ln(1 + p3(K))]n(dK)

1
t

∫
X

[ln(1 + p3(K))]D̃(dt,K)

≤
βΛ

d
+ β1 −

(
δ + d +

α2
3

2
+

∫
X

[p3(K) − ln(1 + p3(K))]n(dK)
)

+
α3

t

∫ t

0
dW3(s) +

1
t

∫
X

[ln(1 + p3(K))]D̃(dt, dK) + βΩ(t).
(3.12)

Assume M = α3
t

∫ t

0
dW3(s) + 1

t

∫
X

[ln(1 + p3(K))]D̃(dt, dK), which is commonly referred to as the
continuous locally martingale ifM(0) = 0, and in the same way Ω(0) = 0,

By using (Lemma 1) and t tending to∞, we have

lim
t→∞

sup
Ω(t)

t
= 0, and lim

t→∞
sup
M(t)

t
= 0. (3.13)

If R0 is less than 1, Eq (3.11) will be transformed

lim
t→∞

sup
lnI(t)

t
≤

(
d + δ +

α2
3

2
+

∫
X

[p3(K) − ln(1 + p3)]n(dK)
)
(R0 − 1) < 0, a.s. (3.14)

Equation (3.14) above indicates that
lim
t→∞
I(t) = 0 a.s. (3.15)
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Furthermore, in order to solve the second Equation of model (1.1), we have to use Eq (3.15). Taking
integration from 0 to t, and then dividing the final computation by t, we acquire

〈R〉 =
ρΛδ1

(d + δ1)(ρ + d)
. (3.16)

Which proves the conclusion. �

4. Persistence in mean

The long-term effects of the illness are covered in this section. First, we will introduce the average
persistency, which is presented in Khan et al. [20].

Definition 1. Din and Li [33] and Zhao and Jiang [34] made the following assumptions, which are
related to the maintenance or persistence of system (1.1).

lim
t→∞

inf
1
t

∫ t

0
I(s)ds > 0 a.s. (4.1)

To verify the persistence of the epidemic, one may additionally need to meet the following basic
outcomes, which are specified in El Fatini and Sekkak [32].

Lemma 2. [(Strong law) [20, 34]]. If a mapping that is continuous, M = M0≤t, exists as a local
martingale such that it vanishes as t tends to 0, then

lim
t→∞
〈S,S〉t = ∞, a.s.,

⇒ lim
t→∞

St
〈S,S〉t

= 0, a.s.

also

lim
t→∞

sup
〈S,S〉t

t
< 0, a.s.,

⇒ lim
t→∞

St

t
= 0, a.s.

(4.2)

Lemma 3. Let b ∈ c([0,∞) ×Ω, (0,∞)) and B ∈ c([0,∞) ×Ω,R)∃ lim
t→∞

B(t)
t = 0 a.s. if

ln b(t) ≥ η0t − η
∫ t

0
b(r)dr + B(t) a.s.

Then
lim
t→∞

inf 〈b(t)〉 ≥ η0\η a.s.

Where {η, η0 ∈ R 3 η > 0 & η0 ≥ 0} [32, 33].
The following theorem states that the correct task of the given section is to show the assumptions

for the persistence in the mean of model (1.1).
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Theorem 4.1. If R0s > 1, then for initial approximation (S(0),V(0),I(0),R(0)) ∈ R+4, the epidemic
I(t) may have an axiom

lim
t→∞

inf 〈I〉 ≥
2Λ

√
Rs

0 − 1
g1β

a.s. (4.3)

In the same way, lim
t→∞

inf 〈I〉 ≥ 0, where g1 = Λ(
ρ+d+

α2
1

2 +
∫
X

[p1(K)−ln(1+p1(K))]n(dK)

) . Then, we can conclude

that the disease will exist within the society.
Let us define

R0s =
Λβ

d
(
δ1 + d +

α2
3

2 +
∫
X[p3(K) − ln(1 + p3(K))]n(dK)

) . (4.4)

Proof.

Let G1 = −g1 lnS − g2 lnI. (4.5)

The constants g1 and g2 are currently presented and will be discussed later.
By applying Itos formula on Eq (4.5), we get

dG1 = LG1 − g1α1dW1(t) − g2α3dW3(t)

− g1

∫
X

[p1(K) − ln(1 + p1(K)]D̃(dt, dK)

− g2

∫
X

[p3(K) − ln(1 + p3(K))]D̃(dt, dK),

(4.6)

where

LG1 = g1L(− lnS) + g2L(− lnI),

LG1 = −g1
Λ

S
+ g1

βI(t)
N(t)

− g2
βS(t)
N(t)

− g2
β1V(t)
N(t)

+ g1(ρ + d +
α2

1

2
) + g2(δ + d +

α2
3

2
)

+ g1

∫
X

[p1(K) − ln(1 + p1(K))]n(dK)

+ g2

∫
X

[p3(K) − ln(1 + p3(K))]n(dK),

≤

(
− g1

Λ

S(t)
− g2

βS(t)
N(t)

)
+ g1βI(t)

+ g1

(
ρ + d +

α2
1

2
+

∫
X

[p1(K) − ln(1 + p1(K))]n(dK)
)

+ g2

(
δ + d +

α2
3

2
+

∫
X

[p3(K) − ln(1 + p3(K))]n(dK)
)
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≤ − 2
(
g1

Λ

S(t)
× g2

βS(t)
N(t)

) 1
2

+ g1βI(t)

+ g1

(
ρ + d +

α2
1

2
+

∫
X

[p1(K) − ln(1 + p1(K))]n(dK)
)

+ g2

(
δ + d +

α2
3

2
+

∫
X

[p3(K) − ln(1 + p3(K))]n(dK)
)
.

(4.7)

Assume

g1 =
Λ

ρ + d +
α2

1
2 +

∫
X

[p1(K) − ln(1 + p1(rho))]n(dK)
,

g2 =
Λ

δ + d +
α2

3
2 +

∫
X

[p3(K) − ln(1 + p3(K))]n(dK)
.

(4.8)

Let

a = ρ + d +
α2

1

2
+

∫
X

[p1(K) − ln(1 + p1(K))]n(dK),

b = δ + d +
α2

3

2
+

∫
X

[p3(K) − ln(1 + p3(K))]n(dK).

LG1 ≤ − 2

√
βΛ3

ab
+ 2Λ + g1βI,

LG1 ≤ − 2Λ

[√
βΛ

ab
− 1

]
+ g1βI,

LG1 ≤ − 2Λ

[√
Rs

0 − 1
]

+ g1βI.

(4.9)

Integrating both sides of the stochastic system (1.1) after inserting the value of Eq (4.9) into Eq (4.5):

G1(S(t),I(t))
t

−
G1(S(0),I(0))

t
≤ − 2Λ

[√
Rs

0 − 1
]

+ g1β 〈I〉

−
g1α1W1(t)

t
−

g2α1W3(t)
t

−
g1

∫
X

[p1(K) − ln(1 + p1(K))]D̃(dt, dK)

t

−
g2

∫
X

[p3(K) − ln(1 + p3(K))]D̃(dt, dK)

t

≤ − 2Λ

[√
Rs

0 − 1
]

+ g1β 〈I〉 + Z(t),

(4.10)
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where

Z(t) = −
g1α1W1(t)

t
−

g2α3W3(t)
t

−
g1

∫
X

[p1(K) − ln(1 + p1(K))]D̃(dt, dK)

t

−
g2

∫
X

[p3(K) − ln(1 + p3(K))]D̃(dt, dK)

t
.

Strong law, as expressed in lemma 2, gives us

lim
t→∞

Φ(t) = 0

By Eq (4.10), we get

〈I(t)〉 ≥
2Λ

[ √
Rs

0 − 1
]

g1β
−

Φ(t)
g1β

+
1

g1β

(
G1(S(t) − S(0)

t
) −
G1(I(0) − I(0)

t
)
)
.

(4.11)

By lemma 3, and taking the superior limit of Eq (2.2), we acquire

lim
t→∞

inf 〈I(t)〉 ≥
2Λ

[ √
Rs

0 − 1
]

g1β
.

(4.12)

The proof of theorem 4.1 is completed. �

5. Results and analysis

The numerical solution for three different cases of the (SVIR) epidemic model by applying
Bayesian regularization neural networks (BRNNs) is shown in this section. The numerical
representations for solving three cases based on the three different initial conditions are listed in
Table 1, while the other parameter values are Λ = 0.2, β = 0.01, d = 0.31, ρ = 0.24, β1 = 0.421, δ =

0.1, and δ1 = 0.41.

Table 1. Initial values for model 1.1.

CASE 1 CASE 2 CASE 3
S0 80 100 120
V0 70 80 110
I0 40 60 80
R0 20 30 40

The numerical solutions by utilizing the BRNNs to solve theSVIR epidemic system were achieved
using the MATLAB nftool command in combination with 10 neurons, 70% of the data used for training,
and 15% used for validation and testing.

The MSE convergence for training, validation, epochs, testing, and complexity investigations
provided in Table 2 is accomplished to solve the SVIR epidemic model.
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Table 2. The differential model of SVEIR is evaluated using the L −MBNN s method.

Case MSE Gradient Performance Epoch Mu
Training Testing

1 6.63 × 10−10 7.36 × 10−10 2.33 × 10−06 6.63 × 10−10 1000 5000
2 1.52 × 10−08 1.89 × 10−08 4.02 × 10−06 1.53 × 10−08 1000 5000
3 3.40 × 10−08 8.0064 × 10−08 2.14 × 10−05 2.27 × 10−08 1000 500

The graphic illustrations of the BRNNs to solve the SVIR epidemic model are shown in Figures 1–
5. The appropriate numerical schemes of each scenario of the SVIR epidemic model are obtained
in Figure 1(a, c, e) utilizing the performances. The proposed technique has the finest validation
performance in Figure 1(a, c, e) since the error is minimized after a few training epochs, but may
grow on the validation data set if the network starts to over fit the training data. The performance
from the epoch with the lowest validation error is chosen as the best. The performance results
for the SVIR epidemic model at epoch 1000 show the best results. These results are given as
6.63 × 10−10, 1.5331 × 10−08, and 2.2714 × 10−08. Figure1(b, d, f) authenticates the gradient measures
using the BRNNs to solve the dynamical SVIR epidemic model. The gradient performances are given
as 2.33× 10−06, 4.02× 10−06, and 2.14× 10−05. These illustrations indicate the exactness, convergence,
and accuracy of the proposed BRNNs to simulate the SVIR epidemic model. The fitting curve
values for each variation of the SVIR epidemic model are shown in Figure 1(b, d, f), which shows a
comparison between the solution of BRNNs and reference solutions.

Figure 2(a, c, e) displays the valuations of the results-based authentication for the dynamical S VIR
epidemic model targets, training outputs, error curves, test scores, and fitness. Figure 2(b, d, f) displays
the zero error performances through the error histograms (EHs) values of test, train, and authentication
for the dynamical SVIR epidemic system. The EHs are represented as 3.54× 10−06, 1.38× 10−06, and
3.0×10−06 for the dynamical SVIR epidemic model the dynamical form of theSVIR epidemic system.
Figure 3 uses the train, authentication, and test measures for the dynamical SVIR epidemic model to
authenticate the correlation operator values. The correlation is reported as a perfect representation
of the model. Figures 4 and 5 provide a detailed comparison between the numerical solutions
obtained from the proposed BRNNs technique and those derived from the RK method, along with
the corresponding error plots. Specifically, Figure 4 shows, for each variation of the dynamical SVIR
epidemic system, the accuracy of the BRNNs scheme using the comparison procedure. Figure 5 uses
the BRNNs to authenticate the values of the absolute error (AE) for each variation of the dynamical
SVIR epidemic model. The AE measures for the dynamical SVIR epidemic model’s special
predator categoryS(t) are 10−4 to 10−5, 10−4 to 10−7, and 10−3 to 10−5, for cases 1, 2, and 3, respectively.
The absolute error measure indicates the magnitude of the difference between the numerical results
from the BRNNs technique and the RK method. An overall error of less than 10−7 signifies a high
degree of accuracy and a strong agreement between the two sets of numerical results, confirming the
effectiveness of the proposed BRNNs technique.
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Figure 1. The dynamical SVIR epidemic model performance as solved by MSE and STs.
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Figure 2. Error histograms measures and results estimations for the dynamical SVIR
epidemic model.
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Figure 3. The performance of the regression for the dynamical SVIR epidemic model.

AIMS Mathematics Volume 9, Issue 8, 21273–21293.



21289

0 0.2 0.4 0.6 0.8 1

Inputs

0

20

40

60

80

100

120

V
a

lu
e

s

Case 1

Case 2

Case 3

Ref

(a)

0 0.2 0.4 0.6 0.8 1

Inputs

0

20

40

60

80

100

120

V
a

lu
e

s

Case 1

Case 2

Case 3

Ref

(b)

0 0.2 0.4 0.6 0.8 1

Inputs

40

60

80

100

120

140

160

180

200

220

V
a

lu
e

s

Case 1

Case 2

Case 3

Ref

(c)

0 0.2 0.4 0.6 0.8 1

Inputs

20

30

40

50

60

70
V

a
lu

e
s

Case 1

Case 2

Case 3

Ref

(d)

Figure 4. Achieved and reference results of the SVIR epidemic model.
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Figure 5. The values of the absolute error for the SVIR epidemic model.

6. Conclusions

Crucial conclusions can be made based on the research and analysis done in this article, which
examined the effects of vaccination, Levy noises, and the dynamics of the infectious stochastic system
on the SVIR epidemic model with a variable immunized system. The proposed SVIR epidemic
model’s non-negative and non-global solutions are analyzed as part of the phased process to achieve the
research objectives. In order to account for this, the generalization of time and the realistic stochastic
technique incorporate the external effect of Levy noises. The solution was obtained by constructing
the Lyapunov function. We have conducted numerical investigations aimed at establishing a stochastic
computing platform utilizing BRNNs for solving the SVIR epidemic model.

This research work will be implemented in the future by adding the time delay term to the stochastic
version SVIR epidemic model.
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Lévy noise, Physica A, 540 (2020), 123116. https://doi.org/10.1016/j.physa.2019.123116

28. A. El Koufi, A. Bennar, N. Yousfi, Dynamics behaviors of a hybrid switching epidemic model with
levy noise, Appl. Math. Inform. Sci., 15 (2021), 131–142. http://dx.doi.org/10.18576/amis/150204

29. Y. Zhou, S. Yuan, D. Zhao, Threshold behavior of a stochastic SIS model with Levy jumps, Appl.
Math. Comput., 275 (2016), 255–267. https://doi.org/10.1016/j.amc.2015.11.077

30. Y. Liu, Y. Zhang, Q. Wang, A stochastic SIR epidemic model with Lévy jump and media coverage,
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