Research article

The worst-case scenario: robust portfolio optimization with discrete distributions and transaction costs

  • Received: 14 March 2024 Revised: 27 May 2024 Accepted: 30 May 2024 Published: 28 June 2024
  • MSC : 91B05, 91G10

  • This research introduces min-max portfolio optimization models that incorporating transaction costs and focus on robust Entropic value-at-risk. This study offers a unified approach to handl the distribution of random parameters that affect the reward and risk aspects. Utilizing the duality theorem, the study transforms the optimization models into manageable forms, thereby accommodating the underlying random variables' discrete box and ellipsoidal distributions. The impact of transaction costs on optimal portfolio selection is examined through numerical examples under a robust return-risk framework. The results underscore the importance of the proposed model in safeguarding capital and reducing exposure to extreme risks, thus outperforming other strategies documented in the literature. This demonstrates the model's effectiveness in balancing maximizing returns and minimizing potential losses, making it a valuable tool for investors that seek to navigate uncertain financial markets.

    Citation: Ebenezer Fiifi Emire Atta Mills. The worst-case scenario: robust portfolio optimization with discrete distributions and transaction costs[J]. AIMS Mathematics, 2024, 9(8): 20919-20938. doi: 10.3934/math.20241018

    Related Papers:

  • This research introduces min-max portfolio optimization models that incorporating transaction costs and focus on robust Entropic value-at-risk. This study offers a unified approach to handl the distribution of random parameters that affect the reward and risk aspects. Utilizing the duality theorem, the study transforms the optimization models into manageable forms, thereby accommodating the underlying random variables' discrete box and ellipsoidal distributions. The impact of transaction costs on optimal portfolio selection is examined through numerical examples under a robust return-risk framework. The results underscore the importance of the proposed model in safeguarding capital and reducing exposure to extreme risks, thus outperforming other strategies documented in the literature. This demonstrates the model's effectiveness in balancing maximizing returns and minimizing potential losses, making it a valuable tool for investors that seek to navigate uncertain financial markets.


    加载中


    [1] A. Ahmadi-Javid, Entropic value-at-risk: A new coherent risk measure, J. Optim. Theory Appl., 155 (2012), 1105–1123. https://dx.doi.org/10.1007/s10957-011-9968-2 doi: 10.1007/s10957-011-9968-2
    [2] Y. Amihud, H. Mendelson, Liquidity and stock returns, Financ. Anal. J., 42 (1986), 43–48. http://dx.doi.org/10.2469/faj.v42.n3.43 doi: 10.2469/faj.v42.n3.43
    [3] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Thinking coherently, Risk, 10 (1997), 68–71.
    [4] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk, Math. Financ., 9 (1999), 203–228. http://dx.doi.org/10.1111/1467-9965.00068
    [5] A. Axelrod, L. Carlone, G. Chowdhary, S. Karaman, Data-driven prediction of EVAR with confidence in time-varying datasets, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 2016, 5833–5838. http://dx.doi.org/10.1109/CDC.2016.7799166
    [6] D. P. Baron, On the utility theoretic foundations of mean-variance analysis, J. Financ., 32 (1977), 1683–1697. http://dx.doi.org/10.1111/j.1540-6261.1977.tb03363.x doi: 10.1111/j.1540-6261.1977.tb03363.x
    [7] A. Ben-Tal, D. Bertsimas, D. B. Brown, A soft robust model for optimization under ambiguity, Oper. Res., 58 (2010), 1220–1234. http://dx.doi.org/10.1287/opre.1100.0821 doi: 10.1287/opre.1100.0821
    [8] D. Bertsimas, D. B. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res., 57 (2009), 1483–1495. http://dx.doi.org/10.1287/opre.1080.0646 doi: 10.1287/opre.1080.0646
    [9] M. Borkovec, I. Domowitz, B. Kiernan, V. Serbin, Portfolio optimization and the cost of trading, J. Invest., 19 (2010), 63–76. http://dx.doi.org/10.3905/joi.2010.19.2.063 doi: 10.3905/joi.2010.19.2.063
    [10] J. P. Bouchaud, J. Bonart, J. Donier, M. Gould, Trades, quotes and prices: financial markets under the microscope, Cambridge: Cambridge University Press, 2018. http://dx.doi.org/https://doi.org/10.1017/9781316659335
    [11] S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge: Cambridge University Press, 2004.
    [12] S. Caçador, J. M. Dias, P. Godinho, Portfolio selection under uncertainty: a new methodology for computing relative-robust solutions, Int. T. Oper. Res., 28 (2021), 1296–1329. http://dx.doi.org/10.1111/itor.12674 doi: 10.1111/itor.12674
    [13] D. Cajas, Entropic portfolio optimization: a disciplined convex programming framework, SSRN Electronic Journal, 2021 (2021), 3792520.
    [14] A. H. Chen, F. J. Fabozzi, D. S. Huang, Portfolio revision under mean-variance and mean-cvar with transaction costs, Rev. Quant. Finan. Acc., 39 (2012), 509–526. http://dx.doi.org/10.1007/s11156-012-0292-1 doi: 10.1007/s11156-012-0292-1
    [15] S. Chennaf, J. B. Amor, Entropic value at risk to find the optimal uncertain random portfolio, Soft Comput., 27 (2023), 15185–15197. http://dx.doi.org/10.1007/s00500-023-08547-5 doi: 10.1007/s00500-023-08547-5
    [16] J. Dufitinema, S. Pynnönen, T. Sottinen, Maximum likelihood estimators from discrete data modeled by mixed fractional brownian motion with application to the nordic stock markets, Commun. Stat. Simul. C., 51 (2022), 5264–5287. http://dx.doi.org/10.1080/03610918.2020.1764581 doi: 10.1080/03610918.2020.1764581
    [17] P. Embrechts, S. I. Resnick, G. Samorodnitsky, Extreme value theory as a risk management tool, N. Am. Actuar. J., 3 (1999), 30–41. http://dx.doi.org/10.1080/10920277.1999.10595797 doi: 10.1080/10920277.1999.10595797
    [18] D. Goldfarb, G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1–38. http://dx.doi.org/10.1287/moor.28.1.1.14260 doi: 10.1287/moor.28.1.1.14260
    [19] F. Hooshmand, Z. Anoushirvani, S. A. MirHassani, Model and efficient algorithm for the portfolio selection problem with real-world constraints under value-at-risk measure, Int. T. Oper. Res., 30 (2023), 2665–2690. http://dx.doi.org/10.1111/itor.13239 doi: 10.1111/itor.13239
    [20] R. P. Huang, Z. S. Xu, S. J. Qu, X. G. Yang, M. Goh, Robust portfolio selection with distributional uncertainty and integer constraints, J. Oper. Res. Soc. China, 11 (2023), 1–27. http://dx.doi.org/10.1007/s40305-023-00466-4 doi: 10.1007/s40305-023-00466-4
    [21] G. Kara, A. Özmen, G.-W. Weber, Stability advances in robust portfolio optimization under parallelepiped uncertainty, Cent. Eur. J. Oper. Res., 27 (2019), 241–261. http://dx.doi.org/10.1007/s10100-017-0508-5 doi: 10.1007/s10100-017-0508-5
    [22] J. Kriens, J. T. van Lieshout, Notes on the Markowitz portfolio selection method, Stat. Neerl., 42 (1988), 181–191. http://dx.doi.org/10.1111/j.1467-9574.1988.tb01232.x doi: 10.1111/j.1467-9574.1988.tb01232.x
    [23] W. Liu, L. Yang, B. Yu, Distributionally robust optimization based on Kernel density estimation and mean-entropic value-at-risk, INFORMS Journal on Optimization, 5 (2022), 68–91. http://dx.doi.org/10.1287/ijoo.2022.0076 doi: 10.1287/ijoo.2022.0076
    [24] G. M. Luo, Mixed complementarity problems for robust optimization equilibrium in bimatrix game, Appl. Math., 57 (2012), 503–520. http://dx.doi.org/10.1007/s10492-012-0029-4 doi: 10.1007/s10492-012-0029-4
    [25] H. Markowitz, Portfolio selection, J. Financ., 7 (1952), 77–91. http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x
    [26] E. J. Menvouta, S. Serneels, T. Verdonck, Portfolio optimization using cellwise robust association measures and clustering methods with application to highly volatile markets, Journal of Finance and Data Science, 9 (2023), 100097. http://dx.doi.org/10.1016/j.jfds.2023.100097 doi: 10.1016/j.jfds.2023.100097
    [27] J. E. Mitchell, S. Braun, Rebalancing an investment portfolio in the presence of convex transaction costs, submitted for publication.
    [28] J. E. Mitchell, S. Braun, Rebalancing an investment portfolio in the presence of convex transaction costs, including market impact costs, Optim. Method. Softw., 28 (2013), 523–542. http://dx.doi.org/10.1080/10556788.2012.717940 doi: 10.1080/10556788.2012.717940
    [29] K. Muthuraman, S. Kumar, Multidimensional portfolio optimization with proportional transaction costs, Math. Financ., 16 (2006), 301–335. http://dx.doi.org/10.1111/j.1467-9965.2006.00273.x doi: 10.1111/j.1467-9965.2006.00273.x
    [30] G. C. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, In: Probabilistic constrained optimization, Boston: Springer, 2000,272–281. http://dx.doi.org/10.1007/978-1-4757-3150-7_15
    [31] R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk, J. Risk, 3 (2000), 21–41.
    [32] R. Sehgal, A. Mehra, Robust reward–risk ratio portfolio optimization, Int. T. Oper. Res., 28 (2021), 2169–2190. http://dx.doi.org/10.1111/itor.12652 doi: 10.1111/itor.12652
    [33] R. L. Sun, T. F. Ma, S. Z. Liu, Portfolio selection based on semivariance and distance correlation under minimum variance framework, Stat. Neerl., 73 (2019), 373–394. http://dx.doi.org/10.1111/stan.12174 doi: 10.1111/stan.12174
    [34] X. J. Tong, F. L. Wu, L. Q. Qi, Worst-case cvar based portfolio optimization models with applications to scenario planning, Optim. Method. Softw., 24 (2009), 933–958. http://dx.doi.org/10.1080/10556780902865942 doi: 10.1080/10556780902865942
    [35] X. J. Tong, F. L. Wu, Robust reward–risk ratio optimization with application in allocation of generation asset, Optimization, 63 (2014), 1761–1779. http://dx.doi.org/10.1080/02331934.2012.672419 doi: 10.1080/02331934.2012.672419
    [36] X. T. Wang, Z. Li, L. Zhuang, Risk preference, option pricing and portfolio hedging with proportional transaction costs, Chaos Soliton. Fract., 95 (2017), 111–130. https://dx.doi.org/10.1016/j.chaos.2016.12.010 doi: 10.1016/j.chaos.2016.12.010
    [37] L. J. Xu, Y. J. Zhou, New robust reward-risk ratio models with CVaR and standard deviation, J. Math., 2022 (2022), 8304411. http://dx.doi.org/10.1155/2022/8304411 doi: 10.1155/2022/8304411
    [38] C. L. Zheng, Y. Chen, Portfolio selection based on relative entropy coherent risk measure, Systems Engineering-Theory & Practice, 34 (2014), 648–655.
    [39] Y. J. Zhou, L. Yang, L. J. Xu, B. Yu, Inseparable robust reward–risk optimization models with distribution uncertainty, Japan J. Indust. Appl. Math., 33 (2016), 767–780. http://dx.doi.org/10.1007/s13160-016-0230-z doi: 10.1007/s13160-016-0230-z
    [40] S. S. Zhu, D. Li, S. Y. Wang, Robust portfolio selection under downside risk measures, Quant. Financ., 9 (2009), 869–885. http://dx.doi.org/10.1080/14697680902852746 doi: 10.1080/14697680902852746
    [41] S. S. Zhu, M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155–1168. http://dx.doi.org/10.1287/opre.1080.0684 doi: 10.1287/opre.1080.0684
    [42] J. X. Zhu, Optimal financing and dividend distribution with transaction costs in the case of restricted dividend rates, ASTIN Bull., 47 (2017), 239–268. http://dx.doi.org/10.1017/asb.2016.29 doi: 10.1017/asb.2016.29
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(719) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog