Research article Special Issues

Least energy solutions to a class of nonlocal Schrödinger equations

  • Received: 10 May 2024 Revised: 18 June 2024 Accepted: 20 June 2024 Published: 26 June 2024
  • MSC : 35Q55, 35J60, 35A15

  • We explore a class of nonlocal Schrödinger equations that include not only fractional Schrödinger equations but also other nonlocal Schrödinger equations studied in the literature. We prove the existence of least energy solutions to this class of equations by the variational method, which extends the results obtained by Gu et al. (2018) and Xiang et al. (2019).

    Citation: Yong-Chao Zhang. Least energy solutions to a class of nonlocal Schrödinger equations[J]. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009

    Related Papers:

  • We explore a class of nonlocal Schrödinger equations that include not only fractional Schrödinger equations but also other nonlocal Schrödinger equations studied in the literature. We prove the existence of least energy solutions to this class of equations by the variational method, which extends the results obtained by Gu et al. (2018) and Xiang et al. (2019).


    加载中


    [1] V. Ambrosio, H. Hajaiej, Multiple solutions for a class of nonhomogeneous fractional Schrödinger equations in $\mathbb{R}^{N}$, J. Dynam. Differ. Equ., 30 (2018), 1119–1143. https://doi.org/10.1007/s10884-017-9590-6 doi: 10.1007/s10884-017-9590-6
    [2] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differ. Equations, 255 (2013), 2340–2362. https://doi.org/10.1016/j.jde.2013.06.016 doi: 10.1016/j.jde.2013.06.016
    [3] G. M. Bisci, R. Servadei, A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal., 119 (2015), 341–353. https://doi.org/10.1016/j.na.2014.10.025 doi: 10.1016/j.na.2014.10.025
    [4] J. Dávila, M. D. Pino, J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differ. Equations, 256 (2014), 858–892. https://doi.org/10.1016/j.jde.2013.10.006 doi: 10.1016/j.jde.2013.10.006
    [5] S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201–216.
    [6] P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746
    [7] B. Ge, Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal.-Real, 30 (2016), 236–247. https://doi.org/10.1016/j.nonrwa.2016.01.003 doi: 10.1016/j.nonrwa.2016.01.003
    [8] Y. Hua, X. Yu, On the ground state solution for a critical fractional Laplacian equation, Nonlinear Anal., 87 (2013), 116–125. https://doi.org/10.1016/j.na.2013.04.005 doi: 10.1016/j.na.2013.04.005
    [9] X. Shang, J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differ. Equations, 258 (2015), 1106–1128. https://doi.org/10.1016/j.jde.2014.10.012 doi: 10.1016/j.jde.2014.10.012
    [10] G. Gu, W. Zhang, F. Zhao, Infinitely many sign-changing solutions for a nonlocal problem, Ann. Mat. Pur. Appl., 197 (2018), 1429–1444. https://doi.org/10.1007/s10231-018-0731-2 doi: 10.1007/s10231-018-0731-2
    [11] M. Xiang, B. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190–204. https://doi.org/10.1016/j.na.2018.07.016 doi: 10.1016/j.na.2018.07.016
    [12] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [13] Y. C. Zhang, Existence, regularity and positivity of ground states for nonlocal nonlinear Schrödinger equations, Electron. J. Differ. Eq., 2019 (2019), 1–11.
    [14] R. A. Adams, Sobolev spaces, New York: Academic Press, 1975.
    [15] N. Laskin, Fractional quantum mechanics, Hackensack: World Scientific, 2018. https://doi.org/10.1142/10541
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(521) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog