Research article

An ACA-BM-SBM for 2D acoustic sensitivity analysis

  • Received: 24 September 2023 Revised: 22 November 2023 Accepted: 04 December 2023 Published: 18 December 2023
  • MSC : 65N35, 68W99, 76M99

  • In this paper, we present a novel computational approach (named ACA-BM-SBM) for the calculation of 2D acoustic sensitivity by combining the Burton-Miller-type singular boundary method (BM-SBM) with the adaptive cross-approximation (ACA) algorithm. The BM-SBM circumvents the source singularities of the fundamental solutions by introducing the origin intensity factors, and it eliminates the fictitious frequency problem in external acoustic fields by introducing the Burton-Miller formula. As a semi-analysis meshless method, the BM-SBM can accurately solve the external acoustic problem governed by the Helmholtz equation. Nevertheless, the computational inefficiency introduced by the dense coefficient matrix renders this method suboptimal, particularly for large-scale simulations. As the number of nodes increases, the computation time and store memory increase dramatically. ACA is a purely algebraic method based on hierarchical matrices which can be used to partition the coefficient matrix step by step. By employing ACA, the BM-SBM can be effectively accelerated, and this results in less computation time, as well as fewer memory requirements. Numerical experiments, including Dirichlet and Neumann boundary conditions, illustrate that the proposed approach is an accurate, efficient and fast numerical method for acoustic sensitivity analysis.

    Citation: Liyuan Lan, Zhiyuan Zhou, Hanqing Liu, Xing Wei, Fajie Wang. An ACA-BM-SBM for 2D acoustic sensitivity analysis[J]. AIMS Mathematics, 2024, 9(1): 1939-1958. doi: 10.3934/math.2024096

    Related Papers:

  • In this paper, we present a novel computational approach (named ACA-BM-SBM) for the calculation of 2D acoustic sensitivity by combining the Burton-Miller-type singular boundary method (BM-SBM) with the adaptive cross-approximation (ACA) algorithm. The BM-SBM circumvents the source singularities of the fundamental solutions by introducing the origin intensity factors, and it eliminates the fictitious frequency problem in external acoustic fields by introducing the Burton-Miller formula. As a semi-analysis meshless method, the BM-SBM can accurately solve the external acoustic problem governed by the Helmholtz equation. Nevertheless, the computational inefficiency introduced by the dense coefficient matrix renders this method suboptimal, particularly for large-scale simulations. As the number of nodes increases, the computation time and store memory increase dramatically. ACA is a purely algebraic method based on hierarchical matrices which can be used to partition the coefficient matrix step by step. By employing ACA, the BM-SBM can be effectively accelerated, and this results in less computation time, as well as fewer memory requirements. Numerical experiments, including Dirichlet and Neumann boundary conditions, illustrate that the proposed approach is an accurate, efficient and fast numerical method for acoustic sensitivity analysis.



    加载中


    [1] H. Liu, F. Wang, A novel semi-analytical meshless method for the thickness optimization of porous material distributed on sound barriers, Appl. Math. Lett., 147 (2024), 108844. https://doi.org/10.1016/j.aml.2023.108844 doi: 10.1016/j.aml.2023.108844
    [2] L. Chen, C. Liu, W. Zhao, L. Liu, An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Meth. Appl. Mech. Eng., 336 (2018), 507–532. https://doi.org/10.1016/j.cma.2018.03.025 doi: 10.1016/j.cma.2018.03.025
    [3] D. Fritze, S. Marburg, H. J. Hardtke, FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries, Comput. Struct., 83 (2005), 143–154. https://doi.org/10.1016/j.compstruc.2004.05.019 doi: 10.1016/j.compstruc.2004.05.019
    [4] N. H. Kim, J. Dong, K. K. Choi, N. Vlahopoulos, Z. D. Ma, M. Castanier, et al., Design sensitivity analysis for sequential structural-acoustic problems, J. Sound Vibr., 263 (2003), 569–591. https://doi.org/10.1016/S0022-460X(02)01067-2
    [5] L. Magri, M. P. Juniper, Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach, J. Fluid Mech., 719 (2013), 183–202. https://doi.org/10.1017/jfm.2012.639 doi: 10.1017/jfm.2012.639
    [6] L. Chen, C. Zheng, H. Chen, FEM/wideband FMBEM coupling for structural-acoustic design sensitivity analysis, Comput. Meth. Appl. Mech. Eng., 276 (2014), 1–19. https://doi.org/10.1016/j.cma.2014.03.016 doi: 10.1016/j.cma.2014.03.016
    [7] T. Wang, R. Green, R. Guldiken, J. Wang, S. Mohapatra, S. S. Mohapatra, Finite element analysis for surface acoustic wave device characteristic properties and sensitivity, Sensors, 19 (2019), 1749. https://doi.org/10.3390/s19081749 doi: 10.3390/s19081749
    [8] T. Sun, P. Wang, G. Zhang, Y. Chai, Transient analyses of wave propagations in nonhomogeneous media employing the novel finite element method with the appropriate enrichment function, Comput. Math. Appl., 129 (2023), 90–112. https://doi.org/10.1016/j.camwa.2022.10.004 doi: 10.1016/j.camwa.2022.10.004
    [9] L. Chen, H. Lian, S. Natarajan, W. Zhao, X. Chen, S. Bordas, Multi-frequency acoustic topology optimization of sound-absorption materials with isogeometric boundary element methods accelerated by frequency-decoupling and model order reduction techniques, Comput. Meth. Appl. Mech. Eng., 395 (2022), 114997. https://doi.org/10.1016/j.cma.2022.114997 doi: 10.1016/j.cma.2022.114997
    [10] L. Chen, H. Lian, Y. Xu, S. Li, Z. Liu, E. Atroshchenko, et al., Generalized isogeometric boundary element method for uncertainty analysis of time-harmonic wave propagation in infinite domains, Appl. Math. Model., 114 (2023), 360–378. https://doi.org/10.1016/j.apm.2022.09.030
    [11] L. Chen, J. Zhao, H. Lian, B. Yu, E. Atroshchenko, P. Li, A BEM broadband topology optimization strategy based on Taylor expansion and SOAR method-Application to 2D acoustic scattering problems, Int. J. Numer. Methods Eng., 2023. https://doi.org/10.1002/nme.7345 doi: 10.1002/nme.7345
    [12] S. Zhao, Y. Gu, A localized Fourier collocation method for solving high-order partial differential equations, Appl. Math. Lett., 141 (2023), 108615. https://doi.org/10.1016/j.aml.2023.108615 doi: 10.1016/j.aml.2023.108615
    [13] L. Qiu, F. Wang, Y. Gu, Q. H. Qin, Modified space‐time radial basis function collocation method for long‐time simulation of transient heat conduction in 3D anisotropic composite materials, Int. J. Numer. Methods Eng., 124 (2023), 4639–4658. https://doi.org/10.1002/nme.7327 doi: 10.1002/nme.7327
    [14] L. Sun, Z. Fu, Z. Chen, A localized collocation solver based on fundamental solutions for 3D time harmonic elastic wave propagation analysis, Appl. Math. Comput., 439 (2023), 127600. https://doi.org/10.1016/j.amc.2022.127600 doi: 10.1016/j.amc.2022.127600
    [15] L. Qiu, X. Ma, Q. H. Qin, A novel meshfree method based on spatio-temporal homogenization functions for one-dimensional fourth-order fractional diffusion-wave equations, Appl. Math. Lett., 142 (2023), 108657. https://doi.org/10.1016/j.aml.2023.108657 doi: 10.1016/j.aml.2023.108657
    [16] B. Ju, W. Qu, Three-dimensional application of the meshless generalized finite difference method for solving the extended Fisher-Kolmogorov equation, Appl. Math. Lett., 136 (2023), 108458. https://doi.org/10.1016/j.aml.2022.108458 doi: 10.1016/j.aml.2022.108458
    [17] S. Jiang, Y. Gu, M. V. Golub, An efficient meshless method for bimaterial interface cracks in 2D thin-layered coating structures, Appl. Math. Lett., 131 (2022), 108080. https://doi.org/10.1016/j.aml.2022.108080 doi: 10.1016/j.aml.2022.108080
    [18] Y. Li, C. Liu, W. Li, Y. Chai, Numerical investigation of the element-free Galerkin method (EFGM) with appropriate temporal discretization techniques for transient wave propagation problems, Appl. Math. Comput., 442 (2023), 127755. https://doi.org/10.1016/j.amc.2022.127755 doi: 10.1016/j.amc.2022.127755
    [19] P. Bouillard, S. Suleaub, Element-Free Galerkin solutions for Helmholtz problems: fomulation and numerical assessment of the pollution effect, Comput. Meth. Appl. Mech. Eng., 162 (1998), 317–335. https://doi.org/10.1016/S0045-7825(97)00350-2 doi: 10.1016/S0045-7825(97)00350-2
    [20] D. Soares Jr, An iterative time-domain algorithm for acoustic-elastodynamic coupled analysis considering meshless local Petrov-Galerkin formulations, Comput. Model. Eng. Sci., 54 (2009), 201–222. https://doi.org/10.3970/cmes.2009.054.201
    [21] M. Gorakifard, C. Salueña, I. Cuesta, E. Kian Far, The meshless local Petrov-Galerkin cumulant lattice Boltzmann method: Strengths and weaknesses in aeroacoustic analysis, Acta Mech., 233 (2022), 1467–1483. https://doi.org/10.1007/s00707-022-03177-8
    [22] Y. Gu, J. Lin, C. M. Fan, Electroelastic analysis of two-dimensional piezoelectric structures by the localized method of fundamental solutions, Adv. Appl. Math. Mech., 15 (2023), 880–900. https://doi.org/10.4208/aamm.OA-2021-0223 doi: 10.4208/aamm.OA-2021-0223
    [23] M. H. Gfrerer, M. Schanz, A coupled FEM‐MFS method for the vibro‐acoustic simulation of laminated poro‐elastic shells, Int. J. Numer. Methods Eng., 121 (2020), 4235–4267. https://doi.org/10.1002/nme.6391 doi: 10.1002/nme.6391
    [24] F. Wang, Y. Gu, W. Qu, C. Zhang, Localized boundary knot method and its application to large-scale acoustic problems, Comput. Meth. Appl. Mech. Eng., 361 (2020), 112729. https://doi.org/10.1016/j.cma.2019.112729 doi: 10.1016/j.cma.2019.112729
    [25] Y. Hon, W. Chen, Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems under complicated geometry, Int. J. Numer. Methods Eng., 56 (2003), 1931–1948. https://doi.org/10.1002/nme.642 doi: 10.1002/nme.642
    [26] S. Cheng, F. Wang, G. Wu, C. Zhang, A semi-analytical and boundary-type meshless method with adjoint variable formulation for acoustic design sensitivity analysis, Appl. Math. Lett., 131 (2022), 108068. https://doi.org/10.1016/j.aml.2022.108068 doi: 10.1016/j.aml.2022.108068
    [27] X. Wei, W. Luo, 2.5 D singular boundary method for acoustic wave propagation, Appl. Math. Lett., 112 (2021), 106760. https://doi.org/10.1016/j.aml.2020.106760 doi: 10.1016/j.aml.2020.106760
    [28] W. Chen, Singular boundary method: A novel, simple, meshfree, boundary collocation numerical method, Chinese J. Solid Mech., 30 (2009), 592–599. https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2009.06.011
    [29] X. Wei, C. Rao, S. Chen, W. Luo, Numerical simulation of anti-plane wave propagation in heterogeneous media, Appl. Math. Lett., 135 (2023), 108436. https://doi.org/10.1016/j.aml.2022.108436 doi: 10.1016/j.aml.2022.108436
    [30] Z. J. Fu, W. Chen, Y. Gu, Burton-Miller-type singular boundary method for acoustic radiation and scattering, J. Sound Vibr., 333 (2014), 3776–3793. https://doi.org/10.1016/j.jsv.2014.04.025 doi: 10.1016/j.jsv.2014.04.025
    [31] J. White, J. Phillips, T. Korsmeyer, Comparing precorrected-FFT and fast multipole algorithms for solving three-dimensional potential integral equations, In: Colorado conference on iterative methods, 1994.
    [32] Y. S. Smyrlis, A. Karageorghis, A matrix decomposition MFS algorithm for axisymmetric potential problems, Eng. Anal. Bound. Elem., 28 (2004), 463–474. https://doi.org/10.1016/S0955-7997(03)00100-0 doi: 10.1016/S0955-7997(03)00100-0
    [33] J. Tausch, J. White, Wavelet-like bases for integral equations on surfaces with complex geometry, IMACS Ser. Comput. Appl. Math., 4 (1998), 251–256.
    [34] J. R. Phillips, J. K. White, A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 16 (1997), 1059–1072. https://doi.org/10.1109/43.662670 doi: 10.1109/43.662670
    [35] J. R. Phillips, Rapid solution of potential integral equations in complicated 3-dimensional geometries, Massachusetts Institute of Technology, 1997.
    [36] L. Greengard, The rapid evaluation of potential fields in particle systems, Cambridge: MIT Press, 1988. https://doi.org/10.1016/0378-4754(88)90063-8
    [37] W. Hackbusch, B. N. Khoromskij, A sparse H-matrix arithmetic: general complexity estimates, J. Comput. Appl. Math., 125 (2000), 479–501. https://doi.org/10.1016/S0377-0427(00)00486-6 doi: 10.1016/S0377-0427(00)00486-6
    [38] W. Hackbusch, B. N. Khoromskij, A sparse ℋ-matrix arithmetic. Part Ⅱ: Application to multi-dimensional problems, Computing, 64 (2000), 21–47. https://doi.org/10.1007/PL00021408 doi: 10.1007/PL00021408
    [39] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000), 565–589. https://doi.org/10.1007/PL00005410 doi: 10.1007/PL00005410
    [40] M. Bebendorf, S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing, 70 (2003), 1–24. https://doi.org/10.1007/s00607-002-1469-6 doi: 10.1007/s00607-002-1469-6
    [41] C. Zheng, T. Matsumoto, T. Takahashi, H. Chen, Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Bound. Elem., 35 (2011), 1225–1235. https://doi.org/10.1016/j.enganabound.2011.05.004 doi: 10.1016/j.enganabound.2011.05.004
    [42] J. Li, W. Chen, Z. Fu, L. Sun, Explicit empirical formula evaluating original intensity factors of singular boundary method for potential and Helmholtz problems, Eng. Anal. Bound. Elem., 73 (2016), 161–169. https://doi.org/10.1016/j.enganabound.2016.10.003 doi: 10.1016/j.enganabound.2016.10.003
    [43] S. Cheng, F. Wang, P. W. Li, W. Qu, Singular boundary method for 2D and 3D acoustic design sensitivity analysis, Comput. Math. Appl., 119 (2022), 371–386. https://doi.org/10.1016/j.camwa.2022.06.009 doi: 10.1016/j.camwa.2022.06.009
    [44] L. Godinho, D. Soares Jr, P. Santos, Efficient analysis of sound propagation in sonic crystals using an ACA-MFS approach, Eng. Anal. Bound. Elem., 69 (2016), 72–85. https://doi.org/10.1016/j.enganabound.2016.05.001 doi: 10.1016/j.enganabound.2016.05.001
    [45] L. Godinho, P. Amado-Mendes, A. Pereira, D. Soares Jr, An efficient MFS formulation for the analysis of acoustic scattering by periodic structures, J. Theor. Comput. Acoust., 26 (2018), 1850003. https://doi.org/10.1142/S2591728518500032
    [46] X. Wei, B. Chen, S. Chen, S. Yin, An ACA-SBM for some 2D steady-state heat conduction problems, Eng. Anal. Bound. Elem., 71 (2016), 101–111. https://doi.org/10.1016/j.enganabound.2016.07.012 doi: 10.1016/j.enganabound.2016.07.012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(865) PDF downloads(43) Cited by(3)

Article outline

Figures and Tables

Figures(18)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog