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Abstract: In this paper, we present a novel computational approach (named ACA-BM-SBM) for the 

calculation of 2D acoustic sensitivity by combining the Burton-Miller-type singular boundary method 

(BM-SBM) with the adaptive cross-approximation (ACA) algorithm. The BM-SBM circumvents the 

source singularities of the fundamental solutions by introducing the origin intensity factors, and it 

eliminates the fictitious frequency problem in external acoustic fields by introducing the Burton-Miller 

formula. As a semi-analysis meshless method, the BM-SBM can accurately solve the external acoustic 

problem governed by the Helmholtz equation. Nevertheless, the computational inefficiency introduced 

by the dense coefficient matrix renders this method suboptimal, particularly for large-scale simulations. 

As the number of nodes increases, the computation time and store memory increase dramatically. ACA 

is a purely algebraic method based on hierarchical matrices which can be used to partition the 

coefficient matrix step by step. By employing ACA, the BM-SBM can be effectively accelerated, and 

this results in less computation time, as well as fewer memory requirements. Numerical experiments, 

including Dirichlet and Neumann boundary conditions, illustrate that the proposed approach is an 

accurate, efficient and fast numerical method for acoustic sensitivity analysis. 
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1. Introduction 

Acoustic sensitivity analysis reveals the relationship between acoustic physical values and design 

variables, and it is a crucial part of acoustic optimization design [1–5]. In the last few decades, various 

numerical simulation methods have played a significant role in solving acoustic sensitivity analysis. 

The finite element method (FEM) [6–8], the boundary element method (BEM) [9–11] and some 

meshless methods [12–15] are currently the mainstream numerical tools. Among them, the FEM 

requires complicated mesh division, which results in a high calculation cost and long pre-processing 

time. In particular, the FEM must artificially setup a finite domain with an absorbing layer when 

applied to an external acoustic field. The BEM is widely applied in the field of acoustic radiation and 

scattering since its basis function satisfies the governing equation of acoustic problems and the 

Sommerfeld condition at infinity. In addition, the BEM reduces the dimension of the computational 

problem because only the boundary of the computational domain is required to be discretized. However, 

the BEM has to solve the singular integrals, which is a cumbersome and time-consuming task. 

To avoid the disadvantages of the FEM and BEM, many scholars have proposed various meshless 

methods, such as the generalized finite difference method [16,17], the element-free Galerkin 

method [18,19], the meshless local Petrov-Galerkin approach [20,21], the method of fundamental 

solutions (MFS) [22,23], the boundary knot method [24,25] and the singular boundary method 

(SBM) [26,27]. Among the above methods, the MFS adopts the same kernel function as the BEM, and 

therefore is only required to discretize the boundary of the computational domain. Meanwhile, the 

MFS requires selection of the fictitious boundary outside of the computational domain to eliminate the 

source singularity. However, as the precise arrangement of the fictitious boundary plays a crucial role 

in ensuring the accuracy of the MFS, the development of an effective method for constructing the 

fictitious boundary in irregular and complex geometries has become an urgent and pivotal issue to 

address in current research. 

The SBM is a semi-analysis and boundary-type meshless method proposed by Chen in 2009 [28]. 

This method discards the fictitious boundary in the MFS by introducing the origin intensity factors 

(OIFs) [29]. In addition, the method inherits the advantages of the BEM and MFS, and it is simple and 

accurate due to the use of a fundamental solution, especially for acoustic scattering or radiation 

problems. Like the BEM, the SBM may encounter the issue of fictitious eigenfrequencies when solving 

external acoustic field problems. In this regard, Fu et al. [30] proposed a Burton-Miller-type SBM 

(BM-SBM), which allows the method to accurately and stably solve acoustic radiation and scattering 

problems. Compared with other traditional methods, the BM-SBM is free of integration and mesh, 

mathematically simple and easy to program. Meanwhile, the combination of the Burton-Miller formula 

and the SBM overcomes the non-uniqueness issue in the vicinity of the corresponding interior 

eigenfrequencies, and it has been effectively verified on the acoustic radiation and scattering problems. 

The coefficient matrices of the BEM, MFS and BM-SBM each constitute asymmetric dense full-

rank matrices with storage memory represented by 2( )O N , where N is the number of computational 

domain nodes. If a large-scale problem with millions of degrees of freedom is considered, it is indeed 

difficult for a computer to solve. As a result, many scholars have conducted research on fast algorithms 

in order to efficiently solve large-scale problems [31–33]. Currently, fast algorithms can be classified 

into three main categories based on mathematical principles: the fast Fourier transform [34,35] 

algorithm, the fast multipole method [36] and algebraic methods based on matrix compression. 

Among the algebraic methods based on matrix compression, Hackbusch and Khoromskij [37,38] 
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proposed the theory of the hierarchical matrix (H-matrix) in one-dimensional space. The idea of the 

H-matrix is to sparsely represent the coefficient matrix. The H-matrix has nearly linear complexity in 

matrix operations such as matrix-vector multiplication, matrix-matrix multiplication and matrix 

inversion. It divides the entire coefficient matrix into two types of matrix blocks according to the 

allowable conditions: one is the block of far-field sub-matrices that can be represented approximately 

and the other is the block of near-field sub-matrices that needs to be stored and expressed completely. 

In addition, Bebendorf and Rjasanow [39,40] developed the theoretical formulation of the adaptive 

cross-approximation (ACA) algorithm based on the pseudo-skeleton approximation, ultimately 

proving the higher robustness of the ACA method in the low-rank approximation process. 

In this paper, ACA is introduced into the BM-SBM to accelerate the solving process for the 

acoustic sensitivity associated with external sound fields subject to Dirichlet and Neumann boundary 

conditions. Unlike the conventional BM-SBM, the proposed ACA-BM-SBM uses low-rank 

approximation instead of the traditional iterative solution and Gaussian elimination, which greatly 

improves computational efficiency and reduces the memory requirement. Therefore, the proposed 

method has great potential in the acoustic sensitivity analysis of large-scale problems. 

The rest of this paper is organized as follows. Section 2 briefly describes the acoustic sensitivity 

problem, and, in Section 3, the conventional SBM and the BM-SBM are described. In Section 4, the 

principle of the ACA algorithm and the calculation steps are given. In Section 5, four examples are 

provided to illustrate the efficiency and accuracy of the proposed algorithm. Finally, some conclusions 

are summarized in Section 6. 

2. Acoustic sensitivity analysis 

Consider a general twodimensional sound propagation problem governed by 

2 2

1 2( ) ( ) 0,   ( , ) ,u k u x x + = = x x x                       (1) 

subject to the following Dirichlet and Neumann boundary conditions: 

 
1 2 D( ) ( ),   ( , ) ,u u x x= = x x x                         (2) 

 1 2 N

( )
( ) ,   ( , ) ,

u
q x x


= = 

 x

x
x x

n
                        (3) 

where 
2  represents the Laplace operator, u(x) denotes the sound pressure value of point x in the 

external sound field, 2 /k f c=   indicates the wave number, f refers to the sound frequency, c is the 

medium velocity in the external field, and ( )u x  and 
( )u

 x

x

n
 are the known sound pressure and its 

normal derivative on boundaries 
D  and 

N , respectively. The acoustic sensitivity in this paper can 

be expressed as 

 
D( ) ( ),   ,u u= x x x                             (4) 
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N( ) ( ),   ,q q= x x x                             (5) 

where ( )u x   and ( )q x   denote the differentiation of physical quantities with respect to the design 

variables, and ( )u x  and ( )q x  indicate known values. 

For two-dimensional external acoustic field problems, the sound pressure should satisfy the 

condition at infinity, i.e., the Sommerfeld condition [41]: 

 

1

2
( )

lim i ( ) 0,
r

u
r ku

r→

 
− =  

x
x                          (6) 

where r denotes the distance from the point x to the center of the acoustic field, and i is an imaginary 

unit. 

3. Burton-Miller-type singular boundary method 

The SBM is a semi-analysis boundary-type meshless method. It represents the sound pressure at 

the true boundary point as a linear accumulation of the fundamental solution, while introducing the 

concept of OIFs to avoid the source singularity problem caused by the coincidence of field and source 

points, as shown in Figure 1. 

 

Figure 1. Distribution of source points for external acoustic problems. 

The solutions ( )u x  and ( )q x  of the SBM are approximated as a linear accumulation based on 

the fundamental solutions of all collocation points, namely, 

 D

1,

( ) ( , ) ,  , ,
N

i j i j i ii i j

j i j

u G u 
= 

= +  x x s x s                   (7) 
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1,

( , )
( ) ,  , ,

N
i j

i j i ii i j

j i j x

G
q q 

= 


= +  




x s
x x s

n
                 (8) 

where 
j  represents the unknown coefficient corresponding to the jth source point, 

ix  denotes the 

ith field point and 
js  denotes the jth source point; N is the number of source points or field points, 

both of which are equal. In addition, 
iiu   and 

iiq   are the OIFs for the Dirichlet and Neumann 
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boundary conditions, respectively. ( , )i jG x s   refers to the fundamental solution to the Helmholtz 

equation: 

 )((1)

0

i
( , ) ( , ) ,

4
i j i jG H kr=x s x s                          (9) 

where ( , )i jr x s   denotes the distance between the filed point 
ix   and the source point 

js  ; (1)

0H  

represents the Hankel function of the first kind of order zero, and its derivative is as follows: 

 ( )
(1)

0 0 0
1 1 1

d ( ) d ( ) d ( ) i
i ( ) ( ) ( ) ,

d d d 2

H w J w Y w
J w Y w Y w

w w w
−= + = − + −             (10) 

where 
0J  and 

0Y  represents the zero-order Bessel function of the first kind and the second kind, 

respectively. 

In order to address the fictitious frequency issues in acoustic sensitivity analysis, the BM-SBM 

formulations based on Eqs (7) and (8) are given as follows: 

 BM

D

1,

( , )
( ) ( , ) ,  , ,

N
i j

i j i j i ii i j

j i j s
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n n n
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where 1/ ( 1)k = + , and BM

iiu  and BM

iiq  are OIFs of the BM-SBM. 

The OIFs in Eqs (7) and (8) constitute the core part of the SBM. By using the empirical formulas, 

iiu  and 
iiq  are written as follows [42,43]: 

 
i 1

ln( ) ln( ) ,
4 2π 2π 2

j

ii

l k
u 

 
= − + + 

 
                      (13) 

 
L
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,

N
j i j

ii

j j ij i s

l G
q

l l= 


= −




x s

n
                        (14) 

where 
jl  is the influence range of the source points, as shown in Figure 2,  is the Euler constant 

and 
L ( , ) ln / (2π)i j i jG = − −x s x s  represents the fundamental solution of the Laplace equation. 

 

Figure 2. Influence range of source points for two-dimensional problems. 
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For the problem of acoustic sensitivity in the infinite domain, the OIFs corresponding to the BM-

SBM are as follows: 

 
LBM
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( , )
,

N
j i j

ii ii

j j i i s

l G
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Substituting the boundary conditions into Eqs (11) and (12), the following system of linear equations 

can be written: 

 ,Aα = b                                 (17) 

where A is the coefficient matrix of the BM-SBM, α  denotes the coefficient vector to be solved and 

b is the known boundary condition of the problem. It should be pointed out that the traditional methods 

need to generate the matrix A and solve Eq (17) by employing iterative or direct solvers. However, we 

will develop a new matrix compression technique in Section 4 to obtain the coefficient vector α  

based on the ACA algorithm. 

After obtaining α , the sound pressure and the acoustic sensitivity at any point in the acoustic 

field can be respectively expressed as 

 
1
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where 
j   and ( , )jG x s   denote the differentiation of 

j   and ( , )jG x s  , respectively, for the 

design variables. 2i / ( 1)k = − +  when the design variable is the wave number k. The vector form of 

Eq (19) can be written as follows: 

 + .  
    

= + + +  
     

G G G
u α G α G

n n n
                   (20) 

Taking the wave number k as an example, since 
j   cannot be differentiated directly with 

respect to k, the three-point difference method is used to approximate 
j , as shown in the following 

equation: 
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                 (21) 

4. Adaptive cross-approximation 

The system of the linear Eq (17) in Section 3 has the computational complexity of 2( )O N . More 

storage memory and computation time are required when solving large-scale systems; hence, the ACA 

algorithm is introduced in this section [44,45]. 

The core of the ACA algorithm is the low-rank compression of sub- matrices of the large matrix 

A. Before that, how to decompose the large matrix A into sub-matrices should be considered. When 

decomposing the matrix A, the clustered and partitioned points are stored in the index subsets of the 

quadtree based on the geometric location of the source points. 

The admissible condition is an important basis for distinguishing between near blocks and far 

blocks, where near blocks need to be fully expressed while far blocks are compressed by using the 

ACA algorithm to achieve matrix sparsity. The traditional admissible condition is written as 

 min{diam( ),diam( )} dist( , ),t s t s                        (22) 

where 
t  and 

s  are two source point clusters, diam( )  denotes the diameter range of the space, 

dist( )  denotes the distance between two spaces and 0 1   is the compatibility condition factor. 

The mathematical form of the traditional admissible condition is simple, but the calculations of 

diam( )  and dist( )  require a computational size of 2( )O N . To avoid the above problem, Wei 

et al. [46] introduced the background grid to cluster points and generate the list of admissible cluster 

pairs (Figure 3). Depending on the number of levels in the tree structure, each cell comprising the 

grids has a corresponding index (i, j), and the distribution points are located in all cells. Taking 

Figure 3 for example, the cell {1, 2, 3, 4} in level 2, the cell {1,2} in level 3 and the cell {1} in 

level 4 are indexed as (1,1), (2,1) and (4,1), respectively. The new admissible condition, rather than 

Eq (21), is written as 

  and ,
t s t s

i i j j    −  −                         (23) 

where   is a pre-set positive integer. 
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Figure 3. Diagrams of the cluster (left) and quadtree (right). 

The hierarchical matrix is shown in Figure 4 for 1 = . As shown in Figure 4, the new admissible 

condition only requires the index number; thus, no extra calculations are needed to generate the 

admissible cluster pairs. Then, the far-field block m n
B  which meets the admissible condition can be 

approximated by using low-rank methodology, as follows: m r r n U V  (Figure 5). The major steps for 

the ACA algorithm are shown in Figure 6. 

 

Figure 4. The hierarchical matrix ( 1 = ). 

 

Figure 5. The diagram of the ACA matrix approximate decomposition. 
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Figure 6. The steps for the ACA algorithm. 

5. Numerical results and discussions 

In this section, four examples are presented to verify the accuracy and effectiveness of the 

proposed method. Numerical accuracy is judged by the relative root mean square error (RRMSE): 

 

( )
2

n e

1

2

e

1

( ) ( )

RRMSE= ,

( )

M

j j

j

M

j

j

u t u t

u t

=

=

−


                      (24) 

where 
jt  denotes the jth value of M equidistant nodes for the design variable; 

n ( )ju t  and 
e ( )ju t  

respectively indicate the numerical and exact solutions at the design variable 
jt  . The computing 

platform in this study was a Windows 10 (64 bit) laptop with a 2.3 GHz CPU and 16 GB RAM, coded 

in MATLAB. 

5.1. Acoustic radiation by an infinite pulsating cylinder (Neumann boundary condition) 

An infinite pulsating cylinder is considered [43]. The analytical solution of the sound pressure at 

the external acoustic field for an infinite pulsating cylinder is as follows: 
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1

0 0

1

1

i ( )
( ) ,

( )

cv H kr
u r

H ka


=                            (25) 

where 
0 1m/sv =   is the velocity of the normal vibration, r is the distance from the test point to 

coordinates (0,0), and 31.2 kg / m =   and 341 m / sc =   are the density of air and the speed of 

propagation of sound waves in air, respectively. The exact solution for the acoustic sensitivity with 

respect to the wave number k can be expressed as 

 

( )
( )1 1 1 1 10

1 1 0 0 22
1

1

i
( ) ( ) ( ) ( ) ( ) .

2( )

cvu a
rH kr H ka H kr H ka H ka

k H ka

−  
= + −   

          (26) 

A pulsating cylinder with radius 1ma =  is investigated and 100000N =  uniformly distributed 

source points were chosen on the boundary. The frequency f was divided into 100 design variables 

from 50 Hz to 300 Hz, i.e., the wave number 2 /k f c=    rises from 0.92 to 5.53 at intervals of 

0.0465k = . 

Figure 7 shows that the numerical results of sensitivity obtained by the FEM, the BM-SBM and 

the ACA-BM-SBM agree in agreement very well with the exact solutions when 6000N =  . The 

RRMSEs of acoustic sensitivity for the real part corresponding to the FEM, the BM-SBM and the 

ACA-BM-SBM were 0.0066, 0.0010 and 0.0011, respectively. Similarly, the results of the above 

method in the imaginary part were 0.0068, 0.0012 and 0.0013, respectively. The last two methods were 

superior to the FEM in terms of computational accuracy, and the BM-SBM was slightly better than the 

ACA-BM-SBM. The relative errors between the ACA-BM-SBM and the exact solution are also 

provided in Figure 8 for 100000N = , which verifies the accuracy of this acceleration algorithm. In 

addition, Figure 9 shows the histograms of the CPU computation time of the traditional BM-SBM and 

the proposed ACA-BM-SBM, indicating that the ACA algorithm can save plenty of time in the 

computation of large-scale matrices. In addition, Figure 10 displays the RRMSEs of these two 

methods, as obtained for different numbers of source points. It can be seen that the two methods have 

good convergence, while the traditional BM-SBM faces the issue of limited computer memory when 

solving large-scale problems. 

    

  (a) Real part                       (b) Imaginary part 

Figure 7. Comparisons of numerical and exact solutions for the pulsating cylinder (N = 6000). 
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Figure 8. Relative errors of real and imaginary parts (N = 100000). 

 

Figure 9. The CPU times of the ACA-BM-SBM and BM-SBM. 

 
    (a) Real part                           (b) Imaginary part 

Figure 10. The RRMSEs of the ACA-BM-SBM and BM-SBM for different numbers of source points. 
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5.2. Acoustic scattering by a rigid cylinder (Neumann boundary condition) 

In the second example, the scattering of a rigid cylinder in a planar acoustic background is 

considered, as shown in Figure 11. The wave number k is the design variable for acoustic sensitivity 

analysis. The exact solution for sensitivity is 

 ( )( 1) ( 1)

0

i ( ) ( ) cos( ).n

n n

n

u
k J ka J ka n

k




− +

=


= − −


                   (27) 

 

Figure 11. The rigid cylinder scattering model. 

Figure 12 illustrates the comparisons of the numerical and exact solutions of acoustic sensitivity 

with respect to wave number for the rigid cylinder when the number of source points is set as N 

= 10000. From this figure, we can find that the ACA-BM-SBM can accurately and effectively predict 

the acoustic sensitivity of the considered rigid cylinder. 

 
   (a) Real part                         (b) Imaginary part 

Figure 12. Comparisons of numerical and exact solutions for the rigid cylinder (N = 10000). 

Table 1 lists the condition numbers and memories of the conventional BM-SBM and the ACA-

BM-SBM for various numbers of boundary nodes. The condition number increased with the increasing 
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number of nodes, and it still had a relatively smaller value. As the number of boundary nodes increases, 

the memory required by the conventional BM-SBM increases dramatically, eventually leading to 

insufficient memory for computation. In contrast, the ACA-BM-SBM requires less memory under the 

same conditions; thus, calculations for large-scale problems can be performed. 

Table 1. Condition numbers and memories of the conventional BM-SBM and the ACA-

BM-SBM for various numbers of boundary nodes. 

Boundary nodes N Condition number 

Memory (MB) 

Conventional BM-SBM ACA-BM-SBM 

200 7.41 0.61 0.45 

500 18.26 3.81 1.96 

800 29.12 9.77 3.20 

1000 36.37 15.26 4.46 

2000 72.59 61.04 10.22 

4000 145.06 244.14 23.70 

6000 217.52 549.32 39.52 

8000 —— —— 53.95 

10000 —— —— 70.88 

20000 —— —— 155.00 

50000 —— —— 437.96 

100000 —— —— 927.57 

5.3. Acoustic scattering by a rigid cylinder (Neumann boundary condition) 

This example considers a sound scattering problem from a car-like model, as shown in Figure 13. 

Obviously, this is a half-space problem. We assume that there is a sound source at the rear of the car, 

and this sound source can be represented as 

 )( )((1) (1)

in 0 obs 0 sym

i i
,

4 4
P H k r H k r=  +                       (28) 

where 
obsr   denotes the distance between all boundary points of the car-like model and the sound 

source, 
symr   represents the distance between all boundary points of the car-like model that are 

symmetrical about the X axis and the sound source. The calculation formula for the sound pressure 

level is given as 

 10

0

=20log ( ),
p

SPL
p

                            (29) 

where p  is the sound pressure at the test point and 0p  is the reference sound pressure, usually 

taken as 52.0 10 Pa− . 

The acoustic sensitivity with respect to the wave number k can be calculated as follows: 
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Figure 13. The car-like model in a half-space. 

Since there is no exact solution for this problem, the simulation results for the FEM obtained via 

COMSOL Multiphysics were used as reference values. Figure 14 compares the distributions of sound 

pressure levels with various frequencies obtained from the ACA-BM-SBM and the FEM. It is observed 

that the numerical solutions of the two methods are very consistent, and the deviations at 100 Hz, 200 

Hz and 300 Hz are respectively 0.36, 0.32 and 0.31 by calculation, proving the effectiveness of the 

ACA-BM-SBM. Finally, Figure 15 gives the numerical results of acoustic sensitivity for the three test 

points A (8, 8), B (8, 5) and C (2, 5). The acoustic sensitivity deviations between the FEM and the 

ACA-BM-SBM in the real part are 0.0502, 0.0128 and 0.0157, respectively, for the above three test 

points. And, the deviation results for the imaginary part are 0.0525, 0.0122 and 0.0173, respectively. 

 

(a) ACA-BM-SBM 

 

(b) FEM 

Figure 14. Comparisons of sound pressure levels obtained by the ACA-BM-SBM and the FEM. 
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  (a) Real part                          (b) Imaginary part 

Figure 15. Acoustic sensitivities of the real and imaginary parts at points A, B and C. 

5.4. Acoustic scattering by a square plate with multiple holes (Dirichlet boundary condition) 

The last example considers a square plate containing 100 circular holes, as shown in Figure 16. 

In the calculation, the ACA-BM-SBM used N = 20000 boundary nodes, from which an evenly 

distributed set of 200 nodes on each circle were chosen. 

 

Figure 16. The square plate with 100 multi-connected domains in a plane wave. 

Figure 17 shows the profiles of the sound pressure on the square [0, 4]×[0, 4] obtained by 

employing the proposed fast algorithm and the FEM with different plane wave incidence angles and 

different frequencies. It can be noticed from Figure 17 that the numerical results of the ACA-BM-SBM 

agree well with those of the FEM obtained via COMSOL Multiphysics. Numerical experiments 

indicate that the proposed scheme can address the large-scale and multi-connected problem accurately 

and effectively. 
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(a) The ACA-BM-SBM 

 
(b) The FEM 

Figure 17. Sound pressure values for three incident wave angles and frequencies. 

To analyze the sensitivity of this problem and provide data for the validation of other numerical 

methods, Figure 18 was constructed to provide the predicted values of the acoustic sensitivity with 

respect to the wave number at the three test points D (3, 3.5), E (3.5, 1) and F (2, 3.5). The acoustic 

sensitivity deviations between the FEM and the ACA-BM-SBM in the real part are 0.00497, 0.00223 

and 0.00345, respectively, for the above three test points. The deviation results for the imaginary part 

are 0.00496, 0.00224 and 0.00350, respectively. 

 

  (a) Real part                          (b) Imaginary part 

Figure 18. Numerical results for acoustic sensitivity at the points D, E and F. 
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6. Conclusions 

We have proposed a fast meshless approach called the ACA-BM-SBM for acoustic sensitivity 

analysis by introducing ACA into the BM-SBM. Compared with the BEM and the MFS, the new 

method avoids singular integrals and a fictitious boundary, and thus is simple and straightforward. 

More importantly, the developed ACA-BM-SBM circumvents the solution of dense matrices by 

adopting the matrix compression technique, resulting in a fast calculation process. Based on this, the new 

method has the potential to become a tool for the large-scale simulation of acoustic sensitivity analysis. 

Numerical examples have been provided to investigate the acoustic radiation from an infinite 

pulsating cylinder, acoustic scattering by a rigid cylinder, acoustic scattering by a car-like model in a 

half-plane and plane wave scattering in a multi-connected domain. Results demonstrate that the 

proposed method is accurate, efficient and convergent for acoustic sensitivity analysis with various 

geometries and boundary conditions. This study provides a numerical tool for acoustic sensitivity 

analysis with complicated structures; it also lays the foundation for the acoustic structure optimization 

in the future.  

It should be pointed out that the ACA-BM-SBM proposed in this paper is only applicable to 2D 

problems. In theory, this method can be directly extended to 3D cases, which will be an important part 

of our future research. In addition, we chose to employ the direct differentiation method in the acoustic 

sensitivity analysis, which is time-consuming and labor-intensive for multiple design variables. 

Therefore, our future work will focus on the topological optimization of acoustic structures under the 

premise of solving 3D problems and achieving acceleration. 
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