Research article

Algebraic invariants of edge ideals of some circulant graphs

  • Received: 16 August 2023 Revised: 22 November 2023 Accepted: 28 November 2023 Published: 04 December 2023
  • MSC : Primary 13C15; Secondary 13P10, 13F20

  • Let $ S $ be a polynomial ring over a field and $ I $ be an edge ideal associated with some classes of circulant graphs. We discussed the algebraic invariants, namely, regularity, projective dimension, depth, and the Stanley depth of $ S/I. $

    Citation: Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq. Algebraic invariants of edge ideals of some circulant graphs[J]. AIMS Mathematics, 2024, 9(1): 868-895. doi: 10.3934/math.2024044

    Related Papers:

  • Let $ S $ be a polynomial ring over a field and $ I $ be an edge ideal associated with some classes of circulant graphs. We discussed the algebraic invariants, namely, regularity, projective dimension, depth, and the Stanley depth of $ S/I. $



    加载中


    [1] R. R. Bouchat, Free resolutions of some edge ideals of simple graphs, J. Commut. Algebra, 2 (2010), 1–35. https://doi.org/10.1216/JCA-2010-2-1-1 doi: 10.1216/JCA-2010-2-1-1
    [2] G. Caviglia, H. T. Hà, J. Herzog, M. Kummini, N. Terai, N. V. Trung, Depth and regularity modulo a principal ideal, J. Algebr. Comb., 49 (2019), 1–20. https://doi.org/10.1007/s10801-018-0811-9 doi: 10.1007/s10801-018-0811-9
    [3] B. Shaukat, A. U. Haq, M. Ishaq, Some algebraic Invariants of the residue class rings of the edge ideals of perfect semiregular trees, Commun. Algebra, 51 (2023), 2364–2383. https://doi.org/10.1080/00927872.2022.2159968 doi: 10.1080/00927872.2022.2159968
    [4] M. E. Uribe-Paczka, A. Van Tuyl, The regularity of some families of circulant graphs, Mathematics, 7 (2019), 657. https://doi.org/10.3390/math7070657 doi: 10.3390/math7070657
    [5] W. Bruns, H. J. Herzog, Cohen-macaulay rings, Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511608681
    [6] J. Murdock, On the structure of nilpotent normal form modules, J. Differ. Equations, 180 (2002), 198–237. https://doi.org/10.1006/jdeq.2001.4058 doi: 10.1006/jdeq.2001.4058
    [7] J. Murdock, J. A. Sanders, A new transvectant algorithm for nilpotent normal forms, J. Differ. Equations, 238 (2007), 234–256. https://doi.org/10.1016/j.jde.2007.03.016 doi: 10.1016/j.jde.2007.03.016
    [8] J. A. Sanders, Stanley decomposition of the joint covariants of three quadratics, Regul. Chaot. Dyn., 12 (2007), 732–735. https://doi.org/10.1134/S1560354707060135 doi: 10.1134/S1560354707060135
    [9] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169. https://doi.org/10.1016/j.jalgebra.2008.01.006 doi: 10.1016/j.jalgebra.2008.01.006
    [10] B. Ichim, L. Katthän, J. J. Moyano-Fernández, How to compute the Stanley depth of a module, Math. Comput., 86 (2017), 455–472. https://doi.org/10.1090/mcom/3106 doi: 10.1090/mcom/3106
    [11] B. Ichim, L. Katthän, J. J. Moyano-Fernández, Stanley depth and the lcm-lattice, J. Comb. Theory, Ser. A, 150 (2017), 295–322. https://doi.org/10.1016/j.jcta.2017.03.005 doi: 10.1016/j.jcta.2017.03.005
    [12] Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of the edge ideals of square paths and square cycles, Commun. Algebra, 46 (2018), 1188–1198. https://doi.org/10.1080/00927872.2017.1339068 doi: 10.1080/00927872.2017.1339068
    [13] M. Pournaki, S. A. Seyed Fakhari, S. Yassemi, Stanley depth of powers of the edge ideal of a forest, Proc. Amer. Math. Soc., 141 (2013), 3327–3336. https://doi.org/10.1090/S0002-9939-2013-11594-7 doi: 10.1090/S0002-9939-2013-11594-7
    [14] R. P. Stanley, Linear diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193. https://doi.org/10.1007/BF01394054 doi: 10.1007/BF01394054
    [15] A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martin, A non-partitionable Cohen-Macaulay simplicial complex, Adv. Math., 299 (2016), 381–395. https://doi.org/10.1016/j.aim.2016.05.011 doi: 10.1016/j.aim.2016.05.011
    [16] M. Cimpoeaş, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012), 28–40.
    [17] J. Herzog, A survey on Stanley depth, In: A. Bigatti, P. Giménez, E. Sáenz-de-Cabezón, Monomial ideals, computations and applications, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 2083 (2013), 3–45. https://doi.org/10.1007/978-3-642-38742-5_1
    [18] A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773–784. https://doi.org/10.1080/00927870902829056 doi: 10.1080/00927870902829056
    [19] B. Alspach, T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25 (1979), 97–108. https://doi.org/10.1016/0012-365X(79)90011-6 doi: 10.1016/0012-365X(79)90011-6
    [20] J. C. Bermond, F. Comellas, D. F. Hsu, Distributed loop computer-networks: a survey, J. Parallel Distr. Comput., 24 (1995), 2–10. https://doi.org/10.1006/jpdc.1995.1002 doi: 10.1006/jpdc.1995.1002
    [21] F. K. Hwang, A survey on multi-loop networks, Theor. Comput. Sci., 299 (2003), 107–121. https://doi.org/10.1016/S0304-3975(01)00341-3 doi: 10.1016/S0304-3975(01)00341-3
    [22] E. A. Monakhova, A survey on undirected circulant graphs, Discrete Math. Algorit. Appl., 4 (2012), 1250002. https://doi.org/10.1142/S1793830912500024 doi: 10.1142/S1793830912500024
    [23] M. A. Makvand, A. Mousivand, Betti numbers of some circulant graphs, Czech. Math. J., 69 (2019), 593–607. https://doi.org/10.21136/CMJ.2019.0606-16 doi: 10.21136/CMJ.2019.0606-16
    [24] K. N. Vander Meulen, A. Van Tuyl, C. Watt, Cohen-Macaulay circulant graphs, Commun. Algebra, 42 (2014), 1896–1910. https://doi.org/10.1080/00927872.2012.749886 doi: 10.1080/00927872.2012.749886
    [25] G. Rinaldo, Some algebraic invariants of edge ideal of circulant graphs, Bull. Math. Soc. Sci. Math. Roum., 61 (2018), 95–105.
    [26] B. Shaukat, M. Ishaq, A. U. Haq, Z. Iqbal, Algebraic invariants of edge ideals of cubic circulant graphs, arXiv, 2023. https://doi.org/10.48550/arXiv.2307.12669
    [27] G. J. Davis, G. S. Domke, 3-circulant graphs, J. Comb. Math. Comb. Comput., 40 (2002), 133–142.
    [28] Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92–109. https://doi.org/10.15672/hujms.638033 doi: 10.15672/hujms.638033
    [29] CoCoA Team, CoCoA: A system for doing Computations in Commutative Algebra. Available from: http://cocoa.dima.unige.it/.
    [30] D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2002. Available from: https://www.unimelb-macaulay2.cloud.edu.au/home.
    [31] S. Morey, R. H. Villarreal, Edge ideals: algebraic and combinatorial properties, In: Progress in commutative algebra 1, De Gruyter, 1 (2012), 85–126. https://doi.org/10.1515/9783110250404.85
    [32] R. H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 238, New York: Marcel Dekker, Inc., 2001.
    [33] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Comb. Theory, Ser. A, 113 (2006), 435–454. https://doi.org/10.1016/j.jcta.2005.04.005 doi: 10.1016/j.jcta.2005.04.005
    [34] H. T. Hà, A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebr. Comb., 27 (2008), 215–245. https://doi.org/10.1007/s10801-007-0079-y doi: 10.1007/s10801-007-0079-y
    [35] L. T. Hoa, N. D. Tam, On some invariants of a mixed product of ideals, Arch. Math., 94 (2010), 327–337. https://doi.org/10.1007/s00013-010-0112-6 doi: 10.1007/s00013-010-0112-6
    [36] G. Kalai, R. Meshulam, Intersections of Leray complexes and regularity of monomial ideals, J. Comb. Theory, Ser. A, 113 (2006), 1586–1592. https://doi.org/10.1016/j.jcta.2006.01.005 doi: 10.1016/j.jcta.2006.01.005
    [37] J. Herzog, A generalization of the Taylor complex construction, Commun. Algebra, 35 (2007), 1747–1756. https://doi.org/10.1080/00927870601139500 doi: 10.1080/00927870601139500
    [38] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Vol. 150, New York: Springer Science+Business Media, 2013. https://doi.org/10.1007/978-1-4612-5350-1
    [39] H. Dao, C. Huneke, J. Schweig, Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebr. Comb., 38 (2013), 37–55. https://doi.org/10.1007/s10801-012-0391-z doi: 10.1007/s10801-012-0391-z
    [40] S. Morey, Depths of powers of the edge ideal of a tree, Commun. Algebra, 38 (2010), 4042–4055. https://doi.org/10.1080/00927870903286900 doi: 10.1080/00927870903286900
    [41] A. Ştefan, Stanley depth of powers of the path ideal, U.P.B. Sci. Bull., Ser. A, 85 (2023), 69–76.
    [42] M. Cimpoeaş, On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput. Sci., 5 (2015), 70–75.
    [43] S. Jacques, Betti numbers of graph ideals, Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2004. https://doi.org/10.48550/arXiv.math/0410107
    [44] S. Beyarslan, H. T. Hà, T. N. Trung, Regularity of powers of forests and cycles, J. Algebr. Comb., 42 (2015), 1077–1095. https://doi.org/10.1007/s10801-015-0617-y doi: 10.1007/s10801-015-0617-y
    [45] A. Popescu, Special stanley decompositions, Bull. Math. Soc. Sci. Math. Roum., 4 (2010), 363–372.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(811) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog