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1. Introduction

Let S = K [x1, . . . , xl] be a polynomial ring over the field K with standard grading and N be a
finitely generated graded S -module. Suppose that N admits the following minimal free resolution:

0 −→
⊕

j∈Z

S (− j)βr, j(N) −→
⊕

j∈Z

S (− j)βr−1, j(N) −→ · · · −→
⊕

j∈Z

S (− j)β0, j(N) −→ N −→ 0.

If pdim(N) denotes the projective dimension of N, then

pdim(N) = max
{
i : βi, j(N) , 0

}
.

If reg(N) denotes the Castelnuovo-Mumford regularity (or simply regularity) of N, then

reg(N) = max
{
j − i : βi, j(N) , 0

}
.

The regularity measures the complexity of a module, and the projective dimension measures how far a
module is from being projective. We refer the readers to [1–4] for a more detailed study of these two
invariants of N. If m := (x1, . . . , xl) is the unique maximal graded ideal of S , then the depth of N is
defined to be the common length of all maximal N-sequences in m. For more details about invariant
depth, we refer the readers to [5].
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In 1982, Stanley defined an invariant called the Stanley depth of a graded module over a graded
commutative ring. Let N be a finitely generated Zl-graded S -module. The K-subspace vK [W] is
generated by all elements of the form v f , where v is a homogeneous element in N, f is a monomial
in K [W] , and W ⊆ {x1, . . . , xl}. If vK[W] is a free K[W]-module then it is called a Stanley space
of dimension |W |. A decomposition P of K-vector space N as a finite direct sum of Stanley spaces
is called a Stanley decomposition of N. Let P : N = ⊕m

j=1v jK[W j], and the Stanley depth of P is

sdepth (P) = min
{
|W j| : j = 1, 2, . . . ,m

}
. The number

sdepth (N) := max
{

sdepth(P) : P is a Stanley decomposition of N
}
,

is called the Stanley depth of N. Stanley decompositions have applications in the normal form theory
for systems of differential equations (see [6–8]). Herzog et al. [9] gave the method for computing the
Stanley depth of monomial ideals. After that, Ichim et al. [10], introduced an algorithm for computing
the Stanley depth of a finitely generated module over a polynomial ring. Although the algorithms exist,
it is still hard to compute the Stanley depth. Therefore, it is crucial to give values and bounds for Stanley
depth of some classes of modules. We refer the readers to [11–13] for some known results on Stanley
depth. Stanley conjectured [14] that sdepth (N) ≥ depth (N). Duval et al. disproved this conjecture
in [15]. However, it is still interesting to determine the classes of the Zl-graded S -module that satisfy
this inequality. For some recent results regarding this inequality, known as Stanley’s inequality, see [3,
16–18].

Let G := (V(G), E(G)) be a graph with vertex set V(G) = {x1, . . . , xl} and edge set E(G). Throughout
this work, all graphs are finite and simple. The edge ideal I(G) associated with G is a squarefree
monomial ideal; that is, I(G) =

(
xix j : {xi, x j} ∈ E(G)

)
. A graph G is l-regular if every vertex of G has

degree l. Fix an integer n ≥ 2 and a subset S ⊂
{
1, . . . ,

⌊
n
2

⌋}
. The circulant graph Cn(S) is defined to be

a graph with vertex set {x1, ..., xn} and edge set

E(Cn(S)) =
{
{xi, x j} : |i − j| or n − |i − j| ∈ S

}
.

For convenience, the representation Cn(a1, . . . , aq) is used for Cn

(
{a1, . . . , aq}

)
. Generally, a circulant

graph Cn(a1, . . . , aq) is 2q-regular, except if 2aq = n, in which case, it is (2q − 1)-regular. See Figure 1
for examples of circulant graphs.
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Figure 1. From left to right, C9(1, 4) and C8(1, 3).
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Circulant graphs are sometimes viewed as generalized cycles as Cn = Cn(1). Circulant graphs
were introduced in 1846, and they have a number of applications in computer network design,
telecommunication networks, data connection networks, group theory, and others [19–22]. Several
papers have been written on the aforementioned algebraic invariants of edge ideals associated with
circulant graphs; see [23–25]. Uribe-Paczka et al. [4] computed regularity of all cubic circulant graphs.
Later, Shaukat et al. [26] gave the exact values of depth, projective dimension, and lower bounds of
Stanley depth of the quotient rings of the edge ideals associated with cubic circulant graphs. Unlike
cubic circulant graphs [27], there is no simple characterization or formula to uniquely represent all
four and five regular circulant graphs. The classification of all four and five regular circulant graphs
is a topic of ongoing research, and many mathematicians and computer scientists are working to gain
deeper insights into the properties of these graphs [22, 25]. In practice, researchers often focus on
specific subclasses of circulant graphs to make progress in their study.

Motivated by the above-mentioned works on the algebraic invariants of edge ideals associated with
circulant graphs, our aim is to extend the study of cubic circulant graphs. In particular, we study the
above-mentioned invariants of the quotient rings of the edge ideals associated with some families of
four and five regular circulant graphs, which include C2n(1, n− 1),C2n(1, 2), and C2n(1, n− 1, n), where
n ≥ 3. These graphs are depicted in Figures 2 and 3.
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Figure 2. From left to right, C2n(1, n − 1) and C2n(1, 2).
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Figure 3. C2n(1, n − 1, n).
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We give the exact values of depth, projective dimension, and bounds for the Stanley depth
of K [V(C2n(1, n − 1))] /I(C2n(1, n − 1)), (see Theorem 4.1, Corollary 4.2, and Theorem 4.3). In
Theorem 4.5, we give a formula for the regularity of the edge ideal associated with C2n(1, n − 1) when
n ≡ 0, 1(mod 3), and sharp bounds when n ≡ 2(mod 3). Zahid et al. gave values and sharp bounds
in [12, Corollaries 3.6 and 3.8] for depth and the Stanley depth of module K[V(C2n(1, 2))]/I(C2n(1, 2)).
We give the exact values of the regularity of the edge ideal associated with C2n(1, 2) when n is even
and tight bounds when n is odd, see Theorem 4.6. Also, the exact values for depth and sharp bounds
for Stanley depth of the module K[V(C2n(1, n − 1, n))]/I(C2n(1, n − 1, n)) were given by Zahid et al.
in [28, Theorem 3.3, and Corollary 3.4]. Our Theorem 4.7 gives the exact value for the regularity
of edge ideal associated with C2n(1, n − 1, n). It is worth mentioning that for computation of the said
algebraic invariants for four and five regular circulant graphs, the algebraic invariants associated with
certain subgraphs of C2n(1, n−1),C2n(1, 2) and C2n(1, n−1, n) play a significant role; see, for instance,
Lemmas 3.4 and 3.6–3.9. We acknowledge the use of CoCoA [29] and Macaulay2 [30] for calculations.

2. Preliminaries

In this section, we recall some results and definitions that will be used throughout the paper.

Lemma 2.1 ( [18]). Let 0 → X → Y → Z → 0 be a short exact sequence of Zl-graded S -modules,
then

sdepth(Y) ≥ min
{
sdepth(Z), sdepth(X)

}
.

Lemma 2.2 (Depth Lemma). If 0 → X → Y → Z → 0 is a short exact sequence of modules over a
local ring S , or a Noetherian graded ring with S 0 local, then

(a) depth(Y) ≥ min
{
depth(X), depth(Z)

}
;

(b) depth(X) ≥ min
{
depth(Y), depth(Z) + 1

}
;

(c) depth(Z) ≥ min
{
depth(Y), depth(X) − 1

}
.

Lemma 2.3 ( [18, Corollary 1.3]). Let J ⊂ S be a monomial ideal and z be a monomial such that z < J,
then depth (S/(J : z)) ≥ depth(S/J).

Lemma 2.4 ( [16, Proposition 2.7]). Let J ⊂ S be a monomial ideal and z be a monomial such that
z < J, then sdepth(S/(J : z)) ≥ sdepth(S/J).

When we introduce new variables into the ring, depth and Stanley depth will likewise increase [9,
Lemma 3.6], while regularity will not change [31, Lemma 3.5]. The subsequent lemma provides a
summary of these findings.

Lemma 2.5. Let J be a monomial ideal of S , and R̄ = S ⊗K K[xl+1] a polynomial ring in l+1 variables,
then depth(R̄/J) = depth(S/J) + 1, sdepth(R̄/J) = sdepth(S/J) + 1 and reg(R̄/J) = reg(S/J).

We also recall the following useful lemmas.

Lemma 2.6 ( [32, Proposition 2.2.20]). For 1 ≤ r < l, let S = R1 ⊗K R2, where R1 = K[x1, . . . , xr] and
R2 = K[xr+1, . . . , xl], then S/(I + J) � R1/I ⊗K R2/J.

By using Lemma 2.6 and combining it with [32, Proposition 2.2.21] and [18, Theorem 3.1] for
depth and Stanley depth, respectively, we get the following useful result.

AIMS Mathematics Volume 9, Issue 1, 868–895.



872

Lemma 2.7. For 1 ≤ r < l, let S = R1 ⊗K R2, where R1 = K[x1, . . . , xr] and R2 = K[xr+1, . . . , xl],
then depthS (R1/I ⊗K R2/J) = depthS (S/(I + J)) = depthR1

(R1/I) + depthR2
(R2/J) and we have

sdepthS (R1/I ⊗K R2/J) ≥ sdepthR1
(R1/I) + sdepthR2

(R2/J).

Let l ≥ 2. A graph G on vertex set {x1, . . . , xl} is said to be a path of length l − 1 if

E(G) =
{
{xi, xi+1} : i ∈ {1, . . . , l − 1}

}
.

We represent the path of length l − 1 by Pl. A graph G on vertex set {x1, . . . , xl} is said to be a
cycle of length l if E(G) = E(Pl) ∪

{
{xl, x1}

}
. We represent the cycle of length l by Cl. A bipartite

graph is a graph in which the set of vertices is partitioned into two disjoint sets called partite
sets such that no two vertices of a graph within the same partite set are adjacent. Let l ≥ 1, a
complete graph Kl on l vertices is a graph in which each pair of vertices is connected by an edge.
A complete bipartite graph is a bipartite graph such that every vertex of one partite set is connected
to every vertex of the other partite set. Let Ku,v denote the complete bipartite graph with partite sets
Ku = {x1, . . . , xu} and Kv = {xu+1, . . . , xu+v} . A vertex x j is a neighbor of a vertex xi in a graph G
if {xi, x j} ∈ E(G). The neighborhood NG(xi) of a vertex xi is the set of all neighbors of xi, that is,
NG(xi) :=

{
x j ∈ V(G) : {xi, x j} ∈ E(G)

}
. A subgraphH of a graph G, denoted byH ⊆ G, is a graph

such that V(H) ⊆ V(G) and E(H) ⊆ E(G). For a subset T ⊆ V(G), an induced subgraph of G is a
graph G′ := (T , E(G′)), such that E(G′) =

{
{xi, x j} ∈ E(G) : {xi, x j} ⊆ T

}
. A matching M in a graph

G is a subset of E(G) in which no two edges are adjacent. An induced matching in G is a matching
that forms an induced subgraph of G. An induced matching number of G denoted by indmat(G) is
defined as

indmat(G) = max
{
|M| : M is an induced matching in G

}
.

Katzman showed in [33, Lemma 2.2] that indmat(G) is a lower bound for the regularity of S/I(G).
Afterward, Hà et al. showed in [34, Corollary 6.9] that the regularity of S/I(G) is equal to the
indmat(G) if G is a chordal graph. The following lemma combines these results.

Lemma 2.8. If G is a finite simple graph, then reg(S/I(G)) ≥ indmat(G). Moreover, if G is a
chordal graph, then reg(S/I(G)) = indmat(G).

Lemma 2.9 ( [35, Lemma 3.2]). Let 1 ≤ r < l, R1 = K[x1, . . . , xr] and R2 = K[xr+1, . . . , xl]. If I and J
are monomial ideals such that I ⊂ R1, J ⊂ R2, and S = R1 ⊗K R2, then

reg (S/I + J) = reg(R1/I) + reg(R2/J).

The following result was proved by Kalai et al. in [36, Theorem 1.4] for squarefree monomial ideals
and was later generalized for arbitrary monomial ideals by Herzog in [37, Corollary 3.2].

Lemma 2.10. If I and J are the monomial ideals of S , then reg(S/(I + J)) ≤ reg(S/I) + reg(S/J).

In the following lemma, proof of parts (a) and (c) follows from Corollary 20.19 and Proposition 20.20
of [38], while part (b) comes from [39, Lemma 2.10].

Lemma 2.11 ( [2, Theorem 4.7]). Let I be a monomial ideal and z be a variable of S , then

(a) reg(S/I) = 1 + reg(S/(I : z)) if reg(S/(I, z)) < reg(S/(I : z)),
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(b) reg(S/I) ∈
{
reg(S/(I, z)), reg(S/(I, z)) + 1

}
if reg(S/(I : z)) = reg(S/(I, z)),

(c) reg(S/I) = reg(S/(I, z)) if reg(S/(I : z)) < reg(S/(I, z)).

It is clear and well known that depth(S ) = sdepth(S ) = l and reg(S ) = 0.

Lemma 2.12 ( [5, Theorems 1.3.3]). (Auslander–Buchsbaum formula) Let R be a commutative
Noetherian local ring and N be a non-zero finitely generated R-module of finite projective dimension,
then

pdim(N) + depth(N) = depth(R).

Now, we recall the results that were proved in [40, Lemma 2.8], [41, Lemma 4], and [1,
Lemma 3.1.1] for depth, Stanley depth and regularity, respectively.

Lemma 2.13. If l ≥ 2, then

(a) depth(S/I(Pl)) = sdepth(S/I(Pl)) =
⌈

l
3

⌉
,

(b) reg(S/I(Pl)) =
⌈

l−1
3

⌉
.

Lemma 2.14 ( [42, Proposition 1.3, Proposition 1.8 and Theorems 1.9]). If l ≥ 3, then

(a) depth(S/I(Cl)) =
⌈

l−1
3

⌉
,

(b) sdepth(S/I(Cl)) =
⌈

l−1
3

⌉
, for l ≡ 0, 2(mod 3) and⌈
l − 1

3

⌉
≤ sdepth(S/I(Cl)) ≤

⌈
l
3

⌉
, for l ≡ 1(mod 3).

The value of regularity of the cycle can be deduced from the work of Jacques [43, Theorem 7.6.28]
and the required following form is given in [44, Theorem 5.2].

Lemma 2.15. If l ≥ 3, then

reg(S/I(Cl)) =


⌊

l
3

⌋
, if l ≡ 0, 1 (mod 3);⌊

l
3

⌋
+ 1, if l ≡ 2 (mod 3).

Lemma 2.16 ( [45, Theorems 1.4]). Let u, v ≥ 1 and S = K[V(Ku,v)], then

depth(S/I(Ku,v)) = 1 ≤ sdepth(S/I(Ku,v)).

The following result proved by Shaukat et al. [26, Lemma 3.1] is helpful in the computation of
depth of edge ideals. We will use this result in subsequent proofs of some formulas for the depth.

Lemma 2.17. Let G be a connected graph with V(G) = {x1, . . . , xl} . If NG(xi) =
{
xi1 , . . . , xiq

}
, then

(I(G) : xi)/I(G) �
q⊕

t=1

S t/Jt[xit],

where S 1 = K[V(G)\NG(xi1)], S t = K[V(G)\
(
NG(xit) ∪

{
xi1 , xi2 , . . . , xit−1

} )
], for t ≥ 2, and Jt = (S t ∩

I(G)) for t ≥ 1.
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3. Invariants of cyclic modules associated with certain subgraphs of C2n(1, n − 1),C2n(1, 2) and
C2n(1, n − 1, n)

For n ≥ 2, we introduce some families of subgraphs, namely En, Fn and Gn of C2n(1, n−1),C2n(1, 2)
and C2n(1, n − 1, n), respectively as given in Figures 4 and 5. The vertex sets of these subgraphs are

V(En) = V(Fn) = V(Gn) =
n⋃

i=1
{xi, yi} and the edge sets are as follows:

• E(En) =
n−1⋃
i=1

{
{xi, xi+1} , {yi, yi+1}, {xi, yi+1}, {xi+1, yi}

}
,

• E(Fn) =
n−1⋃
i=1

{
{xi, yi}, {xi, xi+1}, {yi, yi+1}, {xi, yi+1}

}⋃
{xn, yn},

• E(Gn) =
n−1⋃
i=1

{
{xi, yi}, {xi, xi+1}, {yi, yi+1}, {xi, yi+1}, {xi+1, yi}

}⋃
{xn, yn}.

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 4. From left to right, En and Fn.

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5. Gn.

In this section, we give exact values of depth, projective dimension, and regularity of the cyclic
module K[V(En)]/I(En). We also give bounds for the Stanley depth of such a module. Moreover, we
compute the exact values of regularity of cyclic modules K[V(Fn)]/I(Fn) and K[V(Gn)]/I(Gn). It is
worth mentioning that these findings are helpful in the subsequent section for proving our main results.

Remark 3.1. To cater some special cases in the proofs of subsequent results, the quotient rings
associated with En,Gn and Fn for n ≤ 1, are described as follows:

• K[V(E−1)]/I(E−1) � K[V(E0)]/I(E0) � K[V(F0)]/I(F0) � K[V(G0)]/I(G0) � K and depth(K) =

sdepth(K) = reg(K) = 0;
• K[V(E1)]/I(E1) � K[x, y], we have depth(K[x, y]) = sdepth(K[x, y]) = 2 and reg(K[x, y]) = 0;
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• K[V(F1)]/I(F1) � K[V(G1)]/I(G1) � K[V(P2)]/I(P2), then by Lemma 2.13, we get
depth (K[V(P2)]/I(P2)) = sdepth(K[V(P2)]/I(P2)) = reg(K[V(P2)]/I(P2)) = 1.

Remark 3.2. Let i ∈ Z+. If k < i then we consider ∪k
i {xiyi+1, xixi+1, yiyi+1, xi+1yi} = ∅. Also we take

xayb = 0, whenever a or b is not positive.

For a monomial ideal I, G(I) denotes the minimal set of monomial generators of monomial ideal I
and supp (I) := {xi : xi|v for some v ∈ G(I)} .

Remark 3.3. Let I ⊂ S = K[x1, . . . , xl] be a squarefree monomial ideal minimally generated by
monomials of a degree of at most 2. We associate a graph GI with ideal I such that V(GI) = supp(I)
and E(GI) =

{
{xi, x j} : xix j ∈ G(I)

}
. Let xt, xr ∈ S be the variables of polynomial ring S such that

xt, xr < I, then (I : xt) , (I, xt), ((I, xt), xr) and ((I, xt) : xr) are the monomial ideals of S such that G(I:xt),

G(I,xt), G((I,xt),xr) and G((I,xt):xr) are subgraphs of GI .

By using Remark 3.3, see Figures 6 and 7 as examples of G(I(E7):y6),G(I(E7),y6),G((I(E7),y6),x6), and
G((I(E7),y6):x6). From Figures 6 and 7, we have the following isomorphisms:

K[V(E7)]/(I(E7) : y6) � K[V(E4)]/I(E4) ⊗K K[y6, x6],

K[V(E7)]/(I(E7), y6) � K[V(E5)]/(I(E5), x5x6, x6y5, x6y7, x6x7),

K[V(E7)]/((I(E7), y6), x6) � K[V(E5)]/I(E5) ⊗K K[y7, x7],

K[V(E7)]/((I(E7), y6) : x6) � K[V(E4)]/I(E4) ⊗K K[x6].

x1 x2 x3 x4 x5 x7

y1 y2 y3 y4 y5 y7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 6. From left to right, G(I(E7):y6) and G(I(E7),y6).

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x7

y1 y2 y3 y4 y5 y6 y7

Figure 7. From left to right, G((I(E7),y6),x6) and G((I(E7),y6):x6).

First, we find the exact value of the depth and lower bound of the Stanley depth for K[V(En)/I(En)).

Lemma 3.4. Let n ≥ 2. If S = K[V(En)], then

sdepth (S/I(En)) ≥ depth (S/I(En)) =


⌈

n+4
3

⌉
, if n ≡ 1 (mod 3);⌈

n
3

⌉
, otherwise.
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Proof. We first prove the result for depth. If n = 2, then E2 � C4. It is clear that the result holds by
using Lemma 2.14. If n = 3, we have E3 � K4,2, then from Lemma 2.16, we have depth (S/I(En)) = 1.
Let n ≥ 4. We consider the following cases:

Case 1. Let n ≡ 1(mod 3). Consider the following short exact sequences

0 −→ S/ (I(En) : yn−1)
·yn−1
−−−→ S/I(En) −→ S/ (I(En), yn−1) −→ 0,

0 −→ S/ ((I(En), yn−1) : xn−1)
·xn−1
−−−→ S/ (I(En), yn−1) −→ S/ ((I(En), yn−1), xn−1) −→ 0.

By Lemma 2.2,

depth
(
S/(I(En)

)
≥ min

{
depth

(
S/(I(En) : yn−1)

)
, depth

(
S/(I(En), yn−1)

)}
, (3.1)

depth
(
S/(I(En), yn−1)

)
≥ min

{
depth

(
S/((I(En), yn−1) : xn−1)

)
, depth

(
S/((I(En), yn−1), xn−1)

)}
.

(3.2)

We have
S/(I(En) : yn−1) � K[V(En−3)]/I(En−3) ⊗K K[yn−1, xn−1], (3.3)

S/((I(En), yn−1), xn−1) � K[V(En−2)]/I(En−2) ⊗K K[yn, xn], (3.4)

S/((I(En), yn−1) : xn−1) � K[V(En−3)]/I(En−3) ⊗K K[xn−1]. (3.5)

As n − 3 ≡ 1 (mod 3), by applying Lemma 2.5 and Remark 3.1 on Eq (3.3) and using induction
on n, we get

depth
(
S/(I(En) : yn−1)

)
=

⌈
n − 3 + 4

3

⌉
+ 2 =

⌈
n + 4

3

⌉
+ 1.

Since n − 2 ≡ 2 (mod 3), by using Lemma 2.5 on Eq (3.4) and induction on n, it follows that

depth
(
S/((I(En), yn−1), xn−1)

)
=

⌈
n − 2

3

⌉
+ 2 =

⌈
n + 4

2

⌉
.

Now, by Eq (3.5) and applying induction on n, Lemma 2.5 and Remark 3.1, we get

depth
(
S/((I(En), yn−1) : xn−1)

)
=

⌈
n − 3 + 4

3

⌉
+ 1 =

⌈
n + 4

3

⌉
.

Here,
depth

(
S/((I(En), yn−1), xn−1)

)
= depth

(
S/((I(En), yn−1) : xn−1)

)
,

and by using Eq (3.2),

depth
(
S/(I(En), yn−1)

)
≥

⌈
n + 4

3

⌉
.

By Eq (3.1), we get

depth(S/(I(En)) ≥
⌈
n + 4

3

⌉
. (3.6)
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For the other inequality, if yn < I(En), then

S/(I(En) : yn) � K[V(En−2)]/I(En−2) ⊗K K[yn, xn].

Since n − 2 ≡ 2 (mod 3), by Lemmas 2.3, 2.5 and induction on n,

depth(S/I(En)) ≤ depth(S/(I(En) : yn)) =

⌈
n − 2

3

⌉
+ 2 =

⌈
n + 4

3

⌉
. (3.7)

We get the required result by combining Eqs (3.6) and (3.7).

Case 2. Let n ≡ 2(mod 3). Consider the short exact sequence

0 −→ (I(En) : yn−1) /I(En)
·yn−1
−−−→ S/I(En) −→ S/ (I(En) : yn−1) −→ 0. (3.8)

Note that here we have
NEn(yn−1) = {yn−2, xn−2, yn, xn} ,

S 1 = K[V(En)\NEn(yn−2)],

S 2 = K
[
V(En)\(NEn(xn−2) ∪ {yn−2})

]
,

S 3 = K
[
V(En)\(NEn(yn) ∪ {yn−2, xn−2})

]
,

S 4 = K
[
V(En)\(NEn(xn) ∪ {yn−2, xn−2, yn})

]
,

J1 = (S 1 ∩ I(En)) , J2 = (S 2 ∩ I(En)) ,

J3 = (S 3 ∩ I(En)) , J4 = (S 4 ∩ I(En)) ,

then by using Lemma 2.17, we get

(I(En) : yn−1) /I(En) � S 1/J1[yn−2] ⊕ S 2/J2[xn−2] ⊕ S 3/J3[yn] ⊕ S 4/J4[xn]

�
K[x1, . . . , xn−4, xn−2, xn, y1, . . . , yn−4, yn](
∪n−5

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [yn−2]

⊕
K[x1, . . . , xn−4, xn, y1, . . . , yn−4, yn](
∪n−5

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [xn−2]

⊕
K[x1, . . . , xn−3, xn, y1, . . . , yn−3](
∪n−4

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [yn]

⊕
K[x1, . . . , xn−3, y1, . . . , yn−3](
∪n−4

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [xn]

�
(
K[V(En−4)]/I(En−4) ⊗K K[xn−2, xn, yn, yn−2]

)
⊕

(
K[V(En−4)]/I(En−4) ⊗K K[xn, yn, xn−2]

)
⊕

(
K[V(En−3)]/I(En−3) ⊗K K[xn, yn]

)
⊕

(
K[V(En−3)]/I(En−3) ⊗K K[xn]

)
.
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By Lemma 2.5 on Eq (3.3),

depth (S/(I(En) : yn−1)) = depth K[V(En−3)]/I(En−3) + depth K[yn−1, xn−1]. (3.9)

Also,

depth
(
(I(En) : yn−1)/I(En)

)
= min

{
depth(K[V(En−4)]/I(En−4)) + 4, depth(K[V(En−4)]/I(En−4)) + 3,

depth(K[V(En−3)]/I(En−3)) + 2, depth(K[V(En−3)]/I(En−3)) + 1
}
.

(3.10)

Here, n − 4 ≡ 1 (mod 3) and n − 3 ≡ 2 (mod 3). We apply induction on Eq (3.9) and get

depth (S/(I(En) : yn−1)) =

⌈
n − 3

3

⌉
+ 2 =

⌈n
3

⌉
+ 1. (3.11)

Using induction on n and Remark 3.1 on Eq (3.10),

depth
(
(I(En) : yn−1)/I(En)

)
= min

{ ⌈
n − 4 + 4

3

⌉
+ 4,

⌈
n − 4 + 4

3

⌉
+ 3,

⌈
n − 3

3

⌉
+ 2,

⌈
n − 3

3

⌉
+ 1

}
=

⌈n
3

⌉
.

(3.12)

We get the required result by applying Lemma 2.2 on Eq (3.8).

Case 3. If n ≡ 0 (mod 3), then n − 4 ≡ 2 (mod 3) and n − 3 ≡ 0 (mod 3). By applying induction on
Eq (3.9),

depth (S/(I(En) : yn−1)) =

⌈
n − 3

3

⌉
+ 2 =

⌈n
3

⌉
+ 1. (3.13)

By using Eq (3.10) and applying induction on n, we get

depth
(
(I(En) : yn−1)/I(En)

)
= min

{ ⌈
n − 4

3

⌉
+ 4,

⌈
n − 4

3

⌉
+ 3,

⌈
n − 3

3

⌉
+ 2,

⌈
n − 3

3

⌉
+ 1

}
=

⌈n
3

⌉
.

(3.14)

The required result is obtained by applying Lemma 2.2 on Eq (3.8).

This completes the proof for depth. Next, we prove the result for the lower bound of Stanley depth.
If n = 2, then E2 � C4 and the result holds by Lemma 2.14. If n = 3, we get the required result from
Lemma 2.16. Let n ≥ 4. We get the lower bound for Stanley depth in a similar way to the depth just by
replacing Lemmas 2.2 and 2.3 with Lemmas 2.1 and 2.4, respectively. �

By using the Auslander Buchsbaum formula, we have the following result.

Corollary 3.5. Let n ≥ 2 and S = K[V(En)], then

pdim (S/I(En)) =


2n −

⌈
n+4

3

⌉
, if n ≡ 1 (mod 3);

2n −
⌈

n
3

⌉
, otherwise.
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Proof. The required result follows from Lemmas 2.12 and 3.4. �

Now, we will find the upper bound for Stanley depth of K[V(En)/I(En)].

Lemma 3.6. Let n ≥ 2 and S = K[V(En)], then

sdepth (S/I(En)) ≤



2n
3 , if n ≡ 0 (mod 3);

2n+2
3 , if n ≡ 2 (mod 3);

2n+4
3 , if n ≡ 1 (mod 3).

Proof. If n = 2, then E2 � C4 and we get the required result by Lemma 2.14. If n = 3 and since
y2 < I(E3), then S/(I(E3) : y2) � K[x2, y2]/(0). Thus we have by Lemma 2.4,

sdepth (S/I(E3)) ≤ sdepth(S/(I(E3) : y2)) = sdepth(K[x2, y2]) = 2.

Let n ≥ 4. If n ≡ 0 (mod 3), then n − 3 ≡ 0 (mod 3). Since xn−1yn−1 < I(En), we have

S/
(
I(En) : xn−1yn−1

)
� K[V(En−3)]/I(En−3) ⊗K K[xn−1, yn−1].

By using Lemma 2.5 and applying induction on n,

sdepth
(
S/

(
I(En) : xn−1yn−1

))
= sdepth(K[V(En−3)]/I(En−3)) + 2 ≤

2(n − 3)
3

+ 2 =
2n
3
.

Therefore, by applying Lemma 2.4, we get

sdepth(S/I(En)) ≤ sdepth
(
S/

(
I(En) : xn−1yn−1

))
≤

2n
3
.

Let n ≡ 2(mod 3). Since yn < I(En),

S/(I(En) : yn) � K[V(En−2)]/I(En−2) ⊗K K[yn, xn].

Since n − 2 ≡ 0 (mod 3), by using Lemmas 2.4, 2.5 and induction on n, we get

sdepth (S/I(En)) ≤ sdepth(S/(I(En) : yn)) = sdepth(K[V(En−2)]/I(En−2)) + 2

≤
2(n − 2)

3
+ 2 =

2n + 2
3

.

If n ≡ 1 (mod 3), then n − 2 ≡ 2 (mod 3). The proof follows a similar strategy and we get

sdepth((S/I(En))) ≤ sdepth(S/(I(En) : yn)) = sdepth(K[V(En−2)]/I(En−2)) + 2

≤
2(n − 2) + 2

3
+ 2 =

2n + 4
3

.

This completes the proof. �

In the following lemmas we will find the exact values for regularity of the cyclic modules
K[V(En)]/I(En),K[V(Fn)]/I(Fn) and K[V(Gn)]/I(Gn).
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Lemma 3.7. Let n ≥ 2 and S = K[V(En)], then reg(S/I(En)) =
⌈

n−1
3

⌉
.

Proof. Let S = K[V(En)]. If n = 2, then clearly by Lemma 2.15, and we get reg(K[V(E2)]/I(E2)) =

reg(K[V(C4)]/I(C4)) = 1. Let n ≥ 3, we have the following K-algebra isomorphisms:

S/(I(En) : xn−2) � K[V(En−4)]/I(En−4) ⊗K K[xn−2, yn−2, xn, yn], (3.15)

S/
(
(I(En), xn−2), yn−2

)
� K[V(En−3)]/I(En−3) ⊗K K[V(E2)]/I(E2), (3.16)

S/
(
(I(En), xn−2) : yn−2

)
� K[V(En−4)]/I(En−4) ⊗K K[yn−2, xn, yn]. (3.17)

If n = 3, by using Eq (3.15) we get S/(I(E3) : x1) � K[V(E−1)]/I(E−1)⊗K K[x1, y1, x3, y3].Moreover,
by Eq (3.16), we have S/((I(E3), x1), y1) � K[V(E0)]/I(E0) ⊗K K[V(E2)]/I(E2), and by Eq (3.17),
S/((I(E3), x1) : y1) � K[V(E−1)]/I(E−1) ⊗K K[y1, x3, y3]. By Remark 3.1 and Lemma 2.5, we get

reg
(
S/(I(E3) : x1)

)
= reg

(
K[V(E−1)]/I(E−1)

)
= reg(K) = 0,

reg
(
S/((I(E3), x1) : y1)

)
= reg

(
K[V(E−1)]/I(E−1)

)
= reg(K) = 0,

and
reg

(
S/((I(E3), x1), y1)

)
= reg

(
K[V(E0)]/I(E0)

)
+ reg

(
K[V(E2)]/I(E2)

)
= 0 + 1 = 1.

Since reg
(
S/((I(E3), x1) : y1)

)
< reg

(
S/((I(E3), x1), y1)

)
, by Lemma 2.11(c), we have

reg(S/(I(E3), x1)) = 1. Also, reg(S/(I(E3) : x1)) < reg(S/(I(E3), x1), and again by Lemma 2.11(c),
reg(S/I(E3)) = 1. If n = 4, by using a similar strategy, one can get reg(S/I(E4)) = 1. Let n ≥ 5. By
using induction on n, Remark 3.1, Lemma 2.5 and Eqs (3.15)–(3.17), we get

reg
(
S/(I(En) : xn−2)

)
= reg

(
K[V(En−4)]/I(En−4)

)
=

⌈
n − 5

3

⌉
,

reg
(
S/

(
(I(En), xn−2) : yn−2

))
= reg

(
K[V(En−4)]/I(En−4)

)
=

⌈
n − 5

3

⌉
,

and by Lemma 2.9,

reg
(
S/

(
(I(En), xn−2), yn−2

))
= reg

(
K[V(En−3)]/I(En−3)

)
+ reg

(
K[V(E2)]/I(E2)

)
=

⌈
n − 4

3

⌉
+ 1 =

⌈
n − 1

3

⌉
.

Since
reg

(
S/

(
(I(En), xn−2) : yn−2

))
< reg

(
S/

(
(I(En), xn−2), yn−1

))
,

by Lemma 2.11(c) we get reg
(
S/(I(En), xn−2)

)
=

⌈
n−1

3

⌉
. Also we have

reg
(
S/(I(En) : xn−2)

)
< reg

(
S/(I(En), xn−2

)
.

Again by Lemma 2.11(c), the required result follows. �

Lemma 3.8. Let n ≥ 2 and S = K[V(Fn)], then reg(S/I(Fn)) =
⌈

n
2

⌉
.
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Proof. If n = 2, then we have S/(I(F2) : y1) � K[y1, x2], and S/(I(F2), y1) � K[V(C3)]/I(C3).
By Lemmas 2.5 and 2.15, reg

(
S/(I(F2) : y1)

)
= 0 and reg

(
S/(I(F2), y1)

)
= K[V(C3)]/I(C3) =

1. Since reg
(
S/(I(F2) : y1)

)
< reg

(
S/(I(F2), y1)

)
, therefore by using Lemma 2.11(c) we get

reg(K[V(F2)]/I(F2)) = 1. Let n = 3 and F3 = H1 ∪ H2, where H1 � H2 � F2 and H1 ∩ H2 , ∅.

By Lemma 2.10, we get

reg
(
S/I(F3)

)
≤ reg

(
K[V(H1)]/I(H1)

)
+ reg

(
K[V(H2)]/I(H2)

)
= 2.

For the other inequality, let M =
{
{x1, y1}, {x3, y3}

}
. It is clear that M is an induced matching, therefore,

indmat(Fn) ≥ |M| = 2. By combining the two inequalities, we get reg(S/I(F3)) = 2. Let n ≥ 4. Here
we consider the following two cases:

Case 1. If n is even, we have the following K-algebra isomorphisms:

S/(I(Fn) : yn−1) � K[V(Fn−3)]/I(Fn−3) ⊗K K[yn−1, xn], (3.18)

S/
(
(I(Fn), yn−1), xn−1

)
� K[V(Fn−2)]/I(Fn−2) ⊗K K[V(P2)]/I(P2), (3.19)

S/
((

(I(Fn), yn−1) : xn−1
)
, yn−2

)
� K[V(Fn−3)]/I(Fn−3) ⊗K K[xn−1], (3.20)

S/
((

(I(Fn), yn−1) : xn−1
)

: yn−2
)
� K[V(Fn−4)]/I(Fn−4) ⊗K K[xn−1, yn−2]. (3.21)

If n = 4, we have
S/(I(F4) : y3) � K[V(F1)]/I(F1) ⊗K K[y3, x4],

S/
(
(I(F4), y3), x3

)
� K[V(F2)]/I(F2) ⊗K K[V(P2)]/I(P2),

S/
(
(I(F4), y3) : x3

)
� K[V(C3)]/I(C3) ⊗K K[x3].

By Lemma 2.5 and Remark 3.1 we have reg
(
S/(I(F4) : y3)

)
= reg

(
K[V(F1)]/I(F1)

)
= 1, and by

Lemmas 2.13 and 2.15, we have

reg
(
S/

(
(I(F4), y3), x3

))
= reg

(
K[V(F2)]/I(F2)

)
+ reg

(
K[V(P2)]/I(P2)

)
= 2

and
reg

(
S/

(
(I(F4), y3) : x3

))
= reg

(
K[V(C3)]/I(C3)

)
= 1.

Since reg
(
S/

(
(I(F4), y3) : x3

))
< reg

(
S/

(
(I(F4), y3), x3

))
, by using Lemma 2.11(c), we get

reg
(
S/(I(F4), y3)

)
= 2. Moreover, reg

(
S/(I(F4) : y3)

)
< reg

(
S/(I(F4), y3

)
, and again by

Lemma 2.11(c), we get reg
(
S/(I(F4)

)
= 2. Let n ≥ 6. By using induction on n, Lemmas 2.5

and 2.9 on Eqs (3.18)–(3.21), we get

reg
(
S/(I(Fn) : yn−1)

)
= reg

(
K[V(Fn−3)]/I(Fn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

(
(I(Fn), yn−1), xn−1

))
= reg

(
K[V(Fn−2)]/I(Fn−2)

)
+ reg

(
K[V(P2)]/I(P2)

)
=

⌈
n − 2

2

⌉
+ 1 =

⌈n
2

⌉
,
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reg
(
S/

((
(I(Fn), yn−1) : xn−1

)
, yn−2

))
= reg

(
K[V(Fn−3)]/I(Fn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

((
(I(Fn), yn−1) : xn−1

)
: yn−2

))
= reg

(
K[V(Fn−4)]/I(Fn−4)

)
=

⌈
n − 4

2

⌉
.

Since n is even,

reg
(
S/

((
(I(Fn), yn−1) : xn−1

)
: yn−2

))
< reg

(
S/

((
(I(Fn), yn−1) : xn−1

)
, yn−2

))
,

and by Lemma 2.11(c), we get

reg
(
S/

(
(I(Fn), yn−1) : xn−1

))
=

⌈
n − 3

2

⌉
.

Also, reg
(
S/

(
(I(Fn), yn−1) : xn−1

))
< reg

(
S/((I(Fn), yn−1), xn−1)

)
, and again by Lemma 2.11(c),

reg
(
S/(I(Fn), yn−1)

)
=

⌈
n
2

⌉
. We have reg

(
S/(I(Fn) : yn−1)

)
< reg

(
S/(I(Fn), yn−1)

)
; therefore, by

Lemma 2.11(c), the required result follows.

Case 2. If n is odd, then Fn = F2 ∪ H, where H � Fn−1 and F2 ∩ H , ∅. By induction on n and
Lemma 2.10, we get

reg(S/I(Fn)) ≤ reg(K[V(F2)]/I(F2)) + reg(K[V(Fn−1)]/I(Fn−1))

= 1 +

⌈
n − 1

2

⌉
=

⌈
n + 1

2

⌉
=

⌈n
2

⌉
.

For the second inequality, we define M =
{
{x1, y1}, {x3, y3}, . . . , {xn, yn}

}
. M is clearly an induced

matching and |M| =
⌈

n
2

⌉
, thus, indmat(Fn) ≥

⌈
n
2

⌉
. By Lemma 2.8, we have reg(S/I(Fn)) ≥

⌈
n
2

⌉
.

�

Lemma 3.9. If n ≥ 2 and S = K[V(Gn)], then reg (S/I(Gn)) =
⌈

n
2

⌉
.

Proof. If n = 2, then clearly G2 � K4; therefore, by Lemma 2.8, indmat(G2) = 1, and we get
reg(K[V(G2)]/I(G2)) = 1. Let n ≥ 3, and we have the following K-algebra isomorphisms:

S/(I(Gn) : yn−1) � K[V(Gn−3)]/I(Gn−3) ⊗K K[yn−1], (3.22)

S/((I(Gn), yn−1), xn−1) � K[V(Gn−2)]/I(Gn−2) ⊗K K[V(P2)]/I(P2), (3.23)

S/((I(Gn), yn−1) : xn−1) � K[V(Gn−3)]/I(Gn−3) ⊗K K[xn−1]. (3.24)

If n = 3, we have
S/(I(G3) : y2) � K[V(G0)]/I(G0) ⊗K K[y2],

S/((I(G3), y2), x2) � K[V(G1)]/I(G1) ⊗K K[V(P2)]/I(P2),

S/((I(G3), y2) : x2) � K[V(G0)]/I(G0) ⊗K K[x2].

By Remark 3.1, Lemmas 2.5 and 2.13, reg
(
S/(I(G3) : y2)

)
= 0, reg

(
S/

(
(I(G3), y2), x2

))
=

reg
(
K[V(G1)]/I(G1)

)
+ reg

(
K[V(P2)]/I(P2)

)
= 2 and reg

(
S/

(
(I(G3), y2) : x2

))
= 0. Since we have
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reg
(
S/

(
(I(G3), y2) : x2

))
< reg

(
S/

(
(I(G3), y2), x2

))
, by Lemma 2.11(c), reg

(
S/(I(G3), y2)

)
= d 3

2e = 2.

Also, we have reg
(
S/(I(G3) : y2)

)
< reg

(
S/(I(G3), y2

)
, and again by Lemma 2.11(c), we get

reg(S/I(G3)) = 2. Let n ≥ 4. By induction on n, Lemmas 2.5, 2.13 and using Eqs (3.22)–(3.24),
we get

reg
(
S/(I(Gn) : yn−1)

)
= reg

(
K[V(Gn−3)]/I(Gn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

(
(I(Gn), yn−1) : xn−1

))
= reg

(
K[V(Gn−3)]/I(Gn−3)

)
=

⌈
n − 3

2

⌉
,

and by Lemma 2.9,

reg
(
S/

(
(I(Gn), yn−1), xn−1

))
= reg

(
K[V(Gn−2)]/I(Gn−2)

)
+ reg

(
K[V(P2)]/I(P2)

)
=

⌈
n − 2

2

⌉
+ 1 =

⌈n
2

⌉
.

Since reg
(
S/

(
(I(Gn), yn−1) : xn−1

))
< reg

(
S/

(
(I(Gn), yn−1), xn−1

))
, by Lemma 2.11(c) we get

reg
(
S/(I(Gn), yn−1)

)
=

⌈
n
2

⌉
. Also we have reg

(
S/(I(Gn) : yn−1)

)
< reg

(
S/(I(Gn), yn−1

)
, and again

by Lemma 2.11(c), the required result follows. This completes the proof. �

4. Invariants of cyclic modules associated with C2n(1, n − 1),C2n(1, 2) and C2n(1, n − 1, n)

In this section, we find some invariants of the edge ideals of some families of 4-regular and 5-regular
circulant graphs. We compute depth and projective dimension of the cyclic module K[V(C2n(1, n −
1))]/I(C2n(1, n − 1)). Moreover, bounds for the Stanley depth of such module are also given. When
n ≡ 0, 1(mod 3), we give the exact value for the regularity of such a module; otherwise, we have sharp
bounds. For cyclic module K[V(C2n(1, 2))]/I(C2n(1, 2)), we give the exact value of regularity if n is
even and sharp bounds if n is odd. Also, we find the exact value of the regularity of K[V(C2n(1, n −
1, n))]/I(C2n(1, n−1, n)). It will be convenient to use the labeling of the vertices of the graphs, as shown
in Figures 8 and 9.

Before proving the main results, we give the following example by using Remark 3.3, which will be
helpful in understanding the strategy of the proofs. See for instance, Figures 10 and 11 for subgraphs
G(I(C16(1,7)):x8),G(I(C16(1,7)),x8),G((I(C16(1,7)),x8),y8) and G((I(C16(1,7)),x8):y8) of circulant graph GI(C16(1,7). It is clear
from the Figures 10 and 11 that we have the following isomorphisms:

K[V(C16(1, 7))]/(I(C16(1, 7)) : x8) � K[V(E5)]/I(E5) ⊗K K[x8, y8],

K[V(C16(1, 7))]/(I(C16(1, 7)), x8) � K[V(E7), y8]/(I(E7), x1y8, y1y8, x7y8, y7y8),

K[V(C16(1, 7))]/
(
(I(C16(1, 7)), x8), y8

)
� K[V(E7)]/I(E7),

and
K[V(C16(1, 7))]/

(
(I(C16(1, 7)), x8) : y8

)
� K[V(E5)]/I(E5) ⊗K K[y8].
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Figure 8. From left to right, C2n(1, n − 1) and C2n(1, 2).
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Figure 9. C2n(1, n − 1, n).
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Figure 10. From left to right, G(I(C16(1,7)):x8) and G(I(C16(1,7)),x8).
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Figure 11. From left to right, G((I(C16(1,7)),x8),y8) and G((I(C16(1,7)),x8):y8).

First, we will compute the exact value of depth and lower bound of the Stanley depth for the cyclic
module K[V(C2n(1, n − 1))]/I(C2n(1, n − 1)).

Theorem 4.1. Let n ≥ 3, G = C2n(1, n − 1) and S = K[V(G)], then

sdepth(S/I(G)) ≥ depth(S/I(G)) =


⌈

n−1
3

⌉
, if n ≡ 0, 1 (mod 3);⌈

n
3

⌉
, otherwise.

Proof. First we prove the result for depth. If n = 3, we consider the following short exact sequence

0 −→ (I(G) : x3)/I(G)
·x3
−−→ S/I(G) −→ S/(I(G) : x3) −→ 0. (4.1)

We have

K[V(G)]/(I(G) : x3) �
K[y3]

(0)
[x3], (4.2)

and
NG(x3) = {y2, x2, y1, x1} ,

S 1 = K[V(G)\NG(y2)], S 2 = K[V(G)\(NG(x2) ∪ {y2})],

S 3 = K[V(G)\(NG(y1) ∪ {y2, x2})], S 4 = K[V(G)\(NG(x1) ∪ {y2, x2, y1})],

J1 = (S 1 ∩ I(G)), J2 = (S 2 ∩ I(G)),

J3 = (S 3 ∩ I(G)), J4 = (S 4 ∩ I(G)),

then by using Lemma 2.17, we have

(I(G) : x3)/I(G) � S 1/J1[y2] ⊕ S 2/J2[x2] ⊕ S 3/J3[y1] ⊕ S 4/J4[x1]

�
K[x2]

(0)
[y2] ⊕

K
(0)

[x2] ⊕
K[x1]

(0)
[y1] ⊕

K
(0)

[x1].
(4.3)
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We apply Lemma 2.5 on Eq (4.2), depth(K[V(G)]/(I(G) : x3)) = depth(K[y3, x3]) = 2 and by Eq (4.3)

depth((I(G) : x3)/I(G))

= min
{

depth(K[x2]) + 1, depth(K[x2]), depth(K[x1]) + 1, depth(K[x1])
}

= 1.

By using Lemma 2.2 on Eq (4.1), depth(S/I(G)) = 1. If n = 4, we consider the following short
exact sequence

0 −→ (I(G) : x4)/I(G)
·x4
−−→ S/I(G) −→ S/(I(G) : x4) −→ 0. (4.4)

We have
K[V(G)]/(I(G) : x4) � K[x2, x4, y2, y4], (4.5)

and
NG(x4) = {y3, x3, y1, x1},

S 1 = K[V(G)\NG(y3)], S 2 = K[V(G)\(NG(x3) ∪ {y3})],

S 3 = K[V(G)\(NG(y1) ∪ {y3, x3})], S 4 = K[V(G)\(NG(x1) ∪ {y3, x3, y1})],

J1 = (S 1 ∩ I(G)), J2 = (S 2 ∩ I(G)),

J3 = (S 3 ∩ I(G)), J4 = (S 4 ∩ I(G)),

then by using Lemma 2.17, we have

(I(G) : x4)/I(G) � S 1/J1[y3] ⊕ S 2/J2[x3] ⊕ S 3/J3[y1] ⊕ S 4/J4[x1]

�
K[x1, x3, y1]

(0)
[y3] ⊕

K[x1, y1]
(0)

[x3] ⊕
K[x1]

(0)
[y1] ⊕

K
(0)

[x1].
(4.6)

By applying Lemma 2.5 on Eq (4.5),

depth
(
K[V(G)]/(I(G) : x4)

)
= depth

(
K[x2, x4, y2, y4]

)
= 4

and by using Eq (4.6) we get

depth
(
(I(G) : x4)/I(G)

)
= min

{
depth(K[x1, x3, y1, y3]), depth(K[x1, y1, x3]), depth(K[x1, y1]), depth(K[x1])

}
= 1.

By using Lemma 2.2 on Eq (4.4), we get depth(S/I(G)) = 1. Let n ≥ 5. Consider the short exact
sequence

0 −→ (I(G) : xn)/I(G)
·xn
−−→ S/I(G) −→ S/(I(G) : xn) −→ 0. (4.7)

We have the following K-algebra isomorphisms:

S/(I(G) : xn) � K[V(En−3)]/I(En−3) ⊗K K[yn, xn], (4.8)

and
NG(xn) = {yn−1, xn−1, y1, x1},

S 1 = K[V(G)\NG(yn−1)], S 2 = K[V(G)\(NG(xn−1) ∪ {yn−1})],
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S 3 = K[V(G)\(NG(y1) ∪ {yn−1, xn−1})], S 4 = K[V(G)\(NG(x1) ∪ {yn−1, xn−1, y1})],

J1 = (S 1 ∩ I(G)), J2 = (S 2 ∩ I(G)),

J3 = (S 3 ∩ I(G)), J4 = (S 4 ∩ I(G)),

then by Lemma 2.17,

(I(G) : xn)/I(G) � S 1/J1[yn−1] ⊕ S 2/J2[xn−1] ⊕ S 3/J3[y1] ⊕ S 4/J4[x1]

�
K[x1, . . . , xn−3, xn−1, y1, . . . , yn−3](
∪n−4

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [yn−1]

⊕
K[x1, . . . , xn−3, y1, . . . , yn−3](
∪n−4

i=1 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [xn−1]

⊕
K[x1, x3, . . . , xn−2, y3, . . . , yn−2](
∪n−3

i=3 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [y1]

⊕
K[x3, . . . , xn−2, y3, . . . , yn−2](
∪n−3

i=3 {xiyi+1, xixi+1, yiyi+1, xi+1yi}
) [x1]

�
(
K[V(En−3)]/I(En−3) ⊗K K[xn−1, yn−1]

)
⊕

(
K[V(En−3)]/I(En−3) ⊗K K[xn−1]

)
⊕

(
K[V(En−4)]/I(En−4) ⊗K K[x1, y1]

)
⊕

(
K[V(En−4)]/I(En−4) ⊗K K[x1]

)
.

(4.9)

By Lemma 2.5, we have

depth (S/(I(G) : xn)) = depth K[V(En−3)]/I(En−3) + depth K[yn, xn], (4.10)

depth
(
(I(G) : xn)/I(G)

)
= min

{
depth(K[V(En−3)]/I(En−3)) + 2, depth(K[V(En−3)]/I(En−3)) + 1,

depth(K[V(En−4)]/I(En−4)) + 2, depth(K[V(En−4)]/I(En−4)) + 1
}
.

(4.11)

If n ≡ 1 (mod 3), then n − 3 ≡ 1 (mod 3) and n − 4 ≡ 0 (mod 3). By using Lemma 3.4 in Eq (4.10), we
get

depth (S/(I(G) : xn)) =

⌈
n − 3 + 4

3

⌉
+ 2 =

⌈
n + 4

3

⌉
+ 1.

By applying Lemma 3.4 on Eq (4.11), we get

depth
(
(I(G) : xn)/I(G)

)
= min

{ ⌈
n − 3 + 4

3

⌉
+ 2,

⌈
n − 3 + 4

3

⌉
+ 1,

⌈
n − 4

3

⌉
+ 2,

⌈
n − 4

3

⌉
+ 1

}
= min

{ ⌈
n + 4

3

⌉
+ 1,

⌈
n + 4

3

⌉
,

⌈
n − 1

3

⌉
+ 1,

⌈
n − 1

3

⌉ }
=

⌈
n − 1

3

⌉
.

We obtain the required result by applying Lemma 2.2 on Eq (4.7). If n ≡ 0 (mod 3), the proof is
similar. If n ≡ 2 (mod 3), then n − 3 ≡ 2 (mod 3) and n − 4 ≡ 1 (mod 3). By using a similar strategy
and Remark 3.1, we get depth (S/I(G)) =

⌈
n
3

⌉
. For the lower bound of the Stanley depth, the proof is

similar to depth one and has to replace Lemma 2.2 with Lemma 2.1. This completes the proof. �
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Corollary 4.2. Let n ≥ 3, G = C2n(1, n − 1) and S = K[V(G)], then

pdim(S/I(G)) =


2n −

⌈
n−1

3

⌉
, if n ≡ 0, 1 (mod 3);

2n −
⌈

n
3

⌉
, if n ≡ 2 (mod 3).

Proof. The required result follows by Lemma 2.12 and Theorem 4.1. �

Now we give an upper bound for the Stanley depth of the K[V(C2n(1, n − 1))]/I(C2n(1, n − 1)).

Proposition 4.3. Let n ≥ 3, G = C2n(1, n − 1) and S = K[V(G)], then

sdepth(S/I(G)) ≤



2n
3 , if n ≡ 0 (mod 3);

2n+2
3 , if n ≡ 2 (mod 3);

2n+4
3 , if n ≡ 1 (mod 3).

Proof. If n = 3, by Lemma 2.4, we have sdepth(S/I(G)) ≤ sdepth(S/(I(G) : x3). By Eq (4.2),
Lemma 2.5, sdepth(S/I(G)) ≤ 2, if n = 4 and x4 < I(G), by using Lemma 2.4 we have
sdepth(S/I(G)) ≤ sdepth(S/(I(G) : x4). By Eq (4.5), Lemma 2.5 and sdepth(S/I(G)) ≤ 4, let
n ≥ 5. If n ≡ 1 (mod 3), then n − 3 ≡ 1 (mod 3). By using Lemmas 2.4 and 2.5 on Eq (4.8),
we get sdepth (S/I(G)) ≤ sdepth(S/(I(G) : xn)) = sdepth(K[V(En−3)]/I(En−3)) + 2. Therefore, by
Lemma 3.6, we get sdepth(S/(I(G) : xn)) ≤ 2(n−3)+4

3 + 2 = 2n+4
3 . The required result follows that is

sdepth (S/I(G)) ≤ 2n+4
3 . For n ≡ 0, 2 (mod 3), the proof is similar. �

Remark 4.4. Let n ≥ 3, then Stanley’s inequality holds for K[V(C2n(1, n − 1))]/I(C2n(1, n − 1)).

The next two results provide the values and bounds for regularity of modules K[V(C2n(1, n −
1))]/I(C2n(1, n − 1)) and K[V(C2n(1, 2))]/I(C2n(1, 2)).

Theorem 4.5. Let n ≥ 3 and S = K[V(C2n(1, n − 1))]. If n ≡ 0, 1 (mod 3), then

reg
(
S/I(C2n(1, n − 1)

)
=

⌈
n − 2

3

⌉
.

Otherwise ⌈
n − 2

3

⌉
≤ reg

(
S/I(C2n(1, n − 1)

)
≤

⌈
n − 2

3

⌉
+ 1.

Proof. We have the following K-algebra isomorphisms:

S/(I(C2n(1, n − 1)) : xn) � K[V(En−3)]/I(En−3) ⊗K K[xn, yn], (4.12)

S/
((

I(C2n(1, n − 1)), xn
)
, yn

)
� K[V(En−1)]/I(En−1), (4.13)

S/
((

I(C2n(1, n − 1)), xn
)

: yn
)
� K[V(En−3)]/I(En−3) ⊗K K[yn]. (4.14)

If n = 3, we have
S/(I(C6(1, 2)) : x3) � K[V(E0)]/I(E0) ⊗K K[x3, y3],
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S/
((

I(C6(1, 2)), x3
)
, y3

)
� K[V(E2)]/I(E2),

S/
((

I(C6(1, 2)), x3
)

: y3
)
� K[V(E0)]/I(E0) ⊗K K[y3].

By applying Lemmas 2.5, 3.7 and Remark 3.1, we get

reg
(
S/(I(C6(1, 2)) : x3)

)
= reg

(
K[V(E0)]/I(E0)

)
= 0,

reg
(
S/

((
I(C6(1, 2)), x3

)
: y3

))
= reg

(
K[V(E0)]/I(E0)

)
= 0,

reg
(
S/

((
I(C6(1, 2)), x3

)
, y3

))
= reg

(
K[V(E2)]/I(E2)

)
= 1.

Since reg
(
S/

((
I(C6(1, 2)), x3

)
: y3

))
< reg

(
S/

((
I(C6(1, 2)), x3

)
, y3

))
, by Lemma 2.11(c), we get

reg
(
S/

(
I(C6(1, 2)), x3

))
= 1. Also we have reg

(
S/(I(C6(1, 2)) : x3)

)
< reg

(
S/(I(C6(1, 2)), x3)

)
, and

again by Lemma 2.11(c), reg(S/I(C6(1, 2))) = 1. For n = 4, by using the similar strategy, we get
reg(S/I(C8(1, 3))) = 1. Let n ≥ 5. If n ≡ 0 (mod 3), then n − 3 ≡ 0 (mod 3) and n − 1 ≡ 2 (mod 3). By
applying Lemmas 3.7 and 2.5 on Eqs (4.12)–(4.14), we get

reg
(
S/

(
I(C2n(1, n − 1)) : xn

))
= reg

(
K[V(En−3)]/I(En−3)

)
=

⌈
n − 4

3

⌉
,

reg
(
S/

((
I(C2n(1, n − 1)), xn

)
: yn

))
= reg

(
K[V(En−3)]/I(En−3)

)
=

⌈
n − 4

3

⌉
,

and

reg
(
S/

((
I(C2n(1, n − 1)), xn

)
, yn

))
= reg

(
K[V(En−1)]/I(En−1)

)
=

⌈
n − 2

3

⌉
.

Since
⌈

n−4
3

⌉
<

⌈
n−2

3

⌉
, by Lemma 2.11(c) we get reg

(
S/

(
I(C2n(1, n − 1)), xn

))
=

⌈
n−2

3

⌉
. Also

reg
(
S/(I(C2n(1, n − 1)) : xn)

)
< reg

(
S/(I(C2n(1, n − 1)), xn)

)
, and again by Lemma 2.11(c), we get

the required result. If n ≡ 1 (mod 3), then n − 3 ≡ 1 (mod 3) and n − 1 ≡ 0 (mod 3). By applying the
similar strategy, we get the desired result. Let n ≡ 2 (mod 3). Here C2n(1, n − 1) = E3 ∪ H, where
H � En−1 and E3∩H , ∅. In this case n−1 ≡ 1 (mod 3) as reg(S/I(E3)) = 1, by Lemmas 3.7 and 2.10,

reg(S/I(C2n(1, n − 1))) ≤ reg(K[V(E3)]/I(E3)) + reg(K[V(En−1)]/I(En−1)) = 1 +

⌈
n − 2

3

⌉
.

For the other inequality, define M =
{
{x1, x2}, {x4, x5}, . . . , {xn−3, xn−4}

}
. Since M is an induced

matching and |M| =
⌈

n−2
3

⌉
, then, indmat(C2n(1, n − 1)) ≥

⌈
n−2

3

⌉
. By Lemma 2.8, we have

reg(S/I(C2n(1, n − 1))) ≥
⌈

n−2
3

⌉
. This completes the proof. �

Theorem 4.6. Let n ≥ 3. If n is even, then

reg
(
K[V(C2n(1, 2))]/I(C2n(1, 2))

)
=

⌈
n − 1

2

⌉
.

If n is odd, we have

n − 1
2
≤ reg

(
K[V(C2n(1, 2))]/I(C2n(1, 2))

)
≤

⌈
n − 1

2

⌉
+ 2.
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Proof. Let S = K[V(C2n(1, 2))]. If n = 3, then C6(1, 2) = F3 ∪ H, where H � F2 and F3 ∩ H , ∅. By
Lemmas 2.10 and 3.8, we get

reg(K[V(C6(1, 2))]/I(C6(1, 2))) ≤ reg(K[V(F3)]/I(F3)) + reg(K[V(H)]/I(H)) = 3.

For the second inequality, let M = {{x1, y1}} . Here M is an induced matching; thus,
indmat(C6(1, 2)) ≥ |M| = 1 and we have 1 ≤ reg(K[V(C6(1, 2))]/I(C6(1, 2)) ≤ 3. If n = 4,

K[V(C8(1, 2))]/(I(C8(1, 2)) : x3) � K[V(C3)]/I(C3) ⊗K K[x3],

K[V(C8(1, 2))]/
((

I(C8(1, 2)), x3
)
, y3

)
� K[V(F3)]/I(F3),

K[V(C8(1, 2))]/
((

I(C8(1, 2)), x3
)

: y3
)
� K[V(C3)]/I(C3) ⊗K K[y3].

By using Lemmas 2.5, 3.8 and 2.15, we get

reg
(
K[V(C8(1, 2))]/(I(C8(1, 2)) : x3)

)
= reg

(
K[V(C3)]/I(C3)

)
= 1,

reg
(
K[V(C8(1, 2))]/

(
(I(C8(1, 2)), x3), y3

))
= reg

(
K[V(F3)]/I(F3)

)
= 2,

reg
(
K[V(C8(1, 2))]/

(
(I(C8(1, 2)), x3) : y3

))
= reg

(
K[V(C3)]/I(C3)

)
= 1,

as we have

reg
(
K[V(C8(1, 2))]/

(
(I(C8(1, 2)), x3) : y3

))
< reg

(
K[V(C8(1, 2))]/

(
(I(C8(1, 2)), x3), y3

))
.

By Lemma 2.11(c),

K[V(C8(1, 2))]/(I(C8(1, 2)), x3) = 2 > K[V(C8(1, 2))]/(I(C8(1, 2)) : x3),

and again by Lemma 2.11(c), reg
(
K[V(C8(1, 2))]/I(C8(1, 2)

)
= 2. Let n ≥ 5. Here we consider the

following two cases:

Case 1. If n is even, by Lemma 2.11(c), reg
(
S/I(C2n(1, 2))

)
= reg

(
S/(I(C2n(1, 2)), xn−1)

)
if

reg
(
S/(I(C2n(1, 2)) : xn−1)

)
< reg

(
S/(I(C2n(1, 2)), xn−1)

)
. We have the following isomorphisms:

S/
((

I(C2n(1, 2)) : xn−1
)

: yn−2
)
� K[V(Fn−4)]/I(Fn−4) ⊗K K[yn−2, xn−1],

S/
((

I(C2n(1, 2)) : xn−1
)
, yn−2

)
� K[V(Fn−3)]/I(Fn−3) ⊗K K[xn−1],

S/
((

I(C2n(1, 2)), xn−1
)
, yn−1

)
� K[V(Fn−1)]/I(Fn−1),

S/
((

(I(C2n(1, 2)), xn−1) : yn−1
)
, xn

)
� K[V(Fn−3)]/I(Fn−3) ⊗K K[yn−1],

S/
((

(I(C2n(1, 2)), xn−1) : yn−1
)

: xn
)
� K[V(Fn−4)]/I(Fn−4) ⊗K K[yn−1, xn].

By using Lemmas 2.5 and 3.8 on the above isomorphisms, we get

reg
(
S/

((
I(C2n(1, 2)) : xn−1

)
: yn−2

))
= reg

(
K[V(Fn−4)]/I(Fn−4)

)
=

⌈
n − 4

2

⌉
,
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reg
(
S/

((
I(C2n(1, 2)) : xn−1

)
, yn−2

))
= reg

(
K[V(Fn−3)]/I(Fn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

((
I(C2n(1, 2)), xn−1

)
, yn−1

))
= reg

(
K[V(Fn−1)]/I(Fn−1)

)
=

⌈
n − 1

2

⌉
,

reg
(
S/

((
(I(C2n(1, 2)), xn−1) : yn−1

)
, xn

))
= reg

(
K[V(Fn−3)]/I(Fn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

((
(I(C2n(1, 2)), xn−1) : yn−1

)
: xn

))
= reg

(
K[V(Fn−4)]/I(Fn−4)

)
=

⌈
n − 4

2

⌉
.

Since reg
(
S/

((
I(C2n(1, 2)) : xn−1

)
: yn−2

))
< reg

(
S/((I(C2n(1, 2)) : xn−1), yn−2)

)
, by

Lemma 2.11(c), reg
(
S/(I(C2n(1, 2)) : xn−1)

)
=

⌈
n−3

2

⌉
. Also, reg

(
S/

((
(I(C2n(1, 2)), xn−1) :

yn−1
)

: xn
))

< reg
(
S/

((
(I(C2n(1, 2)), xn−1) : yn−1

)
, xn

))
, and again by Lemma 2.11(c) we

get reg
(
S/

(
(I(C2n(1, 2)), xn−1) : yn−1

))
=

⌈
n−3

2

⌉
. This implies reg

(
S/

((
I(C2n(1, 2)), xn−1

)
:

yn−1
))

< reg
(
S/

((
I(C2n(1, 2)), xn−1

)
, yn−1

))
by using Lemma 2.11(c), and we have that

reg
(
S/(I(C2n(1, 2)), xn−1)

)
=

⌈
n−1

2

⌉
. Thus, the required result follows as

reg
(
S/(I(C2n(1, 2)) : xn−1)

)
< reg

(
S/(I(C2n(1, 2)), xn−1)

)
=

⌈
n − 1

2

⌉
.

Case 2. If n is odd, here C2n(1, 2) = F3 ∪ H, where H � Fn−1 and F3 ∩ H , ∅. By Lemmas 2.10
and 3.8, we get

reg(S/I(C2n(1, 2))) ≤ reg(K[V(F3)]/I(F3)) + reg(K[V(Fn−1)]/I(Fn−1)) = 2 +

⌈
n − 1

2

⌉
.

In the case of the second inequality, we define M =
{
{x1, y1}, {x3, y3}, . . . , {xn−2, yn−2}

}
. Clearly, M

is an induced matching and it follows that indmat(C2n(1, 2)) ≥ |M| = n−1
2 . By Lemma 2.8, we have

reg(S/I(C2n(1, 2))) ≥ n−1
2 .

�

In the following result, we find the exact value for the regularity of cyclic module K[V(C2n(1, n −
1, n))]/I(C2n(1, n − 1, n)).

Theorem 4.7. If n ≥ 3, then reg
(
K[V(C2n(1, n − 1, n))]/I(C2n(1, n − 1, n))

)
=

⌈
n−1

2

⌉
.

Proof. Let S = K[V (C2n(1, n − 1, n))]. We have the following K-algebra isomorphisms:

S/(I(C2n(1, n − 1, n)) : yn) � K[V(Gn−3)]/I(Gn−3) ⊗K K[yn], (4.15)

S/
((

I(C2n(1, n − 1, n)), yn
)
, xn

)
� K[V(Gn−1)]/I(Gn−1), (4.16)

S/
((

I(C2n(1, n − 1, n)), yn
)

: xn
)
� K[V(Gn−3)]/I(Gn−3) ⊗K K[xn]. (4.17)
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By applying Lemmas 2.5 and 3.9 and Remark 3.1 on Eqs (4.15)–(4.17), we get

reg
(
S/ (I(C2n(1, n − 1, n)) : yn)

)
= reg

(
K[V(Gn−3)]/I(Gn−3)

)
=

⌈
n − 3

2

⌉
,

reg
(
S/

((
I(C2n(1, n − 1, n)), yn

)
: xn

))
= reg

(
K[V(Gn−3)]/I(Gn−3)

)
=

⌈
n − 3

2

⌉
,

and

reg
(
S/

((
I(C2n(1, n − 1, n)), yn

)
, xn

))
= reg

(
K[V(Gn−1)]/I(Gn−1)

)
=

⌈
n − 1

2

⌉
.

Since
⌈

n−3
2

⌉
<

⌈
n−1

2

⌉
, by Lemma 2.11(c) we get reg

(
S/

(
I(C2n(1, n − 1, n)), yn

))
=

⌈
n−1

2

⌉
. Also,

reg
(
S/

(
I(C2n(1, n − 1, n)) : yn

))
< reg

(
S/

(
I(C2n(1, n − 1, n)), yn

))
,

and again by Lemma 2.11(c), the required result follows. �

5. Conclusions

In this paper we compute the algebraic invariants namely regularity, projective dimension, depth,
and the Stanley depth of the quotient rings of the edge ideals associated with some classes of circulant
graphs. It will be interesting but seems challenging to find these algebraic invariants for the quotient
rings of the edge ideals of all four and five regular circulant graph.
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16. M. Cimpoeaş, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2 (2012),
28–40.

17. J. Herzog, A survey on Stanley depth, In: A. Bigatti, P. Giménez, E. Sáenz-de-Cabezón,
Monomial ideals, computations and applications, Lecture Notes in Mathematics, Springer, Berlin,
Heidelberg, 2083 (2013), 3–45. https://doi.org/10.1007/978-3-642-38742-5 1

18. A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773–784.
https://doi.org/10.1080/00927870902829056

19. B. Alspach, T. D. Parsons, Isomorphism of circulant graphs and digraphs, Discrete Math., 25
(1979), 97–108. https://doi.org/10.1016/0012-365X(79)90011-6

20. J. C. Bermond, F. Comellas, D. F. Hsu, Distributed loop computer-networks: a survey, J. Parallel
Distr. Comput., 24 (1995), 2–10. https://doi.org/10.1006/jpdc.1995.1002

21. F. K. Hwang, A survey on multi-loop networks, Theor. Comput. Sci., 299 (2003), 107–121.
https://doi.org/10.1016/S0304-3975(01)00341-3

22. E. A. Monakhova, A survey on undirected circulant graphs, Discrete Math. Algorit. Appl., 4 (2012),
1250002. https://doi.org/10.1142/S1793830912500024

AIMS Mathematics Volume 9, Issue 1, 868–895.

http://dx.doi.org/https://doi.org/10.1017/CBO9780511608681
http://dx.doi.org/https://doi.org/10.1006/jdeq.2001.4058
http://dx.doi.org/https://doi.org/10.1016/j.jde.2007.03.016
http://dx.doi.org/https://doi.org/10.1134/S1560354707060135
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2008.01.006
http://dx.doi.org/https://doi.org/10.1090/mcom/3106
http://dx.doi.org/https://doi.org/10.1016/j.jcta.2017.03.005
http://dx.doi.org/https://doi.org/10.1080/00927872.2017.1339068
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-2013-11594-7
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-2013-11594-7
http://dx.doi.org/https://doi.org/10.1007/BF01394054
http://dx.doi.org/https://doi.org/10.1016/j.aim.2016.05.011
http://dx.doi.org/https://doi.org/10.1007/978-3-642-38742-5_1
http://dx.doi.org/https://doi.org/10.1080/00927870902829056
http://dx.doi.org/https://doi.org/10.1016/0012-365X(79)90011-6
http://dx.doi.org/https://doi.org/10.1006/jpdc.1995.1002
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(01)00341-3
http://dx.doi.org/https://doi.org/10.1142/S1793830912500024


894

23. M. A. Makvand, A. Mousivand, Betti numbers of some circulant graphs, Czech. Math. J., 69
(2019), 593–607. https://doi.org/10.21136/CMJ.2019.0606-16

24. K. N. Vander Meulen, A. Van Tuyl, C. Watt, Cohen-Macaulay circulant graphs, Commun. Algebra,
42 (2014), 1896–1910. https://doi.org/10.1080/00927872.2012.749886

25. G. Rinaldo, Some algebraic invariants of edge ideal of circulant graphs, Bull. Math. Soc. Sci. Math.
Roum., 61 (2018), 95–105.

26. B. Shaukat, M. Ishaq, A. U. Haq, Z. Iqbal, Algebraic invariants of edge ideals of cubic circulant
graphs, arXiv, 2023. https://doi.org/10.48550/arXiv.2307.12669

27. G. J. Davis, G. S. Domke, 3-circulant graphs, J. Comb. Math. Comb. Comput., 40 (2002), 133–142.

28. Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals
of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92–109.
https://doi.org/10.15672/hujms.638033

29. CoCoA Team, CoCoA: A system for doing Computations in Commutative Algebra. Available
from: http://cocoa.dima.unige.it/.

30. D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry,
2002. Available from: https://www.unimelb-macaulay2.cloud.edu.au/home.

31. S. Morey, R. H. Villarreal, Edge ideals: algebraic and combinatorial properties, In: Progress in
commutative algebra 1, De Gruyter, 1 (2012), 85–126. https://doi.org/10.1515/9783110250404.85

32. R. H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied
Mathematics, Vol. 238, New York: Marcel Dekker, Inc., 2001.

33. M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Comb. Theory, Ser.
A, 113 (2006), 435–454. https://doi.org/10.1016/j.jcta.2005.04.005
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41. A. Ştefan, Stanley depth of powers of the path ideal, U.P.B. Sci. Bull., Ser. A, 85 (2023), 69–76.

AIMS Mathematics Volume 9, Issue 1, 868–895.

http://dx.doi.org/https://doi.org/10.21136/CMJ.2019.0606-16
http://dx.doi.org/https://doi.org/10.1080/00927872.2012.749886
http://dx.doi.org/https://doi.org/10.48550/arXiv.2307.12669
http://dx.doi.org/https://doi.org/10.15672/hujms.638033
http://cocoa.dima.unige.it/
https://www.unimelb-macaulay2.cloud.edu.au/home
http://dx.doi.org/https://doi.org/10.1515/9783110250404.85
http://dx.doi.org/https://doi.org/10.1016/j.jcta.2005.04.005
http://dx.doi.org/https://doi.org/10.1007/s10801-007-0079-y
http://dx.doi.org/https://doi.org/10.1007/s00013-010-0112-6
http://dx.doi.org/https://doi.org/10.1016/j.jcta.2006.01.005
http://dx.doi.org/https://doi.org/10.1080/00927870601139500
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-5350-1
http://dx.doi.org/https://doi.org/10.1007/s10801-012-0391-z
http://dx.doi.org/https://doi.org/10.1007/s10801-012-0391-z
http://dx.doi.org/https://doi.org/10.1080/00927870903286900


895

42. M. Cimpoeaş, On the Stanley depth of edge ideals of line and cyclic graphs, Rom. J. Math. Comput.
Sci., 5 (2015), 70–75.

43. S. Jacques, Betti numbers of graph ideals, Ph.D. Thesis, University of Sheffield, Sheffield, UK,
2004. https://doi.org/10.48550/arXiv.math/0410107
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