Research article Special Issues

Asymptotic stability of impulsive stochastic switched system with double state-dependent delays and application to neural networks and neural network-based lecture skills assessment of normal students

  • Received: 23 August 2023 Revised: 12 November 2023 Accepted: 16 November 2023 Published: 27 November 2023
  • MSC : 92B20, 93C30

  • This article investigates the stability problem of impulsive stochastic switched systems with double state-dependent delays. In the designed system, unstable and stable impulses are taken into consideration, respectively, and they do not need to function simultaneously with switching behavior. Additionally, two new ideas, i.e., mode-dependent switching density and mode-dependent impulsive density, are developed. Based on the Lyapunov function method and comparison principle, the asymptotic stability criteria for an impulsive stochastic switched system with state-dependent delays are given. Moreover, the application of theoretical results to neural networks and the neural network-based lecture skills assessment of normal students is analyzed. Finally, two numerical examples are provided to illustrate the effectiveness and reliability of the theoretical criteria.

    Citation: Yueli Huang, Jin-E Zhang. Asymptotic stability of impulsive stochastic switched system with double state-dependent delays and application to neural networks and neural network-based lecture skills assessment of normal students[J]. AIMS Mathematics, 2024, 9(1): 178-204. doi: 10.3934/math.2024011

    Related Papers:

  • This article investigates the stability problem of impulsive stochastic switched systems with double state-dependent delays. In the designed system, unstable and stable impulses are taken into consideration, respectively, and they do not need to function simultaneously with switching behavior. Additionally, two new ideas, i.e., mode-dependent switching density and mode-dependent impulsive density, are developed. Based on the Lyapunov function method and comparison principle, the asymptotic stability criteria for an impulsive stochastic switched system with state-dependent delays are given. Moreover, the application of theoretical results to neural networks and the neural network-based lecture skills assessment of normal students is analyzed. Finally, two numerical examples are provided to illustrate the effectiveness and reliability of the theoretical criteria.



    加载中


    [1] X. F. Liu, J. Shi, Y. W. Qi, Y. Ye, Design for aircraft engine multi-objective controllers with switching characteristics, Chin. J. Aeronaut., 27 (2014), 1097–1110. https://doi.org/10.1016/j.cja.2014.08.002 doi: 10.1016/j.cja.2014.08.002
    [2] X. F. Yao, J. H. Wang, S. G. Ai, Z. Y. Liu, Y. S. Geng, Z. G. Hao, Vacuum switching technology for future of power systems, Engineering, 13 (2022), 164–177. https://doi.org/10.1016/j.eng.2021.11.020 doi: 10.1016/j.eng.2021.11.020
    [3] X. Z. Wang, H. S. Zhang, Intelligent control of convergence rate of impulsive dynamic systems affected by nonlinear disturbances under stabilizing impulses and its application in Chua's circuit, Chaos Solitons Fractals, 169 (2023), 113289. https://doi.org/10.1016/j.chaos.2023.113289 doi: 10.1016/j.chaos.2023.113289
    [4] Z. G. Li, Y. C. Soh, C. Y. Wen, Switched and impulsive systems: Analysis, design and applications, Heidelberg: Springer, 2005. https://doi.org/10.1007/b100366
    [5] H. T. Zhu, P. Li, X. D. Li, H. Akca, Input-to-state stability for impulsive switched systems with incommensurate impulsive switching signals, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104969. https://doi.org/10.1016/j.cnsns.2019.104969 doi: 10.1016/j.cnsns.2019.104969
    [6] S. L. Du, J. T. Dong, Y. Wang, Stability and stabilisation for switched impulsive positive systems, IET Control Theory Appl., 15 (2021), 839–849. https://doi.org/10.1049/cth2.12085 doi: 10.1049/cth2.12085
    [7] C. Y. Li, J. C. Jiang, J. Lian, Robust $H_\infty$ control of uncertain impulsive switched systems, Asian J. Control, 15 (2021), 185–194. https://doi.org/10.1002/asjc.2440 doi: 10.1002/asjc.2440
    [8] M. Grigoriu, Stochastic systems: Uncertainty quantification and propagation, London: Springer, 2012. https://doi.org/10.1007/978-1-4471-2327-9
    [9] H. B. Chen, P. Shi, C. C. Lim, Stability of neutral stochastic switched time delay systems: An average dwell time approach, Internat. J. Robust Nonlinear Control, 27 (2017), 512–532. https://doi.org/10.1002/rnc.3588 doi: 10.1002/rnc.3588
    [10] L. G. Xu, D. H. He, Mean square exponential stability analysis of impulsive stochastic switched systems with mixed delays, Comput. Math. Appl., 62 (2011), 109–117. https://doi.org/10.1016/j.camwa.2011.04.056 doi: 10.1016/j.camwa.2011.04.056
    [11] R. D. Driver, A two-body problem of classical electrodynamics: The one-dimensional case, Ann. Phys., 21 (1963), 122–142. https://doi.org/10.1016/0003-4916(63)90227-6 doi: 10.1016/0003-4916(63)90227-6
    [12] X. Zheng, B. Balachandran, State-dependent delay and drill-string dynamics, Procedia IUTAM, 22 (2017), 31–38. https://doi.org/10.1016/j.piutam.2017.08.006 doi: 10.1016/j.piutam.2017.08.006
    [13] L. Boullu, L. P. Menjouet, J. H. Wu, A model for megakaryopoiesis with state-dependent delay, SIAM J. Math. Anal., 79 (2019), 1218–1243. https://doi.org/10.1137/18M1201020 doi: 10.1137/18M1201020
    [14] T. Cassidy, M. Craig, A. R. Humphries, Equivalences between age structured models and state dependent distributed delay differential equations, Math. Biosci. Eng., 16 (2019), 5419–5450. http://dx.doi.org/10.3934/mbe.2019270 doi: 10.3934/mbe.2019270
    [15] Z. L. Xu, X. D. Li, V. Stojanovic, Exponential stability of nonlinear state-dependent delayed impulsive systems with applications, Nonlinear Anal. Hybrid Syst., 42 (2021), 101088. https://doi.org/10.1016/j.nahs.2021.101088 doi: 10.1016/j.nahs.2021.101088
    [16] W. Zhang, J. J. Huang, Stability analysis of stochastic delayed differential systems with state-dependent-delay impulses: Application of neural networks, Cogn. Comput., 14 (2022), 805–813. https://doi.org/10.1007/s12559-021-09967-x doi: 10.1007/s12559-021-09967-x
    [17] X. Y. He, X. D. Li, S. J. Song, Finite-time stability of state-dependent delayed systems and application to coupled neural networks, Neural Netw., 154 (2022), 303–309. https://doi.org/10.1016/j.neunet.2022.07.009 doi: 10.1016/j.neunet.2022.07.009
    [18] X. D. Li, X. Y. Yang, Lyapunov stability analysis for nonlinear systems with state-dependent state delay, Automatica, 112 (2020), 108674. https://doi.org/10.1016/j.automatica.2019.108674 doi: 10.1016/j.automatica.2019.108674
    [19] N. Zhang, S. J. Jiang, W. X. Li, Stability of stochastic state-dependent delayed complex networks under stochastic hybrid impulsive control, Syst. Control Lett., 174 (2023), 105494. https://doi.org/10.1016/j.sysconle.2023.105494 doi: 10.1016/j.sysconle.2023.105494
    [20] Z. C. Wang, G. L. Chen, Z. P. Ning, J. W. Xia, Stability analysis of impulsive switched nonlinear systems with double state-dependent delays, IEEE Trans. Circuits Syst. Ⅱ Express Briefs, 69 (2022), 5014–5018. http://doi.org/10.1109/TCSII.2022.3191658 doi: 10.1109/TCSII.2022.3191658
    [21] X. D. Zhao, L. X. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE Trans. Automat. Control, 57 (2012), 1809–1815. http://doi.org/10.1109/TAC.2011.2178629 doi: 10.1109/TAC.2011.2178629
    [22] X. Xie, X. Z. Liu, H. L. Xu, Synchronization of delayed coupled switched neural networks: Mode-dependent average impulsive interval, Neurocomputing, 365 (2019), 261–272. https://doi.org/10.1016/j.neucom.2019.07.045 doi: 10.1016/j.neucom.2019.07.045
    [23] X. T. Wu, W. X. Zheng, Y. Tang, X. Jin, Stability analysis for impulsive stochastic time-varying systems, IEEE Trans. Automat. Control, 68 (2023), 2584–2591. http://doi.org/10.1109/TAC.2022.3190197 doi: 10.1109/TAC.2022.3190197
    [24] Y. L. Huang, A. L. Wu, Asymptotical stability and exponential stability in mean square of impulsive stochastic time-varying neural network, IEEE Access, 11 (2023), 39394–39404. http://doi.org/10.1109/ACCESS.2023.3268645 doi: 10.1109/ACCESS.2023.3268645
    [25] W. H. Qi, N. Zhang, G. D. Zong, S. F. Su, J. D. Cao, J. Cheng, Asynchronous sliding-mode control for discrete-time networked hidden stochastic jump systems with cyber attacks, IEEE Trans. Cybernetics, 2023, 1–13. https://doi.org/10.1109/TCYB.2023.3300120 doi: 10.1109/TCYB.2023.3300120
    [26] W. H. Qi, N. Zhang, S. F. Su, H. C. Yan, Y. H. Yeh, Event-triggered SMC for networked markov jumping systems with channel fading and applications: genetic algorithm, IEEE Trans. Cybernetics, 53 (2023), 6503–6515. https://doi.org/10.1109/TCYB.2023.3253701 doi: 10.1109/TCYB.2023.3253701
    [27] W. H. Qi, G. D. Zong, Y. K. Hou, M. Chadli, SMC for discrete-time nonlinear semi-markovian switching systems with partly unknown semi-markov kernel, IEEE Trans. Automat. Control, 68 (2023), 1855–1861. https://doi.org/10.1109/TAC.2022.3169584 doi: 10.1109/TAC.2022.3169584
    [28] T. C. Jiao, J. H. Park, G. D. Zong, Y. L. Zhao, Q. J. Du, On stability analysis of random impulsive and switching neural networks, Neurocomputing, 350 (2019), 146–154. https://doi.org/10.1016/j.neucom.2019.03.039 doi: 10.1016/j.neucom.2019.03.039
    [29] X. T. Wu, Y. Tang, W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66 (2016), 195–204. https://doi.org/10.1016/j.automatica.2016.01.002 doi: 10.1016/j.automatica.2016.01.002
    [30] X. T. Wu, Y. Tang, W. B. Zhang, Stability analysis of switched stochastic neural networks with time-varying delays, Neural Netw., 51 (2014), 39–49. https://doi.org/10.1016/j.neunet.2013.12.001 doi: 10.1016/j.neunet.2013.12.001
    [31] J. Kukkonen, L. Partanen, A. Karppinen, J. Ruuskanen, H. Junninen, M. Kolehmainen, et al., Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki, Atmos. Environ., 37 (2003), 4539–4550. https://doi.org/10.1016/S1352-2310(03)00583-1 doi: 10.1016/S1352-2310(03)00583-1
    [32] A. Hyvarinen, Gaussian moments for noisy independent component analysis, IEEE Signal Proc. Lett., 6 (1999), 145–147. https://doi.org/10.1109/97.763148 doi: 10.1109/97.763148
    [33] Z. H. Guan, D. J. Hill, J. Yao, A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to chua's chaotic circuit, Internat. J. Bifur. Chaos, 16 (2006), 229–238. https://doi.org/10.1142/S0218127406014769 doi: 10.1142/S0218127406014769
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(981) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog