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Abstract: This article investigates the stability problem of impulsive stochastic switched systems with
double state-dependent delays. In the designed system, unstable and stable impulses are taken into
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Additionally, two new ideas, i.e., mode-dependent switching density and mode-dependent impulsive
density, are developed. Based on the Lyapunov function method and comparison principle, the
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provided to illustrate the effectiveness and reliability of the theoretical criteria.
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1. Introduction

Switched systems and impulsive systems, as two forms of hybrid systems, have attracted
increased attention in recent years due to their significance in theoretical research and practical
applications. A switched system, in general, consists of numerous subsystems and a switching rule.
Additionally, the preset performance of switched system is realized by switching between subsystems.
Impulsive systems are hybrid dynamic systems that combine instantaneous state jumps and continuous
development processes. Switched systems and impulsive systems are often encountered in many
practical engineering applications, such as the switching of operating point of aircrafts [1], the
switching of power system networks [2] and circuit modeling [3].

In practical systems such as circuit systems, switched mechanisms and impulse jumps often
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coexist [4]. Thus, switching and impulses should be considered concurrently, resulting in an impulsive
switched system. There are multiple notable results concerning the stability and performance of
impulsive switched systems; see [5–7]. In addition, the actual system will be influenced by external
interference signals or receive external control signals [8]. These disturbance signals or control
inputs will directly or indirectly have a certain impact on the dynamic performance of the system.
Furthermore, delay [9, 10], as a common and unavoidable disturbance element affecting system
performance, cannot be overlooked. For example, in the process of signal encoding and transmission in
network control systems, there is transmission delay. It is necessary to explore the impact of delay on
system performance. Therefore, on the basis of switching systems and impulsive systems, stochastic
systems and time-delay systems have been generated for the purpose of modeling more practical
dynamic systems. It is of great significance to keep striving to improve and develop the qualitative
theory of impulsive stochastic switched systems (ISSSs) with time delay.

In recent years, it has been proposed, in many models that delay depends on the state or
its explicit or unknown function. These equations are called state-dependent delay differential
equations. State-dependent delay differential equations were first used to solve the classic two-
body problem in electrodynamics; see [11]. Due to the limited speed of propagation of electrical
effects, differential equations involve time delays that are dependent on unknown trajectories. Prior
to this, electrodynamics was an unknown mathematical area. In addition, state-dependent delay has
been widely employed in practical applications, including drilling engineering [12], megacaryocyte
modeling [13], age structured models [14], and virus infection model [15]. Moreover, many
intriguing and significant results on systems with state-dependent delay have recently been published;
see [16–19]. In [16], Zhang and Huang investigated the stability of stochastic delayed nonlinear
systems based on impulses with state-dependent delay by using average impulsive interval (AII),
the comparison principle, and differential inequalities. In [17], He et al. explored the finite-time
stability of nonlinear systems with state-dependent delay through utilizing the Razumikhin technique.
Using Lyapunov stability theory, Li and Yang established weak local exponential stability criteria for
nonlinear systems with state-dependent delay in [18]. In [19], Zhang et al. conducted analysis of
stochastic networks with state-dependent delay by combining the Lyapunov method and stochastic
analysis techniques. Note that these results only focused on state-dependent delay involving continuous
subsystems or discrete difference systems. Actually, state-dependent delay always occurs in both
continuous subsystems and the impulsive functions of hybrid systems, i.e., double state-dependent
delays (DSDDs) occur [20]. However, when time delay coexists in a continuous system and the
impulsive function while being state-dependent, it is highly challenging to explore the stability of
an ISSS with DSDDs by using a unified paradigm. In fact, because of the existence of state-dependent
delay in impulse, it is unfathomable to know how much information is required in history a priori, and
it is also difficult to establish the historical state under impulsive conditions.

Use of the AII is one of effective strategies for describing the extent of impulsive occurrence. The
average dwell time (ADT) is currently often employed to determine the amount of switches. However,
the AII pays little attention to distinctions among impulsive functions. The ADT ignores distinctions
among subsystems. Taking this into account, Zhao et al. [21] suggested an idea called mode-dependent
AII (MDAII), which allows each impulsive function to have its own AII. Xie et al. [22] introduced
a dwell-time idea known as the mode-dependent average dwell time (MDADT), which allows every
subsystem to possess its own ADT. The linear connection, nevertheless, limits the numbers of impulses
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and switches. More recently, in [23], impulse density, which breaks away from linear constraints, is
introduced to more properly portray the activated impulse amount. The impulse density establishes a
linear/nonlinear relation among time intervals and the amount of impulse occurrences, eliminating the
problem of an inadequate/excessive amount of impulses characterized by the AII. Accordingly, control
synthesis and stability analysis of impulsive stochastic neural networks with impulse density are also
reported; see [24].

However, in switching sequences and impulsive sequences, the characteristic of any two switches
or impulses with the same density function with the same time interval may still not be expected, as
it independent of the system mode. In addition, it has been plainly demonstrated in literature that
impulse density is generated by two mode-independent parameters: impulsive intensity at impulsive
instants and the rate coefficient for the Lyapunov function. It is unambiguous that setting the
two identical parameters for all subsystems in a mode-independent way will result in a certain
conservatism. Nevertheless, so far, the problem of ISSSs with time-varying characteristics has not
received sufficient attention, and their dynamic analysis is still an open topic, especially in the case
of time-varying impulsive intensity. The key difficulties can be summarized as follows: How can
one construct appropriate mode-dependent switching mechanisms and mode-dependent impulsive
mechanisms under a time-varying impulsive intensity, time-varying switching frequency and time-
varying impulsive number and switching number so as to achieve stability in an ISSS? Furthermore,
sliding mode control [25] is also a typical control approach. It has some parallels but also distinctions
as compared to impulse density and switching density. Sliding mode control is a nonlinear control
approach that uses a sliding mode surface to guarantee system stability [26]. The controller modifies
the control input to shift the system state to the sliding mode surface and keep it there, accomplishing
the control goal [27]. The sliding mode control method has the advantages of strong robustness and
certain resistance to parameter changes and disturbances. Impulse density control is a digital control
approach that accomplishes control goals by varying the density of output impulses. Impulse density
control technologies are widely employed in disciplines such as switching system control and motor
control. The main idea behind the impulse density control method is to transform the control signal
into a sequence of impulses and then control the output by adjusting the frequency of the impulses.
The impulse density control method has the advantages of a fast response speed, high accuracy, and
excellent reliability. Although sliding mode control and impulse density control have some similarities,
their application fields and implementation methods are different. The sliding mode control method is
suitable for the control of nonlinear systems and strong interference environments, while the impulse
density control method is suitable for digital control systems and switching system fields.

Stochastic switched neural networks, which have been effectively used to model circuits, constitute
one of the most vital applications of stochastic switched differential equations. On the other hand, in
some physical models, switching events and impulsive effects constantly coexist. Thus, it is critical
to evaluate the impact of these impulses on stochastic switched networks. The impact of impulses on
the stability of stochastic neural network has been extensively studied. Jiao et al. proposed certain
global asymptotic stability criteria and sufficient conditions of stability for switching neural networks
with impulses by applying dell-time strategy and the discrete Lyapunov function approach in [28].
However, the stability of stochastic switched neural networks in the impulsive sense, and as based
on mode-dependent impulsive density and mode-dependent switching density has not been explored
so far. Additionally, distributed delay, time-varying delay, constant delay and so on, are currently
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the main areas addressed when discussing neural networks. In actuality, it is crucial to investigate
impulsive stochastic switched neural networks (ISSNNs) with DSDDs.

Inspired by the above discussion, this article serves to analyze the stability of ISSSs with DSDDs,
where switches are asynchronous with impulses. The main contributions of this article are as follows:
(1) A more generic ISSS with a mode-dependent switching signal and mode-dependent impulsive
effects is developed, where the synchronization of switches and impulses is not required. Both the
destabilizing and stabilizing instances of impulses with state-dependent delay are completely explored.
(2) Two new concepts, mode-dependent switching density and mode-dependent impulsive density, are
presented to define switching sequences and impulsive sequences, where the switches and impulses of
every mode have their own switching density and impulse density. This helps to remove the linear
restrictions on the ADT or MDADT as well as the limitations on the AII or MDAII, making the
conclusion more adaptable and practical for the stability of ISSSs. (3) DSDDs, which means that
state-dependent delay occurs in both subsystem and impulsive function, is considered in the system.
Based on the mode-dependent switching density and mode-dependent impulsive density approaches,
some criteria for the stability of ISSSs with DSDDs are derived by employing Lyapunov functions
and the comparison; the relationships among the system mode, mode-dependent switching density,
mode-dependent impulsive density, state-dependant delay and impulse strength are established, and
corollaries are given for particular conditions. (4) Applying theoretical conclusions for ISSNNs, we
have derived some results on the mean square asymptotic stability of the considered systems, where
we explored specific cases of unstable and stable impulses, respectively.

Notations: Let R stand for the set of real numbers. R+ = (0,+∞). N denotes a collection of
natural integers that includes 0. N+ = N \ 0. (Ω,F , {Ft}t≥t0 , P) represents a complete probability space
with a natural filtration {Ft}t≥t0 . C refers to a class of nonnegative functions Vr(t)(t, x) taking values on
[t0 − τ̄,+∞) × Rn which are continuously once differentiable and twice differentiable with respect to t
and x respectively. Letω(t) be an m-dimensionalFt-adapted Brownian motion. |·| indicates a Euclidean
norm. The superscript T indicates the transposition of a matrix or vector. PC([−τ̄, 0];Rn) is the set
which contains piecewise continuous functions from [−τ̄, 0] to Rn and φ is defined on [−τ̄, 0] with
the norm ||φ|| = sup−τ̄≤θ≤0 |φ(θ)|. For t ≥ t0, PLp

Ft
is the family of all Ft-measurable PC([−τ̄, 0];Rn)-

valued processes φ = {φ(θ) : −τ̄ ≤ φ ≤ 0} such that ||φ||Lp = sup−τ̄≤θ≤0 E|φ(θ)|p < +∞, where the
operator E aims to calculate the mathematical expectation. Υ = {α1, α2, · · · , αL}, where L ∈ N+,
αq > 1, q ∈ {1, 2, · · · , L}. Θ = {U1,U2, · · · ,US }, where S ∈ N+, Up ∈ R

+, p ∈ {1, 2, · · · , S }.
E = {ϑ(t) :

∫ t

t0
ϑ(u)du ≤ −k1(t − t0) + k2}, where k1, k2 ∈ R

+. Moreover, let K indicate a family of
continuous strictly increasing functions κ : R+ → R+ with κ(0) = 0, and letK∞ be the set of unbounded
functions in K . CK∞ and VK∞ are formed by all concave functions and all convex functions of K∞
respectively. K0 = {λ : continuous function from R+ to R, λ(t0) = 0}. D+ represents Dini
upper right derivative.

2. Model description and preliminaries

The following ISSS with DSDDs is discussed in this article

dx(t) = fr(t)(t, x(t), x(t − τ(t, x(t))))dt + gr(t)(t, x(t), x(t − τ(t, x(t))))dω(t), t < T im,

x(t) =Ih(t)(t−, x(t−), x(t− − τ(t−, x(t−)))), t ∈ T im, (2.1)

AIMS Mathematics Volume 9, Issue 1, 178–204.



182

where x(t) ∈ Rn and τ(t, x(t)) is the state-dependent delay. The initial value xt0 ∈ PL
p
Ft0

, fr(t), Ih(t) are
functions from [t0,+∞) × PLp

Ft
× PL

p
Ft

to Rn, g : [t0,+∞) × PLp
Ft
× PL

p
Ft
→ Rn×m. tsw

k stands for the
switching instant, and T sw = {tsw

1 , t
sw
2 , · · · }. r(t) = ik ∈ Q = {1, 2, · · · , L} when t ∈ [tsw

k , t
sw
k+1), where

L ∈ N+ represents the amount of switched subsystems. The jkth subsystem is engaged if t ∈ [tim
k , t

im
k+1),

where k ∈ N+, tim
k is the impulsive time, jk ∈ M = {1, 2, · · · ,U}, U is the quantity of impulsive

subsystems, and T im = {tim
1 , t

im
2 , · · · }. T = T sw ∪ T im. N(a, b) refers to the amount of discrete-time

across (a, b). Additionally, gi(t, 0, 0) ≡ 0, fi(t, 0, 0) ≡ 0, Ii(t, 0, 0) ≡ 0. gi, fi and Ii are locally Lipschitz,
which implies that ISSS (2.1) with DSDDs has a trivial solution.

Below are some basic definitions required for this article.

Definition 2.1. [21] For any t ≥ t0 and switching signal r(t), let T1(t, s) and N1(t, s) respectively
symbolize the total running time and quantity of the swithes triggered on (s, t]. There exist constants
T1 > 0 and N10 > 0 satisfying

N1(t, s) ≤ N10 +
T1(t, s)
T1

, t ≥ s ≥ t0,

where T1 is known as the ADT.

Definition 2.2. [17] For any t ≥ t0 and impulsive signal h(t), let T2(t, s) and N2(t, s) respectively
symbolize total running time and quantity of the impulses triggered on (s, t]. There exist constants
T2 > 0 and N20 > 0 satisfying

N2(t, s) ≤ N20 +
T2(t, s)
T2

, t ≥ s ≥ t0,

where T2 is known as the AII.

The impulsive occurrence number on the interval (s, t] , as represented by the AII may be
insufficient, even though the AII is randomly tiny. For instance, consider the following impulsive
switched system: dx(t) = Aix(t)dt, i = 1, 2,

x(tk) = ιx(t−k ),
(2.2)

where t ≥ t0, 0 < ι < 1 A1 = t
2 , A2 = t. Let Vi(t, x(t)) = xT Pix, P1 = 1 and P2 = 1

4 . We can calculate
that

dV1(t, x(t)) = tx2(t) = tV1(t, x(t)), (2.3)

dV2(t, x(t)) =
t
2

x2(t) = 2tV2(t, x(t)). (2.4)

It follows from a simple calculation that

V1(t, x(t)) =V1(t0, x(t0))ι2N2(t,t0) exp
{∫ t

t0
udu

}
≥V1(t0, x(t0)) exp

{
2N20 ln ι +

∫ t

t0
(u +

2 ln ι
T2

)du
}
,
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V2(t, x(t)) =V2(t0, x(t0))ι2N2(t,t0) exp
{∫ t

t0
2udu

}
≥V2(t0, x(t0)) exp

{
2N20 ln ι +

∫ t

t0
(2u +

2 ln ι
T2

)du
}
.

One can judge that limt→∞

∫ t

t0
(u + 2 ln ι

T2
)du = +∞ and limt→∞

∫ t

t0
(2u + 2 ln ι

T2
)du = +∞ hold for any T2 > 0.

Even if the AII is arbitrarily small, the equilibrium point of system (2.2) may not always be stable for
an impulsive signal. So, the amount of activated impulses characterized by the AII is incomplete.

Definition 2.3. Let Nσl(t2, t1), l ∈ Q represent the quantity of switches triggered in the lth subsystem
over any time interval (t1, t2]. ψl(t) is called the mode-dependent switching density; assume that there
are an integrable function ψl(u) > 0 and a constant N′0l > 0 satisfying

Nσl(t2, t1) ≤ N′0l +

∫ t2

t1
ψl(u)du, t2 ≥ t1 ≥ t0.

Definition 2.4. Let Nr j(t2, t1), j = r(t) ∈ Q refer to the quantity of generated impulses when the jth
subsystem is triggered on (t1, t2]. φ j(u) is known as the mode-dependent impulsive density; assume that
there are an integrable function φ j(u) > 0 and a constant N0 j > 0 satisfying

Nr j(t2, t1) ≤ N0 j +

∫ t2

t1
φ j(u)du, t2 ≥ t1 ≥ t0.

Definition 2.5. Let Nrqk(t2, t1) indicate the amount of the generated kth impulsive intensity when the
qth subsystem is triggered on the interval (t1, t2]. φqk(u) is known as the mode-dependent impulsive
density for the kth impulsive intensity; assume that there exist an integrable function φqk(u) > 0 and a
constant N0qk > 0 satisfying 

Nrqk(t2, t1) ≥ −N0qk +

∫ t2

t1
φqk(u)du,Uk < 1,

Nrqk(t2, t1) ≤ N0qk +

∫ t2

t1
φqk(u)du,Uk ≥ 1.

Remark 2.1. When ψl(u) = 1
Tal

, Nσl(t2, t1) ≤ N′0l + t2−t1
Tal

, φ j(u) = 1
Ta j

and Nr j(t2, t1) ≤ N0 j + t2−t1
Ta j

.
This indicates that the MDADT and MDAII are special cases of mode-dependent switching density and
mode-dependent impulsive density, respectively. Linear correlations described by the ADT and AII,
however, constrain the descriptions of the times of switches and impulses activated. Therefore, the
switching amount and impulsive appearance quantity stipulated by the MDADT and MDAII may be
too small or large too small or large ISSS with DSDDs. Additionally, ψl(u) and φ j(t) are integrable
functions; the switching density and impulse density can yield a connection that is linear or nonlinear.

Definition 2.6. [23] The equilibrium point of ISSS (2.1) with DSDDs is said to be pth moment
asymptotically stable (p-AS), if for any initial state xt0 ∈ PL

p
Ft0

, there exists a constant p > 0 such
that

lim
t→∞
E|x(t)|p = 0.

In addition, there are the constants ε and δ = δ(ε) > 0 such that for any E|x(t0)|p ≤ δ

E|x(t)|p ≤ ε, t > t0.
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We define a differential operator L for system (2.1):

LV(t, x(t)) = Vt(t, x(t)) + Vx(t, x(t)) f (t, x(t), x(t − τ(t, x(t))))

+
1
2

trace[gT (t, x(t), x(t − τ(t, x(t))))Vxx(t, x(t))g(t, x(t), x(t − τ(t, x(t))))].

3. Main results

For the stability of impulsive nonlinear stochastic systems or switched nonlinear stochastic systems,
we usually explore stability by selecting Lyapunov functions reasonably. In this regard, it should be
pointed out that most studies use the ADT or AII to trigger the amount of switches or impulses applied
to control the system. However, due to the linear relationship, the number of switches or impulses
activated under this mechanism may be unreasonable. In addition, the current discriminant criteria
regarding state-dependent delay only involve subsystems or impulse functions. Therefore, results are
rarely related to the existence of state-dependent delay in both subsystems and impulse functions. In
this situation, a tricky question is how to investigate ISSSs with DSDDs based on the mode-dependent
switching density and mode-dependent impulsive density within a unified framework. At present, there
are few related works to be reported. The next sections will explore the cases of unstable impulses and
stable impulses individually. Consider the Lyapunov function Vi(t, x(t)) satisfying that κ1(|x(t)|p) ≤
Vi(t, x(t)) ≤ κ2(|x(t)|p), where κ1 ∈ VK∞, κ2 ∈ CK∞, i ∈ Q = {1, 2, · · · , L}.

Theorem 3.1. Suppose that there exist the functions ξi(t) and ϕi(t), and constants α(tr(t−)) ∈ Υ =

{α1, α2, · · · , αL},U(tk) ∈ Θ = {U1,U2, · · · ,US } and λ(t) ∈ K0 such that

(I1) ELVi(t, x(t)) ≤ −ϕi(t)EVi(t, x(t)) + ξi(t)EVi(t, x(t − τ(t, x(t))));
(I2) EVr(t)(t, x(t)) ≤ α(tr(t−))EVr(t−)(t−, x(t−)), t ∈ T sw;
(I3) EVr(t)(t, Ih(t)(t−, x(t−τ(t−, x(t−))))) ≤ U(th(t−))EVr(t−)(t−, x(t−)), t ∈ T im;
(I4) ξi(t)eλ(t)−λ(t−τ(t,x(t))) + D+λ(t) < ϕi(t);

(I5) limt→∞

∫ t

t0

[∑L
q=1 ψq(u) lnαq +

∑S
p=1

∑L
q=1 φqp(u) lnUp

]
du − λ(t) = −∞,

where L ∈ N+, αq > 1, q ∈ {1, 2, · · · , L}, S ∈ N+, Up > 1 and p ∈ {1, 2, · · · , S }; then, ISSS (2.1) with
DSDDs is p-AS.

Proof. Set Wr(t)(t) = exp{λ(t)}Vr(t)(t, x(t)). To investigate the state trajectory of (2.1), we assert that
the subsequent inequality is true for ∀t ≥ t0:

EWr(t)(t) ≤
Nσ(t,t0)∏

l=1

α(tl)
Nr(t,t0)∏

j=1

U(t j)κ2(E|x(t0)|p), (3.1)

where Nσ(t, t0) indicates the total amount of switches that happened in (t0, t], and Nr(t, t0) indicates the
total amount of impulses that happened in (t0, t].

Firstly, it is easy to obtain

EWr(t0)(t0) ≤ EVr(t0)(t0, x(t0)) ≤ κ2(E|x(t0)|p),

namely, (3.1) holds for t = t0.
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Next, (3.1) will be proven to be still valid for any t > t0. We suppose that there is t∗ > t0 such
that (3.1) is not satisfied. Then two circumstances will be considered, that is, t∗ is a discrete instant or
continuous instant. First, we discuss that t∗ is a discrete time.

If t∗ ∈ T sw, let t̂∗ be the first switching moment that invalidates (3.1). Then, one can get

EWr(t̂∗)(t̂∗) ≤α(tr(t̂∗−))EWr(t̂∗−)(t̂∗−)

≤
∏Nσ(t̂∗,t0)

l=1 α(tl)
∏Nr(t̂∗−,t0)

j=1 U(t j)κ2(E|x(t0)|p)

≤
∏Nσ(t̂∗,t0)

l=1 α(tl)
∏Nr(t̂∗,t0)

j=1 U(t j)κ2(E|x(t0)|p). (3.2)

If t∗ ∈ T im and we assume that ť∗ is the first impulsive moment that leads to the conditions of (3.1) not
being satisfied. Then, one may deduce that

EWr(ť∗)(ť∗) ≤U(th(ť∗−))EWr(ť∗−)(ť∗−)

≤
∏Nσ(ť∗−,t0)

l=1 α(tl)
∏Nr(ť∗,t0)

j=1 U(t j)κ2(E|x(t0)|p)

≤
∏Nσ(ť∗,t0)

l=1 α(tl)
∏Nr(ť∗,t0)

j=1 U(t j)κ2(E|x(t0)|p). (3.3)

According to the above discussion, regardless of whether t∗ ∈ T sw or t∗ ∈ T im, it can be judged
that (3.1) is valid for any t ∈ T .

Next t∗ is considered as a continuous moment. Define t̃ = inf{t ∈ [t0,+∞) \ T : EWr(t)(t) >∏Nσ(t,t0)
l=1 α(tl)

∏Nr(t,t0)
j=1 U(t j)κ2(E|x(t0)|p)}.

In accordance with the description of t̃, we have the following for ∀t ∈ [t0 − τ̄, t̃]

EWr(t)(t) ≤
Nσ(t,t0)∏

l=1

α(tl)
Nr(t,t0)∏

j=1

U(t j)κ2(E|x(t0)|p). (3.4)

And

EWr(t̃)(t̃) =

Nσ(t̃,t0)∏
l=1

α(tl)
Nr(t̃,t0)∏

j=1

U(t j)κ2(E|x(t0)|p).

Moreover, for ∀t ∈ (t̃, t̃ + ∆t), one may obtain that

EWr(t)(t) >
Nσ(t,t0)∏

l=1

α(tl)
Nr(t,t0)∏

j=1

U(t j)κ2(E|x(t0)|p),

where the positive number ∆t tends to 0.
Then, it follows that

ED+Wr(t̃)(t̃) = lim
∆t→0

sup
EWr(t̃+∆t)(t̃ + ∆t) − EWr(t̃)(t̃)

∆t

≥ lim
∆t→0

sup
1
∆t

[Nσ(t̃+∆t,t0)∏
l=1

α(tl)
Nr(t̃+∆t,t0)∏

j=1

U(t j) −
Nσ(t̃,t0)∏

l=1

α(tl)
Nr(t̃,t0)∏

j=1

U(t j)
]
κ2(E|x(t0)|p)

≥0. (3.5)
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It can be generated that through the definition ofWr(t)(t),

EVr(t̃−τ(t̃,x(t̃)))(t̃ − τ(t̃, x(t̃)), x(t̃ − τ(t̃, x(t̃)))) ≤ exp{−λ(t̃ − τ(t̃, x(t̃)))}Wr(t̃−τ(t̃,x(t̃)))(t̃ − τ(t̃, x(t̃)))
≤ exp{−λ(t̃ − τ(t̃, x(t̃)))}Wr(t̃)(t̃)
≤ exp{λ(t̃) − λ(t̃ − τ(t̃, x(t̃)))}Vr(t̃)(t̃, x(t̃)). (3.6)

According to the Itô formula, one has

D+V(t, x(t)) = LV(t, x(t))dt + Vx(t, x(t))gr(t)(t, x(t − τ(t, x(t))))dω(t).

Based on the independent growth property of Brownian motion, i.e. E{dω(t)} = 0, we can acquire

D+EV(t, x(t)) = ELV(t, x(t)). (3.7)

The following can be generated from conditions (I1) and (I4),

D+EWr(t̃)(t̃) =D+λ(t̃)EWr(t̃)(t̃) + exp{λ(t̃)}ELVr(t̃)(t̃, x(t̃))
≤[−ϕr(t̃)(t̃) + ξr(t̃)(t̃) exp{λ(t̃) − λ(t̃ − τ(t̃, x(t̃)))} + D+λ(t̃)]EWr(t̃)(t̃)
<0, (3.8)

which is in contradiction with (3.5). Therefore, (3.1) holds for ∀t ∈ [t0,+∞): At the same time, we can

find that
∏Nσ(t,t0)

l=1 α(tl) =
∏L

q=1 α
Nσq(t,t0)
q and

∏Nr(t,t0)
p=1 U(tp) =

∏S
p=1U

∑L
q=1 Nrqp(t,t0)

p .
For t ≥ t0, we claim that

Nσq(t, t0) lnαq ≤ N′0q lnαq +

∫ t

t0
ψq(u) lnαqdu,

L∑
q=1

Nrqp(t, t0) lnUp ≤

L∑
q=1

N0qp| lnUp| +

L∑
q=1

∫ t

t0
φqp(u) lnUpdu (3.9)

hold. One can conclude that from Definition 2.5, and ifUp < 1,

L∑
q=1

Nrqp(t, t0) lnUp ≤ −

L∑
q=1

N0qp lnUp +

L∑
q=1

∫ t

t0
φqk(u) lnUpdu,

ifUp > 1,

L∑
q=1

Nrqp(t, t0) lnUp ≤

L∑
q=1

N0qp lnUp +

L∑
q=1

∫ t

t0
φqp(u) lnUpdu.

Thus, (3.9) holds.
Combining Definition 2.3 and (3.9), we obtain

L∏
q=1

α
Nσq(t,t0)
q

S∏
p=1

U

∑L
q=1 Nrqp(t,t0)

p exp{−λ(t)}
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≤ exp
{ L∑

q=1

N′0q lnαq +

S∑
p=1

L∑
q=1

N0qp| lnUp|

}
exp

{∫ t

t0

[ L∑
q=1

ψq(u) lnαq +

S∑
p=1

L∑
q=1

φqp(u) lnUp

]
du − λ(t)

}
.

Let γ =
∑L

q=1 N′0q lnαq +
∑S

p=1
∑L

q=1 N0qp| lnUp|, since αq > 1 and | lnUp| > 0, it can be obtained that
γ > 0. Based on the condition (I5), we can find a constant ν > 0 that satisfies the following inequality
for any t > t0

exp{γ} exp
{∫ t

t0

[ L∑
q=1

ψq(u) lnαq +

S∑
p=1

L∑
q=1

φqp(u) lnUqp

]
du − λ(t)

}
< ν. (3.10)

Owing to κ2 ∈ CK∞, for any ε > 0, there should be a constant δ̆ such that κ2(δ̆)ν < ε. Therefore,
whenever E|x(t0)|p ≤ δ̆, EVr(t)(t, x(t)) ≤ ε. Additionally, because x(t0) ∈ PLp

Ft0
, according to (I5), (3.1),

(3.10) and κ1(E|x(t)|p) ≤ Eκ1(|x(t)|p) ≤ EVi(t, x(t)), we can get

lim
t→∞
E|x(t)|p = 0. (3.11)

So ISSS (2.1) with DSDDs is p-AS. �

Remark 3.1. In this article, the impulsive intensity, switching frequency and impulsive quantity of
ISSSs fluctuate with time. U(th(t−)) ∈ Θ implies that the intensity of impulses varies throughout time,
and impulses might be stable or unstable at various time points.

Remark 3.2. Conditions (I1) and (I4) are key in coping with state-dependent delay. In previous work,
the majority of Lyapunov-type criteria required that ELV(t, x(t)) ≤ −φEV(t, x(t)) + ξE(t, x(t + θ)),
where φ and ξ are constant and θ is time delay. On the one hand, when we gain the constants φ and
ξ, constants φ and ξ may be excessively large, causing the stability criteria to be overly conservative.
To make matters worse, constants φ and ξ do not even exist in many actual systems, particularly those
with time-varying coefficients.

Remark 3.3. Conditions (I2) and (I3) represent demand for Lyapunov functions at the switching instant
and impulsive instant, respectively. Condition (I5) is the limit on the switching density and impulse
density. Overall, no extremely tight assumptions are required for this article.

Corollary 3.1. If there are constants α(tr(t−)) ∈ Υ = {α1, α2, · · · , αL}, L ∈ N+, αq > 1, q ∈
{1, 2, · · · , L}, U(tk) ∈ Θ = {U1,U2, · · · ,US }, S ∈ N+, Up > 1 and p ∈ {1, 2, · · · , S } such that
(I2), (I3) and (I4) are true, and that ELVi(t, x(t)) ≤ −ϕi(t)EVi(t, x(t)) + ξi(t)EVi(t, x(t − τ(t, x(t)))) and

limt→∞

∫ t

t0

[∑L
q=1 ψq(u) lnαq +

∑S
p=1

∑L
q=1 φqp(u) lnUp

]
du − λ(t) ∈ E are valid; then, ISSS (2.1) with

DSDDs is p-AS.

Proof. The proof is omitted since it is exactly the same as that for Theorem 3.1. �

Corollary 3.2. Let ψq(u) ≡ 1
Tσq

, φqp(u) ≡ 1
Trp

and ϕ > ξ. If there are constants α(tr(t−)) ≥ 1,Ui(tk) ≥ 1
such that (I2) and (I3) hold and

(I6) ELVi(t, x(t)) ≤ −ϕEVi(t, x(t)) + ξEVi(t, x(t − τ(t, x(t))));
(I7)

∑L
q=1

lnαq

Tσq
+

∑S
p=1

lnUp

Trp
< λ0; where λ0 ∈ (0, λ̃) and λ̃ is solution of λ − ϕ + ξeλτ(t,x(t)) = 0,
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then (2.1) is p-AS.

Proof. Take λ(t) = λ0(t − t0) in Theorem 3.1. Owing to this proof being identical to Theorem 3.1, it is
simplified here. �

Remark 3.4. When gr(t)(t, x(t − τ(t, x(t)))) = 0 in ISSS (2.1) with DSDDs, condition (I6) will become
ED+Vi(t, x(t)) ≤ −ϕEVi(t, x(t)) + ξEVi(t, x(t − τ(t, x(t)))). At this point, Corollary 3.2 is the conclusion
in [20].

Theorem 3.2. Suppose that there exist the functions ξi(t) > 0 and ϕi(t) > 0, υi(t) ∈ K∞ and constants
α(tr(t−)) ∈ Υ = {α1, α2, · · · , αL}, L ∈ N+, αq > 1, U(th(t−)) ∈ Θ = {U1,U2, · · · ,US }, S ∈ N+,
0 < Up < 1 and p ∈ {1, 2, · · · , S } such that

(I′1) ELVi(t, x(t)) ≤ ϕi(t)EVi(t, x(t)) + ξi(t)EVi(t, x(t − τ(t, x(t))));
(I′2) EVr(t)(t, x(t)) ≤ α(tr(t−))EVr(t−)(t−, x(t−)), t ∈ T sw;
(I′3) EVr(t)(t, Ih(t)(t−, x(t−τ(t−, x(t−))))) ≤ U(th(t−))EVr(t−)(t−, x(t−)), t ∈ T im;

(I′4) $ξi(t)
∫ t

t0
exp

{∫ u

u−τx
υi(s)ds

}
du + exp

{
−

∫ t

t0
[ρi(u) − υi(u)]du

}
− 1 ≤ 0,

where τx = τ(u, x(u)), $ =
∏L

l=1 α
N′0l(tl)

∏S
j=1U

−
∑L

l=1 N0l j(t j), ρi(t) = −ϕi(t) −
∑L

i=1 lnα(ti)ψi(u) −∑S
j=1

∑L
i=1 lnU(th(t−))φi j(u) and exp

{∫ t

t0
[ρi(u) − υi(u)]du

}
> 1. Then ISSS (2.1) with DSDDs is p-AS.

Proof. For any ε > 0, let ζi(t) ≡ ζi(t, x(t)), i ∈ Q be a unique solution of the following time-varying
system with state-dependent delay:

Eζ̇i(t) =ϕi(t)Eζi(t) + ξi(t)Eζi(t − τ(t, x(t))) + ε, t < T, t ≥ t0,

Eζr(t)(t) ≤ α(tr(t−))Eζr(t−)(t−), r(t) ∈ Q,

Eζr(t)(t,Ih(t)(t−, x(t−τ(t−, x(t−))))) ≤ U(th(t−))Eζr(t−)(t−, x(t−)), t ∈ T im,

ζr(t0)(t0) = κ2(|ζ(t0)|p), t ∈ [t0 − τ̄, t0].

(3.12)

Thus, it is easy to deduce that EVr(t)(t, x(t)) ≤ Eζr(t)(t).
Furthermore, similar to the validation procedure of (35) in [29], one can infer that

Eζr(t)(t) ≤$ exp
{∫ t

t0
−ρr(u)(u)du

}
κ2(|x(t0)|p)

+

∫ t

t0

[
$ exp

{∫ t

u
−ρr(s)(s)ds

}(
ξr(t)(t)ζr(u−τ(u,x(u)))(u − τ(u, x(u))) + ε

)]
du. (3.13)

Following that, we shall demonstrate the following inequality

Eζr(t)(t) ≤ $ exp
{∫ t

t0
−υr(u)(u)du

}
κ2(|ζr(t0)(t0)|p). (3.14)

From condition (I′4), we know that υ(t) > 0.
Because Vr(t0)(t0, x(t0)) ≤ κ2(|x(t0)|p), one can observe that (3.14) is valid for t = t0. Assume that the

above assertion is false for any t > t0; then, there exists an instant t∗ such that

Eζr(t∗)(t∗) > $ exp
{∫ t∗

t0
−υr(u)(u)du

}
κ2(|ζr(t0)(t0)|p), (3.15)
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and for all t0 ≤ t < t∗

Eζr(t)(t) ≤ $ exp
{∫ t

t0
−υr(u)(u)du

}
κ2(|ζr(t0)(t0)|p), (3.16)

Combining (3.13) and (3.16), one can generate

Eζr(t∗)(t∗) ≤$ exp
{∫ t∗

t0
−ρr(u)(u)du

}
κ2(|x(t0)|p)

+

∫ t∗

t0

[
$ exp

{∫ t∗

u
−ρr(s)(s)ds

}(
ξr(t∗)(t∗)ζr(u−τ(u,x(u)))(u − τ(u, x(u))) + ε

)]
du

≤$ exp
{∫ t∗

t0
−ρr(u)(u)du

}
κ2(|x(t0)|p)

+

∫ t∗

t0

[
$ exp

{∫ t∗

u
−ρr(s)(s)ds

}(
ξr(t∗)(t∗)$ exp

{∫ u−τx

t0
−υr(s)(s)ds

}
κ2(|ζr(t0)(t0)|p) + ε

)]
du

≤$ exp
{∫ t∗

t0
−ρr(u)(u)du

}
κ2(|x(t0)|p) +$ exp

{∫ t∗

t0
−ρr(s)(s)ds

} ∫ t∗

t0

[
exp

{∫ u

t0
ρr(s)(s)ds

}
×

(
ξr(t∗)(t∗)$ exp

{∫ u−τx

t0
−υr(s)(s)ds

}
κ2(|ζr(t0)(t0)|p) + ε

)]
du. (3.17)

Moreover, setting ε → 0, one has

lim
ε→0

∫ t∗

t0

[
exp

{∫ u

t0
ρr(s)(s)ds

}(
ξr(t∗)(t∗)$ exp

{∫ u−τx

t0
−υr(s)(s)ds

}
κ2(|ζr(t0)(t0)|p) + ε

)]
du

=

∫ t∗

t0
exp

{∫ u

t0
ρr(s)(s)ds

}
ξr(t∗)(t∗)$ exp

{∫ u−τx

t0
−υr(s)(s)ds

}
κ2(|ζr(t0)(t0)|p)du

≤

∫ t∗

t0
exp

{∫ u

t0
ρr(s)(s) − υr(s)(s)ds

}
ξr(t∗)(t∗)$ exp

{∫ u

u−τx

υr(s)(s)ds
}
κ2(|ζr(t0)(t0)|p)du

≤$ξr(t∗)(t∗) exp
{∫ t∗

t0
ρr(s)(s) − υr(s)(s)ds

} ∫ t∗

t0
exp

{∫ u

u−τx

υr(s)(s)ds
}
κ2(|ζr(t0)(t0)|p)du

≤κ2(|ζr(t0)(t0)|p)
[
exp

{∫ t∗

t0
ρr(s)(s) − υr(s)(s)ds

}
− 1

]
. (3.18)

Substituting (3.18) into (3.17) yields

Eζr(t∗)(t∗) ≤$ exp
{∫ t∗

t0
−ρr(u)(u)du

}
κ2(|x(t0)|p)

+$ exp
{∫ t∗

t0
−ρr(s)(s)ds

}
κ2(|ζr(t0)(t0)|p)

[
exp

{∫ t∗

t0
[ρr(s)(s) − υr(s)(s)]ds

}
− 1

]
≤$κ2(|ζr(t0)(t0)|p) exp

{∫ t∗

t0
−υr(u)(u)du

}
, (3.19)

which contradicts with (3.15). So, (3.14) holds.
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In addition,

EVr(t)(t,x(t)) ≤ $κ2(|x(t0)|p) exp
{∫ t∗

t0
−υr(u)(u)du

}
.

Therefore, one can obtain that

E|x(t)|p ≤ Eκ−1
1

(
$κ2(|x(t0)|p) exp

{∫ t∗

t0
−υr(u)(u)du

})
. (3.20)

Then ISSS (2.1) with DSDDs is p-AS. �

Remark 3.5. There are plenty of intriguing conclusions in the literature concerning the control and
analysis of nonlinear impulsive stochastic systems. However, the majority of recent studies have simply
investigated impulsive stochastic systems without considering stochastic effects; see [15,17,18,20,21].
On the other hand, although [16, 23] focused on stochastic impulsive systems, they all presented more
conservative constraints on the rate coefficient for the Lyapunov function. Furthermore, their results
do not apply to impulsive stochastic systems with switches. Moreover, our approach embraces several
current results as exceptional circumstances; for instance, the authors of [20], under the MDADT and
MDAII, only analyzed the stability of impulsive switched nonlinear systems with DSDDs. The [20]
only explored the stability of switched linear systems under an MDADT.

4. Application to neural networks

In this section, by applying switching density and impulse density, the restrictions on amounts
of switches and impulses are relaxed. Besides, based on Lyapunov functions and the comparison
principle, ISSNNs with DSDDs are considered to be mean square asymptotically stable (MSAS). In
particular, the derived results fully demonstrate that switching density and impulse density can more
accurately describe the switching number and impulsive number, making the system stable.dx(t) = − Ar(t)x(t) + Br(t) f (x(t − τ(t, x(t))))dt + g(x(t), x(t − τ(t, x(t))), r(t))dω(t), t < T im,

x(t) =Ih(t)(t−, x(t−), x(t− − τ(t−, x(t−)))), t ∈ T im,
(4.1)

where x(t) ∈ Rn and Ai is an n-dimensional diagonal matrix, representing the self-feedback connection
weight matrix. Bi ∈ R

n×n is the connection weight matrix among neurons. τ(t, x(t)) is a state-dependent
delay. f (·) is the neuron activation function, and we have that | fi(x1) − fi(x2)| ≤ li|x1 − x2|, L =

diag{l1, l2 · · · ln} and f (0) = 0. g(·) is the noise perturbation. The initial value ζ(t) = x(t − τ(t, x(t))) ∈
PL2

Ft0
. Take the Lyapunov function Vr(t)(t, x(t)) = t2xT Rr(t)x, where Ri ≤ viI, Ri ≤ µR j and I is the

identity matrix; vi > 1 and µ > 1 are constants. For the noise perturbation g(·), we make the following
assumption.

Assumption 4.1. There exist matrices Γ1i > 0 and Γ2i > 0 such that

trace[gT (x(t), xτ, i)g((x(t), xτ, i))] ≤ xT (t)Γ1ix(t) + xT
τ Γ2ixτ,

where xτ = x(t − τ(t, x(t))).

Following are several lemmas that will be useful later.
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Lemma 4.1. [30] Let x, y ∈ Rn; U is a diagonal positive definition matrix with appropriate
dimensions; then,

xT y + yT x ≤ xT Ux + yT U−1y

holds.

Lemma 4.2. [27] If V ∈ Rn×n is a symmetric positive definite matrix and U ∈ Rn×n is symmetric
matrix, then

λmin(V−1U)xT V x ≤ xT Ux ≤ λmax(V−1U)xT V x, x ∈ Rn

holds.

Following that, we will explore the asymptotic stability of ISSNNs by employing switching density
and impulse density. For convenience, take λi2 = λmax(R−1

i LT L) + viλmax(R−1
i Γ2i).

Theorem 4.1. Under Assumption 4.1, if for any r(t) = i ∈ Q, there exist symmetric Ri > 0, constants
vi > 1 and αi > 1, λi1 > λi2, andU(ti) ∈ Θ such that

(I8) (I3) and (I5) are satisfied;
(I9) λi2

t2
(t̆−τ̄)e

λ(t̆)−λ(t̆−τ̄(t̆,x(t̆))) + D+λ(t) ≤ λi1 −
2
t̆ ;

(I10) −AT
i Ri − RiAi + RiBiBT

i Ri + viΓ1i + λi1Ri < 0,

then ISSNN (4.1) with DSDDs is MSAS.

Proof. On the basis of the definition of L, Lemma 4.1 and Lemma 4.2, one has

LVi(t, x(t)) =2txT (t)Rix(t) + 2t2xT (t)Ri[−Aix(t) + Bi f (x(t − τ(t, x(t))))]
+ t2trace[gT (x(t), x(t − τ(t, x(t)), i))Rig(x(t), x(t − τ(t, x(t)), i))]

≤2txT (t)Rix(t) + t2
[
−2xT (t)RiAix(t) + 2xT (t)RiBi f (x(t − τ(t, x(t))))

+ vitrace[gT (x(t), x(t − τ(t, x(t)), i))g(x(t), x(t − τ(t, x(t)), i))]
]

≤2txT (t)Rix(t) + t2
[
xT (t)[−AiRi − RiAi + RiBiBT

i Ri + viΓ1i]x(t)

+ [λmax(R−1
i LT L) + viλmax(R−1

i Γ2i)]xT (t − τ(t, x(t)))Rix(t − τ(t, x(t)))
]
. (4.2)

Further, we have

ELVi(t, x(t)) ≤ −(λi1 −
2
t
)EVi(t, x(t)) + λi2

t2

(t − τ̄)2EVi(t, x(t − τ(t, x(t)))). (4.3)

According to Ri ≤ µR j, one has

EVr(t)(t, x(t)) ≤ µEVr(t−)(t−, x(t−)).

Therefore, the remaining discussion is similar to Theorem 3.1, which we will omit here. �
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Remark 4.1. In Theorem 4.1, we develop mean square asymptotic stability criteria for ISSNNs (4.1)
with DSDDs by implementing mode-dependent impulsive density and mode-dependent switching
density under the Lyapunov function. Condition (I10) is the concretization of (I1).

Remark 4.2. The range of impulsive leaps in this work is determined by historical state information.
This suggests that impulsive conduct is influenced not just by present state information, but also by
previous state information. We observe that impulses with state-dependent delay can not only stabilize
stochastic switched systems but also disrupt its stability. In order to stress the influence of DSDDs
more clearly, different from the results of [18–20, 22, 28], we explore delayed impulses and stochastic
noise in the form of (4.1), which makes impulsive behavior reliant on past state information.

Theorem 4.2. Under Assumption 4.1, if for any r(t) = i ∈ Q, there exist symmetric Ri > 0, constants
vi > 1 and αi > 1, λi1 > λi2, and 0 < U(ti) < 1 such that

(I11) (I′3) is satisfied;
(I12) −AT

i Ri − RiAi + RiBiBT
i Ri + viΓ1i − λi1Ri < 0;

(I13) $λi2
t2

(t−τ̄)2

∫ t

t0
exp

{∫ u

u−τx
υi(s)ds

}
du − 1 + exp

{
−

∫ t

t0
ρi(u) − υi(u)du

}
≤ 0,

then ISSNN (4.1) with DSDDs is MSAS.

Proof. On the basis of the definition of L, Lemma 4.1 and Lemma 4.2, one has

LVi(t, x(t)) ≤2txT (t)Rix(t) + t2
[
xT (t)[−AiRi − RiAi + RiBiBT

i Ri + viΓ1i]x(t)

+ [λmax(R−1
i LT L) + viλmax(R−1

i Γ2i)]xT (t − τ(t, x(t)))Rix(t − τ(t, x(t)))
]

≤(λi1 +
2
t
)EVi(t, x(t)) + λi2

t2

(t − τ̄)2EVi(t, x(t − τ(t, x(t)))).

Thus,
LVi(t, x(t)) ≤ (λi1 +

2
t
)EVi(t, x(t)) + λi2

t2

(t − τ̄)2EVi(t, x(t − τ(t, x(t)))), t < T, t ≥ t0,

EVr(t)(t, x(t)) ≤ µEVr(t−)(t−, x(t−)), r(t) ∈ Q,

EVr(t)(t, Ih(t)(t−, x(t−τ(t−, x(t−))))) ≤ U(th(t−))EVr(t−)(t−, x(t−)), t ∈ T im.

(4.4)

Afterward, in line with Theorem 3.2, ISSNN (4.1) is MSAS. The detailed proof is now omitted. �

5. Application to neural network-based lecture skills assessment of normal students

In this section, we apply model (4.1) in Section 4 to the neural network-based lecture skills
assessment of normal students. This is also an application case of neural networks for multi-class
classification.

We know that the comprehensive evaluation hierarchy for the lecture skills of normal students
generally includes the following five elements: (a) teaching design ability, (b) educational technology
application ability, (c) teaching implementation ability, (d) teaching evaluation ability, and (e) teaching
characteristics and innovation. For the comprehensive evaluation of the lecture skills of a single
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normal student, how to objectively and scientifically quantify the five elements (a), (b), (c), (d) and
(e), which have the most critical core impact on the normal students possesses a positive significance
for personalized improvement of the quality of talent cultivation for normal student. It should be noted
that these five elements (a), (b), (c), (d) and (e) constitute a dynamic process, and that the degree of
influence of these elements is also different. Therefore, evaluating which indicators have an impact on
a specific normal student is basically a nonlinear classification problem, which brings great difficulties
to comprehensive analysis.

Here, we first adopt a multivariate comprehensive evaluation method based on neural networks [31].
After inputting measurement indexes, the output nodes for network (4.1) in Section 4 determine the
five elements (a), (b), (c), (d) and (e) mentioned above (the core idea here is neural network-based
multi-class classification). Then, combined with the independent component analysis method in signal
processing [32], independent components are separated from the observed signals in the five elements
(a), (b), (c), (d) and (e); based on this, we can determine which indicators have an impact on a specific
normal student.

Below, we will briefly discuss the use of the simulation software MATLAB to verify the above
analysis ideas. Figure 1 shows three classroom teaching scenarios for normal mathematics students,
Figure 2 illustrates the normalization of elements for classroom teaching scenarios and Figure 3 depicts
the impact of separated independent source signals on a specific normal student.

(a) (b) (c)

Figure 1. Three classroom teaching scenarios for normal mathematics students.

(a) (b) (c)

Figure 2. The normalization of elements for classroom teaching scenarios.

AIMS Mathematics Volume 9, Issue 1, 178–204.



194

0

2

4

6

x 10
4

0 100 200

0

5000

10000

0 100 200

0

2

4

6

8

x 10
4

0 100 200

(a) (b) (c)

(a) (b) (c)

Figure 3. The impact of separated independent source signals.

6. Numerical examples

In this part, we will utilize the following system to test the viability of the theoretical results of this
article.

Example 1. We consider stochastic noise and DSDDs on the following system described in [33]
ẋ1(t) =ς(x2(t) − m1σ(t)x1(t) + m2σ(t)gσ(t)(x1(t))) − cx1(t − 0.5x1(t)),
ẋ2(t) =x1(t) − x2(t) + x3(t) − cx1(t − 0.5x1(t)),
ẋ3(t) = − πσ(t)x2(t) + c[2x1(t − 0.5x1(t)) − x3(t − 0.5x3(t))],

(6.1)

σ(t) ∈ {1, 2}; take ς = 11, m11 = 1, m12 = 2
7 , m21 = −1, m22 = 1, π1 = 14.87, π2 = 14.28 c = 0.1,

g1(x1(t)) = ax1 + 1
2 (b−a)(|x1(t)+1|− |x1(t)−1|), g2(x1(t)) = 1

2 (m12 + 1
7 )(|x1(t)+1|− |x1(t)−1|), a = −0.68

and b = −0.27. Then (6.1) can be revised as below:

ẋ(t) =Aσ(t)x(t) + A1σ(t)x(t − 0.5x(t)) + Cσ(t) fσ(x(t)), (6.2)

where

A1 =


−ς 0 0
0 −6 0
0 0 −π1

 , A2 =


−18

7 0 0
0 −12.37 0
0 0 −16.28

 ,
AIMS Mathematics Volume 9, Issue 1, 178–204.



195

A11 = A12 =


−c 0 0
−c 0 0
2c 0 −c

 , C1 =


1 0 0
0 0 0
0 0 0

 ,
C2 =


0.01 0 0

0 0 0
0 0 0

 ,
f1(x(t)) = (−ςg1(x1(t)), 0, 0)T and f2(x(t)) = (1

2 (|x1(t) + 1| − |x1(t) − 1|), 0, 0)T . The response system
has the same structure as the drive system; however, it takes controller-related and random disturbance
into account. For convenience, let yτ = y(t − 0.5(y(t))) and xτ = x(t − 0.5x(t)).

dy(t) =[Aσ(t)y(t) + A1σ(t)yτ + Cσ(t) fσ(t)(y(t))]dt + g3(t, y(t) − x(t), yτ − xτ)dω(t). (6.3)

In order to synchronize drive system (6.2) and response system (6.3), an impulse controller is designed:

u2(t) =

2∑
k=1

B2k(yτ − xτ)δ(t − tk),

where δ(t) is the Dirac function.
Then, synchronization error can be described as follows:de(t) =Aσ(t)e(t) + A1σ(t)eτ + Cσ(t) f̄σ(t)(e(t))dt + g3(t, e(t), eτ)dω(t),

∆(tk) =B2ke(tk − 0.5e(tk)),
(6.4)

where eτ = e(t − 0.5e(t)), f̄σ(t)(e(t)) = fσ(t)(y(t)) − fσ(t)(x(t)),

B21 =


0.2 0 0
0 0.2 0
0 0 0

 , B22 =


0 0 0
0 0.2 0
0 0 0.2

 .
Let V1(e(t)) = V2(e(t)) = t2eT (t)e(t), and set

Γ11 =


1 0 0
0 1 0
0 0 1

 ,Γ12 =


0.67 0 0

0 0.98 0
0 0 1

 ,
Γ21 = Γ22 =


1 0 0
0 1 0
0 0 1

 .
Then,

LV1(t, e(t)) =2teT (t)e(t) + t2
[
eT (t)[A1 + AT

1 + AT
11A11 + 2C1ς|b|I + Γ11]e(t) + 2eT

τ e(t)
]

≤(
2
t
− 11)t2eT (t)e(t) +

2t2

(t − 0.5e(t))2 (t − 0.5e(t))2eT
τ eτ,
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LV2(e(t)) =2teT (t)e(t) + t2
[
eT (t)[A2 + AT

2 + AT
12A12 + 2C2 + Γ12]e(t) + 2eT

τ eτ
]

≤(
2
t
− 4.3928)t2eT (t)e(t) +

2t2

(t − 0.5e(t))2 (t − 0.5e(t))2eT
τ eτ.

Let t0 = 1 and λ(t) = −2 ln t + 2t. Set ϕ1(t) = −2
t + 11, ξ1(t) = 2t2

(t−0.5e(t))2 and ϕ2(t) = −2
t +

4.3928, ξ2(t) = 2t2
(t−0.5e(t))2 . Then, we have that ξ1(t) exp{λ(t) − λ(t − 0.5e(t))} + D+λ(t) − ϕ1(t) < 0 and

ξ2(t) exp{λ(t) − λ(t − 0.5e(t))} + D+λ(t) − ϕ2(t) < 0. Take the switching density ψq(t) ≡ ψ(t) = 5.5 − 5
t ,

αq(t) ≡ α(t) = e0.2, impulse density φqp(t) ≡ φ(t) = 4 − 7
2t , impulse strength Up ≡ U = e0.2;

then, we have that limt→∞

∫ t

t0
ψ(u) lnα + φ(u) lnUpdu − λ(t) = −∞. Then, because all prerequisites

in Theorem 3.1 are met, we can infer that system (6.4) is MSAS. Then, Figures 4 and 5 illustrate the
state trajectory and mean square trajectory of the system, respectively, and they adequately explain
asynchronous occurrence between switches and impulses, validating the efficacy of our findings.
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Figure 4. Dynamic behavior of synchronization error system (6.4) with switching density
ψq(t) ≡ ψ(t) = 5.5 − 5

t and impulse density φp(t) ≡ φ(t) = 4 − 7
2t .

2 4 6 8 10 12 14

Time t

0

2

4

6

8

10

12

14

16

18

20

E
||
e

(t
)|

|2

Switching instants

Impulsive instants

Mean square  trajectory

Figure 5. Mean square trajectory of synchronization error system (6.4) with switching
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t and impulse density φp(t) ≡ φ(t) = 4 − 7
2t .
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Remark 6.1. In order to demonstrate the advantages of the proposed mode-dependent impulsive
density, we set the AII parameters for comparison based on the same initial values and switching
density; see Figures 6 and 7. It is not difficult to see from comparison that error trajectories under
the mode-dependent impulsive density strategy and mode-dependent switching density strategy are
synchronized faster and smoother. According to Figures 6 and 7, under the AII method, unstable
impulses in system (6.4) have shorter impulsive intervals, implying that the impulses occur more
frequently. Comparing Figure 8 with Figure 4, it can be observed that the synchronization of
system (6.4) is slower based on the MDADT and MDAII. This is mainly due to the fact that the linear
connections defined by the MDADT and MDAII restrict the depiction of the numbers of switching and
impulsive occurrences with time-varying characteristics. Hence, in light of the above description,
we conclude that designing an appropriate mode-dependent impulsive density and mode-dependent
switching density will be more adaptable and realistic, with fewer constraints to improve system
performance.
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Figure 6. Dynamic behavior of synchronization error system (6.4) with switching density
ψq(t) ≡ ψ(t) = 5.5 − 5

t and with AII T2 = 0.2.
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Figure 8. Dynamic behavior of synchronization error system (6.4) with MDADTs T11 = 0.3,
T12 = 1 and MDAIIs T21 = 0.5, T22 = 0.6.

Remark 6.2. Figures 9 and 10 respectively represent the state trajectories of subsystems of system (2.2)
with stable impulses based on an AII strategy, where the amount of impulses is insufficient to stabilize
the system. Figures 11 and 12 depict the results of the mode-dependent impulsive density method,
where state trajectories of subsystems of system (2.2) have attained stability.
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Figure 9. Dynamic behavior of subsystem (1) of system (2.2) with AII T2 = 0.9.
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Figure 10. Dynamic behavior of subsystem (2) of system (2.2) with AII T2 = 0.9.
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Figure 11. Dynamic behavior of subsystem (1) of system (2.2) with impulse density φp(t) ≡
φ(t) = t + 11.
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Figure 12. Dynamic behavior of subsystem (2) of system (2.2) with impulse density φp(t) ≡
φ(t) = 1

t + 21.

Example 2. In (4.1), set r(t) ∈ {1, 2}, h(t) ∈ {1, 2} and g(x(t), x(t − τ(t, x(t))), r(t)) = x(t) + |x(t −
τ(t, x(t)))|. Consider ISSNN (4.1) with the coefficients shown below

A1 = A2

[
1 0
0 1

]
, B1 =

[
5 0
−1 −3

]
, B2 =

[
5 −2
−3 −4

]
.

State-dependent delay τ(t, x(t)) = 0.5 ∗ |x(t)|. Ri = I. The state trajectories of subsystems of
ISSNNs (4.1) are shown in Figures 13 and 14. It can be seen that ISSNNs (4.1) is unstable. Let
the switching density ψi(t) = 17 + 2

t and impulse density φi j(t) = 22 + 5
t . By calculation, it can be

concluded that λ12 = 4, λ11 = 38, λ21 = 5, λ22 = 39, v1 = 3, v2 = 4, α1 = 1.5, α2 = 1.2 and υi(t) ≡ 3
t .

The impulses strengthU1 = U2 = 0.3.
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Figure 13. The state of subsystem (1) of (4.1) without impulsive control.
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Figure 14. The state of subsystem (2) of (4.1) without impulsive control.

In addition, we can calculate that

λmax

{
−AT

1 R1 − R1A1 + R1B1BT
1 R1 + v1Γ11 − λ11R1

}
= −10.8197,

λmax

{
−AT

2 R2 − R2A2 + R2B2BT
2 R2 + v2Γ12 − λ21R2

}
= −2.7199,

$λi2
t2

(t − τ̄)2

∫ t

t0
exp

{∫ u

u−τx

υi(s)ds
}
du − 1 + exp

{
−

∫ t

t0
ρi(u) − υi(u)du

}
≤ 0.

Therefore, the conditions of Theorem 4.2 are satisfied. The state trajectory of ISSNN (4.1) stabilized
by impulsive control through the impulse density strategy is depicted in Figure 15, which shows that
the obtained impulsive control signal can stabilize the considered ISSNNs under switching signals.
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Figure 15. The state of (4.1) with switching density ψq(t) ≡ ψ(t) = 17 + 2
t and with impulse

density φi j(t) ≡ φ(t) = 22 + 5
t .

7. Conclusions

The article focuses on a type of ISSS with DSDDs. The unstable impulsive dynamics and dynamics
of unstable continuous subsystems have been explored independently. In fact, the concept of mode-
denependt switching density and mode-dependent impulsive density are extensions of the MDADT and
MDAII repectively, with fewer constraints than typical ADT switching and AII impulses. In addition,
applying theoretical results for neural networks to the neural network-based lecture skills assessment of
normal students has been examined. In the end, two numerical examples were used to show theoretical
efficacy and validity.
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