Research article

Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model

  • Received: 19 March 2023 Revised: 16 April 2023 Accepted: 25 April 2023 Published: 18 May 2023
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • In this work, we deal with a one-dimensional Cauchy problem in Timoshenko system with thermal effect and damping term. The heat conduction is given by the theory of Lord-Shulman. We prove that the dissipation induced by the coupling of the Timoshenko system with the heat conduction of Lord-Shulman's theory alone is strong enough to stabilize the system, but with slow decay rate. To show our result, we transform our system into a first order system and, applying the energy method in the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using those pointwise estimates, we prove the decay estimates of the solution and show that those decay estimates are very slow.

    Citation: Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras. Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model[J]. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881

    Related Papers:

  • In this work, we deal with a one-dimensional Cauchy problem in Timoshenko system with thermal effect and damping term. The heat conduction is given by the theory of Lord-Shulman. We prove that the dissipation induced by the coupling of the Timoshenko system with the heat conduction of Lord-Shulman's theory alone is strong enough to stabilize the system, but with slow decay rate. To show our result, we transform our system into a first order system and, applying the energy method in the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using those pointwise estimates, we prove the decay estimates of the solution and show that those decay estimates are very slow.



    加载中


    [1] N. Bazarra, J. R. Fernández, R. Quintanilla, Lord-Shulman thermoelasticity with microtemperatures, Appl. Math. Optim., 84 (2021), 1667–1685. https://doi.org/10.1007/s00245-020-09691-2 doi: 10.1007/s00245-020-09691-2
    [2] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [3] A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Society London. A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [4] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [5] M. Khader, B. Said-Houari, Decay rate of solutions to Timoshenko system with past history in unbounded domains, Appl. Math. Optim., 75 (2017), 403–428. https://doi.org/10.1007/s00245-016-9336-6 doi: 10.1007/s00245-016-9336-6
    [6] B. Said-Houari, R. Rahali, Asymptotic behavior of the Cauchy problem of the Timoshenko system in thermoelsaticity of type III, Evol. Equ. Control Theory, 2 (2013), 423–440.
    [7] B. Said-Houari, T. Hamadouche, The asymptotic behavior of the Bresse-Cattanao system, Commun. Contemp. Math., 18 (2016), 04. https://doi.org/10.1142/S0219199715500455 doi: 10.1142/S0219199715500455
    [8] B. Said-Houari, A. Soufyane, The Bresse system in thermoelasticity, Math. Methods. Appl. Sci., 38 (2015), 3642–3652. https://doi.org/10.1002/mma.3305 doi: 10.1002/mma.3305
    [9] B. Said-Houari, T. Hamadouche, The Cauchy problem of the Bresse system in thermoelasticity of type III, Appl. Anal., 95 (2016), 2323–2338. https://doi.org/10.1080/00036811.2015.1089237 doi: 10.1080/00036811.2015.1089237
    [10] A. Soufyane, B. Said-Houari, The effect of frictional damping terms on the decay rate of the Bresse system, Evol. Equ. Control Theory, 3 (2014), 713–738.
    [11] S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson-Thompson equation with viscoelastic memory of Type II, J. Funct. Spaces, 2022 (2022), 9015775. https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775
    [12] H. Bounadja, B. Said-Houari, Decay rates for the Moore-Gibson-Thompson equation with memory, Evol. Equ. Control Theory, 10 (2021), 431–460.
    [13] M. E. Gurtin, A. S. Pipkin, A general decay of a heat condition with finite wave speeds, Arch. Rational. Mech. Anal., 31 (1968), 113–126.
    [14] A. Choucha, S. M. Boulaaras, D. Ouchenane, B. Belkacem Cherif, M. Hidan, M. Abdalla, Exponential stabilization of a swelling Porous-Elastic system with microtemperature effect and distributed delay, J. Funct. Space., 2021 (2021), 5513981. https://doi.org/10.1155/2021/5513981 doi: 10.1155/2021/5513981
    [15] H. Dridi, A. Djebabla, On the stabilization of linear porous elastic materials by microtemperature effect and porous damping, Ann. Univ. Ferrara, 66 (2020), 13–25. https://doi.org/10.1007/s11565-019-00333-2 doi: 10.1007/s11565-019-00333-2
    [16] D. Iesan, Thermoelasticity of bodies wih microstructure and microtemperatures, Int. J. Solids Struct., 44 (2007), 8648–8662. https://doi.org/10.1016/j.ijsolstr.2007.06.027 doi: 10.1016/j.ijsolstr.2007.06.027
    [17] D. Iesan, On a theory of micromorphic elastic solids with microtemperatures, J. Therm. Stresses, 24 (2001), 737–752.
    [18] D. Iesan, R. Quintanilla, On a theory of thermoelasticity with microtemperature, J. Therm. Stresses, 23 (2000), 199–215. https://doi.org/10.1080/014957300280407 doi: 10.1080/014957300280407
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1116) PDF downloads(52) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog